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Abstract: One of the main challenges in visual comfort assessment is controlling daylight in indoor
spaces. The effect of daylight’s contribution to total light is one of the variables influencing how
people perceive illumination in an indoor environment. This study investigates the optimal day-
light-to-total light ratio that delivers the most satisfaction with the lighting environment. Therefore,
a subjective survey of 509 questionnaires and field measurements in six office buildings in Tehran
with a total of 257 rooms was conducted to assess lighting quality (daylight and artificial light).
Furthermore, the effects of building characteristics and seasons on the acceptable range of daylight
ratio are investigated. The results reveal that occupants prefer daylight to total light ratio ranging
between 0.56 and 0.8. In contrast, occupants reported that a ratio less than 0.4 was unacceptable. It
was also found that the optimum daylight-to-total light ratio is influenced by the season and the
building characteristics.
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1. Introduction

The relationship between occupants’ comfort and daylight as a natural and dynamic
source of light is difficult to control. The availability of daylight in indoor spaces is
influenced by location, weather conditions, windows and shading systems. However,
because daylight raises room temperature, inappropriate daylight control can cause visual
discomfort and glare for building occupants [1]. Visual performance is known to improve
as illumination intensity increases; however, the light intensity does not necessarily have a
favorable impact. It may, however, cause glare and visual discomfort. Different illuminance
values and light properties are also known to influence cognitive performance [2]. In
particular, the variations in daylight’s illuminance range have a remarkable effect on
cognitive performance [3]. Therefore, in order to provide an environment that is visually
comfortable and that has a good impact on occupants’ cognitive performance, it is crucial
to control the contribution of daylight to the amount of lighting in the indoor environment.

Many researchers have focused on assessing green-certified building performance
regarding IEQ and occupants’ satisfaction [4], and defining acceptable conditions for
daylight and artificial light. In addition, in many standards, various metrics are used
as physical measures to assess visual conditions in different building types and define
acceptable thresholds [5]. Each metric provides a measure to predict and control the
important lighting and visual comfort parameters in different ways and levels [6]. Generally,
two kinds of static and dynamic metrics assess various aspects of daylight. Static metrics
are mostly illuminance-based metrics such as Daylight Factor (DF) [7,8], which have
been used for a long time in building recommendations and standards [9]. In BS8206-
2 Lighting for buildings, the acceptable average daylight factor is at least 2% [10]. In
most standards, the recommended illuminance level for office spaces on work planes is
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500 lx. For instance, the Canadian Labor Code, NS-EN 12464–1:2011, Chartered Institution
of Building Services Engineers (CIBSE), and Illuminating Engineering Society of North
America (IESNA) suggest a minimum illuminance of 500 lx on the work plane in office
environments [11–13]. However, in many standards, the suggested minimum illuminance
is defined primarily in terms of economic considerations rather than technical criteria of
comfort conditions [14,15].

Concerning the illuminance level, many studies have confirmed that occupants prefer
much higher lighting levels in their office environment than what is typically suggested by
recommendations and standards [16]. Another issue connected to environmental lighting
is the importance of daylight on human well-being [17]. Both artificial and natural lighting
impact subjective responses to lighting impressions and mood states [18]. For the human
circadian timing system to function properly, it must be exposed to both darkness and
daylight during the daytime. One benefit of natural light is that it requires less corneal
illuminance than artificial light does. [19]. Some studies have introduced criteria for
evaluating circadian lighting [20], such as the equivalent melanopic lux (EML) [21] and the
Circadian Stimulus (CS) [22]. In addition, several studies focused on controlling artificial
light to steady the light level in the working environment [21].

Previous studies indicate differences between the acceptable lighting levels for natural
and artificial light. It was demonstrated that when artificial light is the lighting source, the
inhabitants’ preferred illumination ranges from 100 to 800 lx [23–25]. Laurent et al. [26]
showed that people prefer 300 lx in their office spaces when daylight is the only light source.
Galasiu and Veitch [27] found that users preferred a low artificial light level when daylight
was available in working areas. However, when illuminance by daylight was available
below 100 lx, many people preferred adding 280 lx. There is a gap in earlier studies
that considers the impact of daylight contribution in the combined usage of daylight and
artificial light, even though several studies have been undertaken on the optimal lighting
level using natural and artificial lighting sources individually. In other words, previous
studies did not consider how occupants assess the lighting environment, and how they
are influenced by the proportion of natural and artificial illumination in a space. The
integration of daylight and artificial light is gaining more attention to reach a comfortable
environment for occupants in indoor spaces.

To address this gap, a new metric for assessing the contribution of natural and artificial
light in the indoor environment is necessary. Therefore, the current study conducts a survey
combined with the onside measurement of physical lighting quantity as an evaluation
method to define satisfying lighting conditions in the workplace. This is carried out in a
real space following a long-standing interaction between the user and the building. This
study attempted to determine how occupants evaluate the ratio of daylight to artificial
light in their offices. The aim is to define the original metric to assess the optimum balance
of natural to the total light ratio (DTR) which is the new metric for evaluating the lighting
environment. In addition to daylight levels, this study examines additional factors that
affect the lighting environment in indoor spaces, such as window characteristics [28–32]
and the impact of seasons [33] on the defined acceptable daylight ratio range.

2. Materials and Methods

Two main methods to assess influential parameters for evaluating lighting in office
spaces are a test room (or a controlled environment) and a field study. There are two advan-
tages of controlling ambient conditions in test rooms and using high-quality measurement
technology, which results in high accuracy for the measured values. However, the test room
is not the “real” occupants’ office environment since they spend a few minutes or hours in
this room. In addition, only a few volunteers can be interviewed simultaneously in test
room studies, thereby limiting the sample size, while field studies consider real influential
parameters. Psychosocial factors such as the presence of other colleagues in real working
environments are retained. In this field study, the research method contains three main
steps: First, case studies were identified, then necessary data were gathered from field mea-
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surements, and the occupants’ completed questionnaires. Second, the desired illumination
was defined using statistical data analysis from field measurements and the correlation
between variables and employee responses. Finally, the preferred daylight-to-total light
ratio was presented.

2.1. Buildings and Survey Population

This study was conducted in six office buildings in Tehran, Iran, with 109 rooms in
winter and 148 rooms in summer (Figure 1). The buildings were selected to consider differ-
ent spaces in building age (old and new ones), one-story and high-rise buildings, cubicles,
and open-plan offices with various window orientations with an optional atrium/outside
window. The selected rooms were occupied by one, two, or multiple people. The interior
electric lighting in all buildings is linear fluorescent lamps (low-pressure mercury-vapor
gas-discharge lamps), cool white with a color temperature between 4000 K and 5000 K,
and a color rendering index (CRI) between 70 and 80. To control the effect of the reflection
coefficient of the interior walls, the selected rooms had the same wall color. The general fea-
tures of buildings are mentioned in Table 1. More detail about the case studies is mentioned
in the previous publication [34].
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Table 1. Buildings’ specification.

Building Window
Orientation

WWR WFR
Number of Questionnaires Number of Rooms

Winter Summer Winter Summer

Building A North, south,
east, and west 23% 17% 24 42 21 27

Building B North, south,
east, and west 30% 22% 42 26 27 18

Building C North, south,
east, and west 30% 22% 14 20 10 9

Building D North, south,
east, and west 29% 16% 29 32 21 25

Building E North and
south 73% 26% 46 65 9 17

Building F North, south,
east, and west 35% 17% 74 95 21 50
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According to Table 1, the case studies are not much different in both the window-to-
wall ratio (WWR) and the window-to-floor ratio (WFR) except for building E, where these
two parameters are much higher than the other case studies. The interior surfaces and
reflections are similar (ceiling 0.75–0.8, wall 0.65–0.70, floor 0.6–0.65).

The survey involved 229 questionnaires filled in winter and 280 in summer (a total of
509 valid questionnaires). 44.1% of participants were male, and 55.9% were female. The
occupants ranged in age from 22 to 68, with a mean of 38. Most participants have been
working in their rooms for at least three months to ensure that they have adapted to the
working environment. Additionally, most of them worked in their workplaces for over six
hours per day. Before 11:30 a.m., 136 questions were completed, followed by 244 between
11:30 and 13:30, and 129 after 13:30.

2.2. Data Collection

Field measurements of physical parameters and data from completed questionnaires
were used to collect two types of data. The researchers measured and calculated the space
characteristics, outdoor obscurations such as a tree or other buildings, and light source
characteristics in the first part of the questionnaire. Participants completed the second section,
which included individual elements, as well as their assessment of the lighting environment.

2.3. Field Measurement

The surveys and field measurements were conducted during summer from 3 July to
23 July, from 9:00 a.m. to 5:00 p.m., and during winter, from 30 January to 25 February
2018, from 9:00 a.m. to 4:00 p.m. during working hours to consider the seasons’ influence.
Illuminance at the desk level (0.80 m above the floor) was measured once with electric
lighting and once without it. To measure the daylight level, the lights were turned off. The
questionnaires were filled out once with electric lighting and once without it.

In each room, three illuminance meters LX-1128SD with resolution 1 lx and accuracy
of ± (4% + 2dgt) have been used. These devices have three ranges of measurements: from
0 to 1999 lx, 1800–19,990 lx, and 18,000–99,900 lx. The first range was nominated for the
measurement (the maximum illuminance was 1298 lx in building E in a south-facing office
room). In each room, lux meters were located at the user’s desk level height of 0.80 m
above the floor. The data were recorded every 10 s for 30 min while occupants were filling
out the questionnaires. The lighting investigated in the statistical correlation is the average
measured illumination during these 30 min. The illuminance measurement was done with
and without artificial light using lamps with an on/off switch. Therefore, daylight, artificial
light level, and total illumination were collected. These three illuminance meters were
situated on the participants’ workstations, 1.5 m from the window, and 1 m from the wall
in front of the window. However, the amount of illumination measured on the users’ desks
while they filled out the questionnaire was the one used for data analysis. The devices
used in this project were new and were purchased for this project. To ensure the correct
functioning of the devices, we compared the numbers measured in the devices with each
other and with the devices we already had and were sure of their calibration.

2.4. Questionnaire

A subjective survey can determine visual comfort in office spaces [35]. The vertical
and horizontal illuminance evaluations have already been performed through individual
questionnaires in past studies [36–43]. A longitudinal approach via a survey has been
conducted to explain the relationship between employees, their working space, and their
perceived lighting environments. The occupants’ responses to the questions were evaluated
with measured physical parameters to assess the lighting of the buildings. The question-
naire was used to examine the participant’s sensation and satisfaction levels with the office
environment [44]. The questionnaire was designed using previous studies having similar
variables [36,40,45,46], which include two main parts (1) related to the participants’ general
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information, such as age and gender, and (2) related to the participants’ sensation and
satisfaction with the lighting environment (Table A1), which are classified as follows:

• Evaluating the satisfaction with the lighting environment
• Evaluating the satisfaction with daylight amount in comparison with artificial light
• Tendency to change the quantity of light

A five-point Likert scale, one of the most used ranking scales in lighting research, is
used to quantify occupants’ evaluation levels of environmental conditions. The paper-
based questionnaires were written in Persian (the English translation of the questionnaire
is presented in Appendix A). The questionnaire’s Likert scale values for very little, little,
average, much, and too much have been assumed to be 1,2,3,4,5, respectively. The other
collected data are related to the buildings and offices’ characteristics, such as type of
building, floor level, and window orientation, which was gathered by the authors. To
find the optimum DTR, each person filled out a questionnaire for the conditions with the
combination of both daylight and artificial light at their positions, with just daylight or
artificial light. Each participant answered questions for assessing the perceived lighting
level, lighting satisfaction, and tendency to change the amount of light three times (daylight
with lamps off, artificial light with completely covered windows, and a combination of
daylight and artificial light). The primary data used in the analysis is based on questionnaire
sections filled out under a combination of daylight and artificial light to determine the
optimal DTR. The rest of the questions (with both natural and artificial light) were used to
control the participants’ responses. Participants were chosen from different groups and
assigned to different lighting exposures. For this study, we used a questionnaire stating
that occupants did not experience glare.

2.5. Data Analysis

The measurement and survey data include different kinds of information on different
scales (nominal, ordinal, interval, and ratio scale). For instance, the physical measures, such
as illuminance, are interpreted as a continuous scale, and the answers to the questions with
a Likert 5-point scale (from “very little” to “very much”) are taken as an ordinal scale. In
contrast, individual characteristics such as gender are nominal. For the statistical analysis
of collected data, various statistical tests in the IBM SPSS Statistics version 25.0 (SPSS Inc.
Chicago, IL, USA) were used. The statistical data analysis includes two main sections; the
first section investigates the correlation between illuminance level and the satisfaction level
of occupants with the lighting environment. The second section compares lighting comfort
levels in various environments to investigate visual comfort in different spaces.

The Spearman rank correlation coefficient is a non-parametric measure that assesses
statistical dependence between two variables using a monotonic function to describe their
relationship, usually applied to quantitative variables [47,48]. Spearman rho correlations are
appropriate in the ordinal scale for defining a correlation among environmental parameters
and subjective responses [49–52]. In the Spearman correlation, the association between the
two variables is statistically significant when the p-value is less than 0.05 (typically ≤ 0.05).
Comparisons of lighting comfort levels between office characteristics (cubicles/open office,
one-sided/two-sided window) and different seasons (summer/winter) are based on t-tests.
One-way ANOVA is used to compare lighting comfort levels in the studied building. In
order to find the optimal DTR regarding building type and season, descriptive analysis is
used.

3. Results
3.1. Indoor Lighting Condition

The highest measured illuminance was 1298 lx in summer and 1150 lx in winter. The
minimum illuminance was 77 lx in summer and 35 lx in winter, while the mean illuminance
levels were 472.64 lx in summer and 470.21 lx in winter.

Daylight, artificial light, and the combination of both in each building and season are
presented in Figure 2. In buildings A and B, the daylight level was higher than that of the
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artificial one, while in building C, the artificial light was higher than daylight illumination.
In buildings E and F, the daylight level was equal to the artificial light. The mean measured
illuminance (when the combination of daylight and artificial light was used) in buildings
was: 409 lx in building A, 491 lx in building B, 514 lx in building C, 556 lx in building D,
601 lx in building E, and 361lx in building F. It is worth mentioning that the measured light
level in a few office spaces is inadequate (lower than 500 lx, which is suggested in most
lighting standards). In some cases, the daylight or artificial light is below 200 lx, while the
total light is higher than 200 lx. Measured daylight in summer was more elevated than
artificial light; in winter, steady artificial light was higher than daylight.
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Figure 3 shows measured daylight, artificial light, and the combination of both in
each orientation. The daylight level in rooms oriented to the south was higher than that of
other window orientations. The mean measured illuminance and mean measured daylight
illuminance in different window orientations are, respectively, 599.58 lx and 335.38 lx in
south window-oriented rooms, 403.65 lx and 191.9 lx in north window-oriented rooms,
450.89 lx and 226.24 lx in east window-oriented rooms, and 369.77 lx and 169.41 lx in west
window-oriented rooms.

Buildings 2022, 12, x FOR PEER REVIEW 7 of 17 
 

 
Figure 3. On-site measured illuminance in the studied buildings separated by window orientation. 
Extreme outliers are marked with an asterisk and circles 

Figure 4 presents measured daylight, artificial light, and the combination of both 
based on WWR and WFR, categorized into four interval breaks (less than 25 percent, be-
tween 25 and 50 percent, between 50 and 75 percent, and higher than 75 percent). Figure 
4 shows that the daylight level increases as the WWR and WFR increase. The mean meas-
ured illuminance and mean measured daylight level, respectively, were; 426.21 and 192.7 
when WWR was below 25 percent, 436.35 and 223.72 when WWR was between 25 and 50 
percent, 555.3 and 324.64 when WWR was between 50 and 75 percent, 687.9 and 395.53 
when WWR was above 75 percent, 350.33 and 176 when WFR is below 25 percent, 452.31 
and 230.28 when WFR is between 25 and 50 percent, 492.68 and 268.6 when WFR was 
between 50 and 75 percent, 687.45 and 388.25 when WFR was above 75 percent. It is worth 
mentioning that all shading systems were off during the daylight measurement and data 
collection, and it was on when the artificial light was measured. 

 
Figure 4. On-site measured illuminance in the studied buildings. Separated by WWR (a) separated 
by WFR (b) Note: For graph (a), 1 = WWR < 25%, 2 = 25% < WWR ≤ 50%, 3 = 50% < WWR ≤ 75%, 4 = 
75% ≤ WWR. For graph (b), 1 = WFR < 25%, 2 = 25% < WFR ≤ 50%, 3 = 50% < WFR ≤ 75%, 4 = 75% ≤ 
WFR. 

3.2. Visual Preferences Ratings 
To find the acceptable lighting condition, it is necessary to check if there is a signifi-

cant correlation between subjective satisfaction with indoor lighting and illuminance lev-
els investigated through the Spearman correlation [53,54]. As shown in Table 2, a statisti-
cally significant relationship (p < 0.05) occurs between occupants' satisfaction with the il-
luminance level in each building, and when all of the building's data were assessed 

Figure 3. On-site measured illuminance in the studied buildings separated by window orientation.
Extreme outliers are marked with an asterisk and circles.

Figure 4 presents measured daylight, artificial light, and the combination of both based
on WWR and WFR, categorized into four interval breaks (less than 25 percent, between 25
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and 50 percent, between 50 and 75 percent, and higher than 75 percent). Figure 4 shows
that the daylight level increases as the WWR and WFR increase. The mean measured
illuminance and mean measured daylight level, respectively, were; 426.21 and 192.7 when
WWR was below 25 percent, 436.35 and 223.72 when WWR was between 25 and 50 percent,
555.3 and 324.64 when WWR was between 50 and 75 percent, 687.9 and 395.53 when WWR
was above 75 percent, 350.33 and 176 when WFR is below 25 percent, 452.31 and 230.28
when WFR is between 25 and 50 percent, 492.68 and 268.6 when WFR was between 50 and
75 percent, 687.45 and 388.25 when WFR was above 75 percent. It is worth mentioning that
all shading systems were off during the daylight measurement and data collection, and it
was on when the artificial light was measured.

Buildings 2022, 12, x FOR PEER REVIEW 7 of 17 
 

 
Figure 3. On-site measured illuminance in the studied buildings separated by window orientation. 
Extreme outliers are marked with an asterisk and circles 

Figure 4 presents measured daylight, artificial light, and the combination of both 
based on WWR and WFR, categorized into four interval breaks (less than 25 percent, be-
tween 25 and 50 percent, between 50 and 75 percent, and higher than 75 percent). Figure 
4 shows that the daylight level increases as the WWR and WFR increase. The mean meas-
ured illuminance and mean measured daylight level, respectively, were; 426.21 and 192.7 
when WWR was below 25 percent, 436.35 and 223.72 when WWR was between 25 and 50 
percent, 555.3 and 324.64 when WWR was between 50 and 75 percent, 687.9 and 395.53 
when WWR was above 75 percent, 350.33 and 176 when WFR is below 25 percent, 452.31 
and 230.28 when WFR is between 25 and 50 percent, 492.68 and 268.6 when WFR was 
between 50 and 75 percent, 687.45 and 388.25 when WFR was above 75 percent. It is worth 
mentioning that all shading systems were off during the daylight measurement and data 
collection, and it was on when the artificial light was measured. 

 
Figure 4. On-site measured illuminance in the studied buildings. Separated by WWR (a) separated 
by WFR (b) Note: For graph (a), 1 = WWR < 25%, 2 = 25% < WWR ≤ 50%, 3 = 50% < WWR ≤ 75%, 4 = 
75% ≤ WWR. For graph (b), 1 = WFR < 25%, 2 = 25% < WFR ≤ 50%, 3 = 50% < WFR ≤ 75%, 4 = 75% ≤ 
WFR. 

3.2. Visual Preferences Ratings 
To find the acceptable lighting condition, it is necessary to check if there is a signifi-

cant correlation between subjective satisfaction with indoor lighting and illuminance lev-
els investigated through the Spearman correlation [53,54]. As shown in Table 2, a statisti-
cally significant relationship (p < 0.05) occurs between occupants' satisfaction with the il-
luminance level in each building, and when all of the building's data were assessed 

Figure 4. On-site measured illuminance in the studied buildings. Separated by WWR (a) separated
by WFR (b) Note: For graph (a), 1 = WWR < 25%, 2 = 25% < WWR ≤ 50%, 3 = 50% < WWR ≤ 75%,
4 = 75% ≤ WWR. For graph (b), 1 = WFR < 25%, 2 = 25% < WFR ≤ 50%, 3 = 50% < WFR ≤ 75%,
4 = 75% ≤ WFR.

3.2. Visual Preferences Ratings

To find the acceptable lighting condition, it is necessary to check if there is a significant
correlation between subjective satisfaction with indoor lighting and illuminance levels
investigated through the Spearman correlation [53,54]. As shown in Table 2, a statistically
significant relationship (p < 0.05) occurs between occupants’ satisfaction with the illumi-
nance level in each building, and when all of the building’s data were assessed together
(total). There was a strong correlation between illuminance and satisfaction with lighting
in building B and building A, and a weak connection was shown in building D.

Table 2. Spearman coefficient between lighting satisfaction and lighting level.

Lighting
Satisfaction Total Building A Building B Building C Building D Building E Building F

Spearman
Correlation

p-value

0.528
0.000

0.601
0.000

0.661
0.000

0.507
0.020

0.466
0.000

0.474
0.000

0.479
0.000

3.3. Daylight to Total Light Ratio

One of the influential factors in occupants’ perception of lighting is the light source’s
type and quality. In studied office buildings, daylight and artificial light are used in most
spaces. However, only natural light was used in a limited number of surveyed rooms.
Artificial light was the only lighting source in a few spaces without an outside window or
adjacent atrium. Therefore, there was a wide illuminance range of daylight and artificial
light, and a combination of both in these office spaces.
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Table 3 shows the correlation between natural and artificial, the room’s total illumi-
nance, and the occupants’ satisfaction with illumination. Satisfaction with the lighting
was mainly influenced by the illuminance level of daylight (Spearman correlation is 0.546)
and total illuminance (Spearman correlation is 0.528). Although satisfaction with ambient
lighting has a significant relationship with the illuminance of electric lighting (sig < 0.05),
the correlation coefficient is low (Spearman correlation is 0.131). Therefore, the correlation
between artificial light and occupants’ satisfaction is weak compared to other lighting
sources. In other words, using only artificial light without the right combination of day-
light in office spaces is not a good choice to satisfy occupants. Table 3 shows a significant
correlation (p-value < 0.05) between the natural to total light ratio and satisfaction with
lighting level, and the correlation coefficient is 0.452. Then, the DTR affects the occupants’
perception of the lighting.

Table 3. Spearman coefficient between lighting satisfaction and lighting level in different conditions.

Lighting
Satisfaction

Total
Illuminance

Daylight
Illuminance

Artificial
Illuminance DTR

Spearman
Correlation

p-value

0.528
0.000

0.546
0.000

0.131
0.003

0.452
0.000

Since daylight illumination significantly affects people’s satisfaction higher than artifi-
cial light, employees have just used daylight in some office spaces. DTR ratio defines the
optimal ratio.

Table 4 shows the results of one-way ANOVA for building and t-test analysis for other
environmental variables at each borderline satisfaction of, respectively, “unacceptable”,
“neutral”, and “acceptable”. It is worth mentioning that the five scale questions were
converted to the three scales (change “very pleased” and “pleased” to “accept”, and
“very unpleased” and “unpleased” to “unacceptable”). The difference between groups of
buildings and window types appears to be significant, just in an acceptable range, and in
all satisfaction levels the difference between seasons is substantial. At the same time, there
is no difference between office types in the preference of the DTR. Therefore, the building
type, season, and window type affect the acceptable range for the DTR.

Table 4. One-way ANOVA and t-test results of variables and DTR values.

Satisfaction Level p-Value

Buildings (six buildings)

Unacceptable 0.562

Neutral 0.120

Acceptable 0.007

Season (winter/summer)

Unacceptable 0.009

Neutral 0.000

Acceptable 0.034

Window
(one-sided/two-sided)

Unacceptable 0.839

Neutral 0.998

Acceptable 0.003

Office type (cubicles/open
office)

Unacceptable 0.40

Neutral 0.86

Acceptable 0.053

To define the minimum acceptable DTR regarding the building type, the mean, median,
and standard deviation of the DTR in each satisfaction level are shown in Table 5. In the
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studied buildings, increasing the DTR will increase satisfaction with lighting. The DTR
below 0.41 leads to dissatisfaction with lighting in the studied buildings. In building E,
with an all-glass façade compared to the other buildings, the preferred DTR is lower (0.22).
In the other five buildings, a DTR higher than 0.49 is preferred by the occupants. The main
difference between building E and the other studied buildings is that the WWR is higher in
building E. The WWR affects the available daylight and visual comfort, thus influencing the
preferred DTR. People in this building prefer less DTR. Since this is a glass façade building,
a high DTR may increase the possibility of glare sensation by sunlight. The other useful
parameter is the season.

Table 5. Satisfaction level of DTR in the studied buildings.

Building Satisfaction
Level Mean Median Std.

Deviation Building Satisfaction
Level Mean Median Std.

Deviation

Building A

Unacceptable 0.37 0.32 0.1

Building D

Unacceptable 0.29 0.24 0.22

Neutral 0.63 0.63 0.2 Neutral 0.46 0.51 0.21

Acceptable 0.67 0.65 0.22 Acceptable 0.51 0.56 0.15

Building B

Unacceptable 0.29 0.23 0.2

Building E

Unacceptable 0.22 0.20 0.22

Neutral 0.46 0.42 0.22 Neutral 0.25 0.26 0.26

Acceptable 0.53 0.57 0.20 Acceptable 0.39 0.53 0.25

Building C

Unacceptable 0.36 0.37 0.07

Building F

Unacceptable 0.41 0.45 0.14

Neutral 0.47 0.37 0.19 Neutral 0.53 0.54 0.11

Acceptable 0.49 0.49 0.06 Acceptable 0.57 0.59 0.10

Table 6 shows DTR’s mean, median, and standard deviation in winter and summer.
DTR in each satisfaction level in summer is higher than that of winter.

Table 6. Satisfaction level of DTR in summer and winter.

Satisfaction
Level Mean Median Std.

Deviation
Satisfaction

Level Mean Median Std.
Deviation

Summer

Unacceptable 0.42 0.43 0.12

Winter

Unacceptable 0.29 0.22 0.20

Neutral 0.54 0.53 0.12 Neutral 0.43 0.47 0.22

Acceptable 0.58 0.57 0.14 Acceptable 0.50 0.54 0.21

The comparison of the acceptable mean DTR in rooms with one-sided and two-sided
windows, cubicles, and open-plan offices is shown in Table 7. The mean DTR in rooms
with one-sided and two-sided windows is almost equal, while the acceptable mean DTR in
rooms with two-sided windows is higher than one-sided. The acceptable mean DTR in the
cubicle and open-plan offices is similar. Therefore, the room type does not influence the
acceptable range of DTR.

Table 7. Satisfaction level of DTR in the studied offices.

Window Satisfaction
Level Mean Median Std.

Deviation
Office
Type

Satisfaction
Level Mean Median Std.

Deviation

One-sided

Unacceptable 0.37 0.39 0.17

Cubicles

Unacceptable 0.36 0.37 0.17

Neutral 0.50 0.53 0.18 Neutral 0.50 0.53 0.18

Acceptable 0.55 0.57 0.14 Acceptable 0.57 0.57 0.16

Two-sided

Unacceptable 0.38 0.37 0.22

Open plan

Unacceptable 0.41 0.40 0.16

Neutral 0.50 0.53 0.15 Neutral 0.51 0.55 0.09

Acceptable 0.64 0.55 0.21 Acceptable 0.54 0.53 0.08
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As the building type, season, and window type affect the acceptable range for DTR
(Table 4), the occupants’ satisfaction level with DTR should be analyzed regarding these
factors. Figure 5 shows the impact of DTR on occupants’ satisfaction level with lighting
separated by several factors. As shown in Figure 5a, in all buildings except buildings C and
E, the mean preferred DTR is higher than the mean on-site measured DTR. In building C,
the mean measured DTR is higher than the DTR level where people felt very pleased, but
it is lower than the DTR level of pleasing condition. To compare the lighting satisfaction
in different seasons, the occupants’ evaluation of illumination in different DTR separated
by season is shown in Figure 5b. The mean measured DTR in office spaces in summer
is 0.55, and in winter it is 0.42. The average satisfaction with lighting is near the mean
measured DTR in both summer and winter. The DTR higher than the mean measured leads
to lighting comfort, and less than the mean measured is not acceptable for occupants.
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Generally, the measured and preferred DTR in summer is higher than in winter. The real
minimum satisfied DTR in summer is 0.58, and in winter it is 0.50. This is because people
become adapt to lighting in their environment during the season. The highest satisfaction
level with light is when the DTR is higher than 0.62 in summer and 0.52 in winter.

As expected, the mean measured DTR is different in the one-sided and two-sided
window offices (in the two-sided window offices, DTR is higher). This leads to the greater
acceptable DTR in the two-sided window offices. According to Table 8, there is a statistical
difference between the mean DTR in the cubicle and open-plan offices and summer and
winter seasons, but there is no statistical difference between DTR in these six buildings
(Tables 8 and 9). Figure 5d shows no significant difference between the mean measured
DTR in the cubicle and open-plan offices, as there is no difference between these offices in
DTR in all satisfaction levels (Table 4).
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Table 8. t-test for DTR.

F df t Sig

Season 20.267 509 14.147 0.000

One side/Two side Window 14.526 509 4.376 0.000

Cublic/Open Plan 3.572 509 0.460 0.059

Table 9. ANOVA analysis for DTR.

Sum of
Squares df Mean Square F Sig.

Building type 337.792 5 67.558 10.431 0.000

The satisfaction level with lighting based on the DTR in summer and winter is shown
in Figure 6a. When people are not satisfied with illumination, the DTR in summer is higher
than in winter, while in pleasant lighting, the DTR in summer and winter is almost equal.
This indicates that the effect of the season on the ideal DTR is negligible.
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Figure 6b Shows the satisfaction level of occupants with lighting in the different DTR
regardless of building type and season. Occupants’ satisfaction with lighting increases with
the increase in DTR. The mean DTR in each satisfaction level is measured to determine the
exact optimal range of satisfaction with DTR. The mean DTR, which provides comfortable
conditions, is 0.56 and 0.58, as people are much and very much satisfied with lighting,
respectively. In the mean DTR, around 0.5, occupants have average lighting satisfaction.
Unpleasant and very unpleasant illumination occurs when the mean DTR is 0.4 and 0.17. It
is worth mentioning that the total illuminance for the recommended DTR range is also in
the acceptable range of 600–650 lx [48].

Two questions were asked of employees: if they preferred to increase or decrease
the lighting level. To determine which DTR range people preferred, we categorized the
tendency to increase or decrease illuminance into ten categories with 0.1 intervals. Figure 7
shows the percentage of people in each DTR range who tend to change the light (increase
or decrease). The tendency to increase the lighting level in summer is higher than in winter
when the DTR is below 0.5. In summer, decreasing lighting levels in all DTR is higher than
in winter Figure, as shown in 7a. Figure 7b shows the tendency to increase the lighting
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level is higher than the tendency to decrease when the DTR is below 0.78. Occupants prefer
to reduce the lighting level when the DTR is significantly higher than 0.8. This shows that
people prefer to decrease the lighting level when daylight increases. Therefore, the daylight
to total ratio should not be higher than 0.8.
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4. Discussion

The presented results clearly emphasize the importance of daylight illuminance com-
pared with the other lighting sources or a combination of daylight and artificial light. People
use a variety of daylight and artificial light in most office spaces. One of the challenges here
is to provide a good combination of daylight and electric light in the workplace. Previous
studies have focused separately on illuminance, luminance, color temperature, etc. [55–58]
for daylight or artificial light. Therefore, the question is, what is the optimum balance of
illuminance between the two lighting sources?

This study investigated the occupants’ evaluation of visual comfort in various office
spaces during winter and summer through the survey and field measurements. Physical
parameter measurements consisted of daylight and artificial illuminance on work planes
in 275 rooms in six buildings in Tehran. The occupants’ satisfaction with DTR when the
illuminance is in acceptable levels (between 600–650 lx) in these spaces leads to a visually
comfortable condition for most occupants [34]. People’s preferences for lighting levels are
not the same in different countries and cities. This variation among acceptable ranges could
depend on climate and culture. This variation among acceptable ranges may depend on the
function of buildings and architecture [53], climate, and culture [17,59]. For example, the
task illumination in Michigan should be above 650 lx [41]. However, in the Netherlands, an
average of 800 lx at the desk level is more acceptable for office employees [16]. A lighting
level between 300 to 600 lx at the desk is preferred in France [60]. In Italy, a study showed
that 74% of occupants were confirmed to have neutral visual sensations with a maximum
of 413 lx [61]. Still, other factors besides climate and culture could have played a role.
According to previous studies, it is essential to consider integrating natural and artificial
light sources. What is emphasized in this article is the combination of natural and electric
lighting. Bellia et al. showed that daylight-entering characteristics are similar in summer
and winter [33]. However, as the daylight level during summer and winter are different,
there is a difference between the mean DTR in each satisfaction level in summer and winter.
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5. Conclusions

The present study was designed to determine the effect of daylight to total light ratio on
the occupants’ evaluation of lighting. It was decided that the method adopted for analysis
was by field measurement, and the human evaluation of indoor environments was through
a questionnaire. In summary, these results show that the combination ratio of daylight
and artificial light is essential in the occupants’ perception of the environment. There
is an optimal range for the DTR in which most occupants are satisfied with the lighting
in their offices. This study has also shown that the optimization of the daylight ratio to
artificial light affects the occupants’ perception of the lighting. The highest satisfaction with
lighting is in the range of 0.57 to 0.8 daylight-to-total light ratio. DTR greater than 0.5 is
also acceptable for users. Thus, at least 50 percent of environmental lighting sources should
be from daylight.

Some variables, such as building type, window design, and season affect DTR accep-
tance, while there is no difference in occupants’ satisfaction with the DTR in various office
types (cubicles/open offices). Acceptable DTR in the summertime is higher than that in
winter. This happens because the mean measured DTR in the summertime is higher. In
offices with windows on two sides, acceptable DTR is higher than in one-sided window
rooms. The measured DTR in open-plan and cubicle spaces is similar, but to provide visual
comfort conditions the DTR should be slightly higher in the cubicle than in the open-plan
office.

When the DTR is below 0.5, in the summertime the tendency to increase the lighting
level is higher than in winter, while in winter, when the DTR is higher than 0.5, occupants
prefer more lighting level incrementation than in the summertime. When the DTR is higher
than 0.9, people do not want to increase the lighting levels. In office spaces with the DTR
below 0.7 in winter, occupants do not want to decrease the lighting levels. Therefore, the
total tendency to decrease the lighting levels in the summertime is higher than in winter.

6. Limitations of Study

There are some critical limitations in this study worth mentioning:

• The six case studies have different characteristics (such as various orientations, WWR,
WFR, interior layout, etc.). However, in data analysis, these parameters are considered
equivalent. The results can be analyzed considering different spatial environments.

• The results could be case-specific because this study was conducted in six buildings.
Further studies could help generalize the findings and conclusions of the present
study.

• For this study, we used a questionnaire in which the occupants stated that they did
not experience glare. Therefore, the study can be developed by considering luminance
to determine an acceptable DTR when the occupants experience glare.

• The same office rooms were chosen for the winter and summer seasons. However, the
number of rooms changed between winter and summer, since some participants were
absent and were therefore unable to finish the questionnaire in some rooms.
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Appendix A. Questionnaire

Table A1. Summary of the survey questionnaire.

Section A-Demographics
Right hand/left hand sex age Overall

General
information

Other
activities Both of them With computer Paper-based Kind of work

About the
work<4 h 4–6 h 7–8 h >8 h Working hours

For how long you have been working in this room (in a month)?
Do you sometimes have a severe headache? Visual

problemsDo you have light sensitivity?
Do you use glasses?

Section B-Lighting perception
Please rate your satisfaction with the room lighting:

Satisfaction of
lighting

very pleasant pleasant neither pleasant nor pleasant unpleasant very
unpleasant

Please rate your satisfaction with lighting when working with a computer:

very pleasant pleasant neither pleasant nor pleasant unpleasant very
unpleasant

Please rate your satisfaction with lighting when writing/reading a paper:

very pleasant pleasant neither pleasant nor pleasant unpleasant very
unpleasant

Please rate your satisfaction with daylight in compare with artificial light:
DTRacceptable neutral unacceptable

What is your desire to increase the amount of light? The
tendency to
change the

amount of light

too much much Average little very little
What is your desire to reduce the amount of light?

too much much Average little very little
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