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Abstract: In recent years, many scholars worldwide have carried out research related to the relation-
ship between the construction of rural dwellings and the indoor thermal environment in response
to the issue of building sustainability. China’s rural revitalization has developed rapidly in recent
years. Although previous research showed that the poor indoor thermal environment of vernacular
dwellings has negative effects on residents’ thermal comfort and health, it is poorly studied in terms
of residents’ space usage habits, their thermal comfort satisfaction, and their thermal sensation.
Linyi, the largest and most populous city in Shandong, China, was selected as the research area to
investigate the thermal environment and space usage by using in-depth questionnaire interviews
and systematical measurements. The results show that there are seasonal differences in space usage
in a typical vernacular dwelling. The field measurements show that the indoor temperature is 0–5 ◦C
in winter if there is no heating and 26 ◦C in summer. By comprehensive comparison, it is found that
there is a contradiction between residential space usage and the functional layout; residents choose to
use rooms with worse thermal conditions in winter. The analysis of the questionnaires shows that
residents have higher satisfaction with the indoor thermal environment in summer than in winter,
and the thermal comfort range of residents is 23.3~30 ◦C in summer and 11.25~17.5 ◦C in winter.
Additionally, the neutral thermal temperature of the indoor space is 26.7 ◦C in summer and 14.4 ◦C
in winter. Although residents have better adaptability to the cold climate, the measurement data in
winter are still beyond the comfort range. We suggest that these results can be used as a reference
and data base for improving the living environment of rural vernacular dwellings in Chinese cold
regions.

Keywords: cold regions; vernacular dwellings; indoor thermal environment; space usage status;
thermal satisfaction; thermal sensation

1. Introduction
1.1. Research Background

The adaptive thermal comfort model is specified in many international and national
standards, such as ASHRA Standard 55 [1], EN15251 [2], and Chinese Standard GB/T 50785-
2012 [3], and it is one of the common methods for studying indoor energy consumption and
indoor thermal comfort. These standards are mainly applicable to thermal comfort research
in office environments. If the existing thermal comfort standards are directly applied to
residential buildings, the accuracy of the results will be difficult to confirm. Therefore, the
indoor thermal environment and indoor thermal comfort in residential buildings need to be
further studied. In recent years, China’s urban and rural areas have developed rapidly, and
the indoor thermal resolution of Chinese vernacular dwellings is generally poor. Therefore,
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this paper reports research on the indoor thermal environment of Chinese vernacular
dwellings and the thermal comfort of residents.

In 2018, the Chinese central government defined the route and strategic goals for rural
revitalization in the “Opinions on Implementing Rural Revitalization Strategy”, which
marked the new era for Chinese rural development [4]. With the rapid development of
rural revitalization in recent years, the rural economy has grown significantly and people’s
living standards have also been greatly improved [5]. Rural development and residential
construction have entered a new development period [6]. According to the data released
by the National Bureau of Statistics, about 39% of the population in China still lives in
rural areas [7], and their living environment and quality are drawing increasing attention
in recent years [8]. Under this development background, most of the newly built dwellings
overemphasize the unity of layout and form, ignoring the relationship with the regional
environment. The lack of research on the low-carbon design of regional dwellings has not
only resulted in the gradual loss of the regional cultural characteristics of dwellings, but
also caused a contradiction between the functional layout of dwellings and the residents’
usage habits. The abuse of modern building materials caused low-quality residential
buildings, poor indoor and outdoor thermal comfort, and many other issues [9]. Following
these problems, high energy consumption and high carbon emissions become the main
problems of newly built residential buildings [10,11], which cause huge negative impacts
on the environment [12].

In addition, the proportion of the elderly population in China had already accounted
for 18.7% of the total population in 2021, an increase of 5.44% since 2011. With the accelera-
tion of the aging process and the transfer of young labor from rural to urban areas brought
by China’s rapid urbanization process, the proportion of elderly people living in rural areas
will continue increase in the future [13]. Owing to physical and health conditions [14],
the elderly spend about 80% of their time indoors [15], and have higher requirements for
indoor thermal comfort [13].

Therefore, under the rapid development of rural areas, the questions of how to meet
the physical and psychological needs of users, how to optimize the spatial functions of
vernacular dwellings, how to effectively improve indoor and outdoor thermal comfort, and
how to improve the living quality, have become an important practical and academic issue
in the whole Chinese rural revitalization.

This paper innovatively compares the indoor thermal environment, the standard
comfort range of GB/T 50785-2012, and the actual thermal comfort range of residents,
which will allow us to view the current situation of the indoor thermal environment more
intuitively, so as to improve the indoor thermal environment in a more targeted manner.
When improving the indoor thermal environment, taking the actual thermal comfort range
of residents as the optimization target can reduce unnecessary energy consumption and
help residents save costs.

1.2. Regional Issue

China has a vast territory with five climatic regions, of which the severe cold regions
and cold regions are mainly distributed in northern China (Figure 1) [16]. In the cold
regions of China, only Shandong Province is entirely within the cold climate region, and
other provinces also have parts in other climate regions. The climate of Shandong Province
is relatively suitable in summer and cold in winter [17]. Shandong is the largest agricultural
province in China and has the second largest rural population. It has a vast rural area,
but the rural economy is relatively underdeveloped and the income of farmers is low.
According to the data released by the National Bureau of Statistics in 2021, the per capita
disposable income of rural residents in Shandong Province is CNY 20,800, and 16 cities
are less than CNY 30,000 [7]. The economic situation directly affects the indoor thermal
environment of vernacular dwellings and the life quality of residents. Residents with poor
economic conditions tend to reduce the investment in construction costs when building
houses, such as using cheap but poor-performance materials, reducing the building area,
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etc., which in turn affects the functional layout and indoor comfort, generates more energy
consumption, and increases usage costs. Therefore, improving the thermal environment of
vernacular dwellings in Shandong has a great social value and demonstrates significance
for rural areas in cold regions of China.
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Rural revitalization in Shandong Province is currently being actively carried out, and
Linyi city is the key implementation area (Figure 2). Linyi is the largest and most popu-
lous city in Shandong Province, and the rural development there is relatively regressive.
Linyi’s economic development is also relatively regressive, and the per capita disposable
income of Linyi ranks third from the bottom in Shandong in 2021 [7], which results in a
large outflow of young people and an increasing proportion of the elderly. Summarizing,
Linyi’s rural areas are vast and the rural economy is underdeveloped. The government
departments are actively carrying out various rural revitalization projects in Linyi’s rural
areas. Therefore, this paper takes Linyi’s vernacular dwellings as the research object, which
has very important research significance.
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2. Literature Review
2.1. Analysis of the Factors Influencing the Indoor Thermal Environment in Vernacular Dwellings

The indoor thermal environment of vernacular dwellings is mainly influenced by
the design phase, including the spatial layout of the dwellings and thermal insulation
performance of the building envelope [18,19], which are constrained by limited economic
conditions [20]. Some studies point out that the high initial cost is the main factor affecting
the indoor thermal environment of vernacular dwellings [21]. The construction cost de-
termines the use of construction materials, which affects the indoor thermal environment
directly [22,23]. Heat losses depend entirely on the physical conditions of the constructive
elements (walls, roof, and glass) [24], and heat losses from the exterior envelope system
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account for 60–80% of the total building heat losses [25,26]. It has been shown that the
decrement factor “f” (which refers to the ratio of the average daily amplitude of the indoor
temperature to the average daily amplitude of the outdoor temperature) shows a strong
linear correlation with the parameter Q (i.e., the heat capacity of the building envelope per
unit of internal volume), indicating that the material composition of the envelope has a sig-
nificant impact on the indoor thermal environment [27]. Fang et al. conducted a simulation
validation for rural vernacular dwellings in hot-summer and cold-winter regions of China
and found that external wall insulation can save up to 23.5% of air conditioning energy
during the summer test period [28]. Surapog et al. concluded that insulation can improve
the thermal performance of walls based on the results of an experimental and simulation
study on the comparative energy and economic performance of walls used in enclosed
air-conditioned spaces [29]. However, the walls of vernacular dwellings in Chinese rural
areas are generally not equipped with thermal insulation layers, and the building envelope
has poor thermal insulation performance, which results in a relatively poor and unstable
indoor thermal environment [30,31].

In addition, the spatial layout also directly affects the indoor thermal environment.
Many scholars have analyzed the influence of spatial layout on indoor thermal environment
in different geographical environments by means of software simulations, and they found
that the indoor thermal environment of vernacular dwellings can be significantly improved
by reasonable spatial-scale design and reasonable spatial layout. Ensieh Ghorbani Nia
studied Iranian dwellings, analyzed the layout, opening design, envelope design, and other
aspects of dwellings, and finally put forward a series of suggestions for the renovation
of dwellings [32]. Sha Chang et al. conducted a study on rural vernacular dwellings
in Turpan, Xinjiang, China, and found that semi-outdoor spaces can improve thermal
comfort in hot summer and form a complementary effect with indoor spaces [33]. Duan
Xiaofeng studied the village layout and dwelling spatial layout; the results clarified the
role of the courtyard in the indoor thermal environment [34]. In addition, Duan Xiaofeng
pointed out that a suitable courtyard area can ensure sufficient indoor light in winter,
and the layout of rural houses is now too scattered, which makes people often shuttle
between indoors and outdoors, causing instability of the indoor thermal environment. Lee
verified and simulated the relationship between window characteristics, indoor thermal
environment, and energy consumption, finding that the optimal window characteristics
changed with climate change, and provided the optimal window type, size, and direction,
which presented a theoretical basis for window optimization [35]. Liu Dan studied rural
energy-saving houses in Northwest China and found that indoor air temperature in winter
decreases with the increase in open space; the indoor thermal environment of sloped
roof houses is better than that of flat roof houses, and the indoor thermal environment of
houses with additional sunrooms has obvious advantages over the original houses [36].
He Wenfang conducted a study on raw earth dwellings in the Chinese Qinling region
and found that the means of controlling room scale has more obvious effects on thermal
comfort [37]. Low floor height can increase the average daily effective temperature by
about 2 ◦C, and with the increase in depth, the average daily effective temperature of the
room slowly decreases, especially when the outdoor temperature is high, and the effect of
small depth to increase the indoor temperature is more obvious.

Summarizing, the indoor thermal environment of unheated vernacular dwellings is
mainly influenced by the thermal insulation performance of the envelope structure, the
spatial layout, and the spatial form. For the consideration of construction cost, residents
seldom give attention to the thermal insulation performance of the walls, which not only
makes the indoor thermal environment poorer, but also causes more energy consumption
and increases the usage cost instead. The spatial layout and spatial form of Linyi vernacular
dwellings mainly copy the traditional dwellings form of other northern Chinese rural areas
without considering the actual thermal environment. Thus, the spatial layout and spatial
form can be optimized based on the analysis of local indoor thermal environment, space
usage status, and residents’ thermal requirements.
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2.2. Analysis of the Factors Influencing the Space Usage of Vernacular Dwellings

People possess adaptability to the environment [38] and can adjust their thermal
comfort through a series of adaptive behaviors [39,40], such as changing the activity state,
adding or removing clothing, etc. Relevant studies have pointed out that the residents’
clothing thermal resistance, metabolic rate, expectations, and ability to acclimatize all affect
thermal comfort [41–43]. Thus, residents choose appropriate space usage according to
their actual living conditions [44], while spatial layout, indoor thermal environment, and
economic conditions have greater impact on residents’ space usage [45]. In rural areas,
the functional layout is usually designed according to specific activities, often influenced
by traditional vernacular dwellings, so the layout of the vernacular dwelling in the same
region is roughly the same. When the thermal environment is difficult to meet thermal
comfort, residents tend to change their current used space [20]. For example, Huang et al.
found that indoor and outdoor spaces have complementary effects on satisfying residents’
thermal comfort in Chinese rural areas [46], and the courtyard plays an important role
in daily life. The indoor thermal environment is relatively poorer and more unstable in
rural areas compared to urban areas [40,47,48], but rural residents tend to show stronger
adaptability to the environment than urban residents [13,49,50]. In other words, compared
with urban residents who prefer to use auxiliary equipment for thermal comfort adjustment,
rural residents adjust their thermal comfort through adaptive behaviors. Costa et al. found
that the thermal acceptability of vernacular dwellings in Alentejo, Portugal, in summer
is generally higher than the regular dwellings and thermal comfort standards, and the
methods detailed under EN 16798 and REH (Regulation of Energy Performance of Resi-
dential Buildings) are deemed unfit to evaluate thermal comfort in vernacular dwellings,
especially in summer [40]. It has been pointed out that the diversity of building spaces
creates different thermal environment conditions and stimulates different thermal adap-
tation behaviors [33,51,52]. Low-income residents tend to show stronger environmental
adaptability and more flexible space usage [53]; there is more functional compound space
and they usually accomplish as many activities as possible in one space for minimizing
energy expenditure cost [54]. Hao et al. found that the living pattern in rural areas is more
closely associated with climate than in urban areas, which are more diversified and more
complex in space use (e.g., cooking, dining, and daily living all take place in the same
space), and sometimes the dwellings also have certain productive functions [55].

It can be seen that space usage in vernacular dwellings is not simply according
to the functional layout design, but also takes indoor thermal environment and energy
expenditure into consideration [56–58]. Therefore, there are often contradictions between
functional layout and usage in vernacular dwellings [59,60], and future studies should be
conducted in-depth to determine the unreasonable space usage, thus to improve thermal
comfort and further reduce energy consumption.

Most of the previous studies only integrated the physical parameters of the indoor
thermal environment with the space usage [61–63], but seldom combined the subjective
and actual thermal environment from the perspective of residents; thus, the conclusions
of these studies often deviated from the actual thermal environment requirements of the
users. This paper innovatively combines these three elements of indoor thermal environ-
ment: residential space usage status, subjective actual thermal environment satisfaction,
and sensation. This research investigates the temperature comfort range of residents by
measuring the indoor thermal environment in each room of vernacular dwellings and by
thermal satisfaction and sensation voting, so as to find the root causes for the contradiction
between residential space usage and the functional layout of vernacular dwellings in rural
areas of Linyi.

3. Materials and Methods
3.1. Description of Dwellings

This study investigated four rural counties and districts of Linyi, and found that the
vernacular dwellings in Linyi are arranged in courtyards, in the form of dwellings with
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a 4-section courtyard, 3-section courtyard, and 2-section courtyard. Among them, the
dwellings with a 4-section courtyard are the most popular type. According to the length
and width ratio, rural residential homesteads can be divided into either rectangular or
square types; the horizontal width is four and five spans, respectively, and the area is
about 190~200 and 220~240 m2 (Figure 3). The roof form of the dwellings mostly adopts a
combination of sloping and flat roof.
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Owing to the relatively regressive economic conditions in this rural area, walls are
usually not equipped with heat insulation layers. Cooling and heating are only equipped
in the main-use space and the main heating fuel in winter is coal and firewood. In order to
study the current indoor thermal environment and space usage of vernacular dwellings
in Linyi, and to ensure the consistency of the climate conditions at the measurement time,
five typical vernacular dwellings in Laopo town of Junan county in Linyi were selected for
specific study in this research (Table 1)

Table 1. Information of the vernacular dwellings.

Dwelling S1 S2 W1 W2 W3

Time of
measurement Summer Summer Winter Winter Winter

Span 5 spans 4 spans 4 spans 4 spans 5 spans

Space layout 2-section courtyard 2-section courtyard 4-section courtyard 4-section courtyard 4-section courtyard

Layout view
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3.2. Methods

This study was conducted by in-depth questionnaire interviews and systematic mea-
surements. The questionnaires were used to investigate the space usage, living patterns,
and the thermal sensations of the residents. At the same time, the indoor and outdoor
thermal environments of the selected dwellings were measured and analyzed to obtain an
objective and accurate understanding of the indoor thermal environment and the current
space usage status.

3.2.1. Questionnaire Research

The residents’ living habits are gradually developed during long-term evolution.
By understanding the space usage characteristics, the existing problems of vernacular
dwellings and the characteristics of the indoor thermal environment in each space can
be determined. Through the analysis of residents’ space usage habits, their space usage
demand can be summarized, and the thermal environment optimization for the main-use
space can be proposed, thus reducing energy consumption and improving energy efficiency.

In the field research, a random questionnaire survey was conducted on 135 households
(60%) in Caotaxiang village, Laopo town, Junan county, Linyi city. A total of 135 question-
naires were collected. In the sample, 46.7% are males and 53.3% are females; the proportion
of 40–50 years old is high, accounting for 34.3% of the total number of respondents, 25.3%
of the respondents are under 40 years old, 31.6% of the respondents are 50–70 years old,
8.8% of the respondents are over 70 years old. The specific information is shown in (Table 2)
and (Figure 4).

Table 2. Information of the questionnaire respondents.

Gender Number of Samples
Age

Average Value Standard Deviation

Male 63 49.5 20.2
Female 72 46.3 17.3

Total 135 47.7 19.4
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Figure 4. Gender and age distribution of interviewees.

In order to investigate residents’ space usage patterns, the questionnaire was designed
to record residents’ work and rest time and activity places; thus, the frequency of room
usage in the vernacular dwellings could be calculated. Combined with the field-measured
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data, a thermal satisfaction investigation (Table 3) and a thermal sensation vote (Table 4)
were included in the questionnaire to analyze the current indoor thermal environment
of vernacular dwellings. The thermal comfort range of the residents could be analyzed
by using their thermal satisfaction and sensation vote. When conducting the thermal
sensation vote, the indoor temperature and relative humidity at that time were recorded
by a black sphere thermometer, by which a scatterplot figure of indoor temperature and
thermal sensation could be established. In addition, heating and cooling methods, the exact
methods used in different rooms, and the time when used, were also investigated through
interviews.

Table 3. Thermal satisfaction voting questionnaire.

−1 −1~0 0~1 1

Dissatisfied Slightly dissatisfied Just satisfied Satisfied

Table 4. Thermal sensation voting questionnaire.

+3 +2 +1 0 −1 −2 −3

Hot Warm Slightly warm Neutral Slightly cool Cool Cold

3.2.2. Measurement of Environmental Parameter Data

The data measurement included the type and size of the vernacular dwellings, the
temperature, and humidity of main rooms and the outdoor courtyard. The measurements
were conducted in August 2021 in summer, December and January 2022 in winter, and the
measurement sites are Laopo town, Junan county. Test instruments are shown in Table 5,
including the TR-72nw thermometer and AZ87786 black ball thermometer. Instruments
were placed at a height of 1.2 m (Figure 5). Data storage mode was set for continuous
recording, and the data recording time interval was 20 min. The sensors of the outdoor
instruments were properly shielded with tin foil to avoid the influence of solar radiation.
Combined with the thermal sensation vote in the questionnaire, the measured data could be
used to analyze the current situation and characteristics of the indoor thermal environment,
and comprehensively analyze the indoor thermal comfort of vernacular dwellings in Linyi.

Table 5. Information concerning the measurement instruments.

TR-72nw AZ87786

Air temperature Air temperature

Air relative humidity
Air Relative humidity

Black globe temperature
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4. Results and Analysis
4.1. Analysis of Current Residential Space Usage Status
4.1.1. Analysis of Spatial Composition

Rural residential space in Linyi can be divided into indoor space, outdoor space, and
semi-outdoor space (Table 6). The indoor space can be further divided into main-use
space and auxiliary space. The outdoor space refers to the outdoor courtyard space, and
semi-outdoor space can be further divided into living space and productive space.

Table 6. Space classification of vernacular dwellings in Linyi.

Indoor space

Main space Living room, Main
bedroom, Second bedroom

Auxiliary space
Spare room, Kitchen,

Shower room, Storage
room, Toilet

Outdoor and
semi-outdoor spaces

Outdoor space Courtyard space

Semi-outdoor space
Living space Liangsha 1, Hall

Productive space Granary, Barn
1 “Liangsha” is the space under the eave north of the courtyard that is used for shading in summer.

Figures 6 and 7 show the spatial layout in a typical vernacular dwelling in Linyi. The
entrance is usually located in the south section of the courtyard, and there is a semi-outdoor
entrance hall. The living room is in the middle of the north side section, and there are
usually two bedrooms on each side, the main bedroom on the east side and the second
bedroom on the west side. The kitchen, spare room, shower room (in some houses there is
no separate shower room), and storage room are usually located in the west section of the
courtyard. In the east section of the courtyard, there is a barn, granary, and toilet. In our
research areas, just a few families do not have the east and west rooms in the courtyard due
to small family size and economic reasons; the vernacular dwellings are usually designed
as 3-section courtyard or 2-section courtyard.
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4.1.2. Analysis of Heating and Cooling Methods

In this study, the main heating and cooling methods for vernacular dwellings in Linyi
were researched through investigation (Figure 8). Owing to the different functions of
each space in the dwellings, the cooling and heating equipment are generally distributed
in different rooms. Cooling equipment is usually installed only in the living room, and
heating equipment is installed only in the spare room, which can greatly reduce energy
consumption. In summer, fans are used as major cooling equipment, and an air conditioner
is rarely used. In winter, a heated kang, radiator, and air conditioner are used as the main
heating equipment. Since both use coal as the main fuel, the heated kang and radiator are
often used at the same time in the traditional dwellings. The heated kang is often connected
to the kitchen and heated by the exhaust pipe of the cooking bench, and the radiator is
heated by the stove (Figures 9 and 10). In addition, residents regulate their thermal comfort
through autonomous behaviors, such as drinking water, reducing clothing, sprinkling
water on the ground, and cooling off outside in summer, and by increasing clothing and
sunbathing in winter.



Buildings 2022, 12, 2139 11 of 26Buildings 2022, 12, x FOR PEER REVIEW 11 of 26 
 

 
(a) (b) 

Figure 8. Heating and cooling methods: (a) cooling methods; (b) heating methods. 

 
Figure 9. Traditional cooling and heating system arrangement. 

 
Figure 10. Schematic diagram of a traditional heating system section. 

4.1.3. Analysis of Space Usage Habits and Frequency 
According to the interviews with local construction artisans and villagers, the current 

layout patterns in vernacular dwellings are mainly influenced by traditional architectural 
culture. In traditional Chinese architectural culture, the east is superior and the west is 
inferior, so the bedroom on the east side of the north section in the courtyard is designed 
as the main bedroom, with better lighting and a larger area, and is usually used by the 
elders. On the western side is the second bedroom, which is used by the younger 
generation, with poorer lighting and a smaller area. Each section of vernacular dwellings 
is scattered around the courtyard and interconnected by the courtyard. Based on this 
scattered layout, residents gradually form two alternating space usage patterns in heating 
and non-heating periods. The local heating period is from November to April, and the 
non-heating period is from May to October. This study analyzes the space usage 
frequency of different rooms throughout the year, and the results are shown in (Figure 
11). 

Figure 8. Heating and cooling methods: (a) cooling methods; (b) heating methods.

Buildings 2022, 12, x FOR PEER REVIEW 11 of 26 
 

 
(a) (b) 

Figure 8. Heating and cooling methods: (a) cooling methods; (b) heating methods. 

 
Figure 9. Traditional cooling and heating system arrangement. 

 
Figure 10. Schematic diagram of a traditional heating system section. 

4.1.3. Analysis of Space Usage Habits and Frequency 
According to the interviews with local construction artisans and villagers, the current 

layout patterns in vernacular dwellings are mainly influenced by traditional architectural 
culture. In traditional Chinese architectural culture, the east is superior and the west is 
inferior, so the bedroom on the east side of the north section in the courtyard is designed 
as the main bedroom, with better lighting and a larger area, and is usually used by the 
elders. On the western side is the second bedroom, which is used by the younger 
generation, with poorer lighting and a smaller area. Each section of vernacular dwellings 
is scattered around the courtyard and interconnected by the courtyard. Based on this 
scattered layout, residents gradually form two alternating space usage patterns in heating 
and non-heating periods. The local heating period is from November to April, and the 
non-heating period is from May to October. This study analyzes the space usage 
frequency of different rooms throughout the year, and the results are shown in (Figure 
11). 

Figure 9. Traditional cooling and heating system arrangement.

Buildings 2022, 12, x FOR PEER REVIEW 11 of 26 
 

 
(a) (b) 

Figure 8. Heating and cooling methods: (a) cooling methods; (b) heating methods. 

 
Figure 9. Traditional cooling and heating system arrangement. 

 
Figure 10. Schematic diagram of a traditional heating system section. 

4.1.3. Analysis of Space Usage Habits and Frequency 
According to the interviews with local construction artisans and villagers, the current 

layout patterns in vernacular dwellings are mainly influenced by traditional architectural 
culture. In traditional Chinese architectural culture, the east is superior and the west is 
inferior, so the bedroom on the east side of the north section in the courtyard is designed 
as the main bedroom, with better lighting and a larger area, and is usually used by the 
elders. On the western side is the second bedroom, which is used by the younger 
generation, with poorer lighting and a smaller area. Each section of vernacular dwellings 
is scattered around the courtyard and interconnected by the courtyard. Based on this 
scattered layout, residents gradually form two alternating space usage patterns in heating 
and non-heating periods. The local heating period is from November to April, and the 
non-heating period is from May to October. This study analyzes the space usage 
frequency of different rooms throughout the year, and the results are shown in (Figure 
11). 

Figure 10. Schematic diagram of a traditional heating system section.

4.1.3. Analysis of Space Usage Habits and Frequency

According to the interviews with local construction artisans and villagers, the current
layout patterns in vernacular dwellings are mainly influenced by traditional architectural
culture. In traditional Chinese architectural culture, the east is superior and the west is
inferior, so the bedroom on the east side of the north section in the courtyard is designed as
the main bedroom, with better lighting and a larger area, and is usually used by the elders.
On the western side is the second bedroom, which is used by the younger generation,
with poorer lighting and a smaller area. Each section of vernacular dwellings is scattered
around the courtyard and interconnected by the courtyard. Based on this scattered layout,
residents gradually form two alternating space usage patterns in heating and non-heating
periods. The local heating period is from November to April, and the non-heating period is
from May to October. This study analyzes the space usage frequency of different rooms
throughout the year, and the results are shown in (Figure 11).
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From a year-round perspective, the most frequently used rooms are the main bedroom
and spare room, accounting for 22.5% and 23% of the total usage time throughout the year,
followed by the living room and second bedroom, with 12.1% and 12.5%, respectively.
Except for the second bedroom, kitchen, shower room and toilet, the use frequency of
the other spaces varies greatly with the seasons, including the living room, spare room,
and main bedroom. During the non-heating period, residents’ sleeping space and public
activity space are separated, which are the main bedroom/second bedroom and living
room, respectively. During the heating period, the space usage changes, and the sleeping
space and the public activity space overlap. The spare room becomes the main resting
space and public activity space. Because the main bedroom has no heating equipment, the
elders, who are more sensitive to cold, usually move to the spare room with a heated kang
and radiator, where the heating condition is relatively good, and then the main bedroom
is left vacant. This is mainly due to the lack of thermal insulation in the envelope during
the design and construction, which leads to a poor thermal environment. Considering the
family’s economic situation, in order to save the cost of heating, residents usually choose to
live in small spare rooms with relatively poor sunlight at the cost of reducing living quality
and sacrificing the main building-use space, so as to obtain relatively acceptable indoor
space and thermal comfort environment.

Except for the relatively mild weather in spring and autumn, the outdoor courtyard
space is not used frequently due to the lack of shade in summer and the cold outdoor
environment in winter. As a semi-outdoor space, the hall is not reasonably designed; it
is usually hot in summer because of poor air circulation and extremely cold in winter
because of sunlight shortage, and it is now mostly unused or stacked with miscellaneous
items. In addition, it is also found that the semi-outdoor space for production function in
vernacular dwellings occupies too large an area and most of it is vacant. Therefore, the
area for production space should be reduced appropriately, thus providing better lighting
conditions for the main-use rooms in the north section.

4.2. Measurement Analysis of the Thermal Environment in Vernacular Dwellings

When conducting data measurement, the instruments were arranged in the main-use
spaces, including the living room, bedroom, and spare room, and the outdoor instruments
were arranged in the courtyard (Figures 12 and 13). The dwellings selected in summer are
two typical dwellings, square type (S1) and rectangular type (S2), and both have ceiling
fans as cooling equipment in the living room. Among the three typical dwellings selected
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in winter, W1 and W2 are rectangular types, and W3 is a square type. W1 is unoccupied
as a comparison object of the indoor thermal environment without human influence, so
there is no heating equipment. W2 and W3 are equipped with heating equipment only
in the spare room according to the local reality, and the other rooms are not heated. The
spare room in W2 is heated by an air conditioner and in W3 the spare room is heated by a
combination of traditional heating methods: kang and radiator.
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4.2.1. Analysis of Outdoor Thermal Environment Measurement

The outdoor environment parameters in summer are shown in Figure 14. During the
investigation, the average outdoor temperature was 26.2 ◦C, the minimum temperature
was 22 ◦C, the maximum temperature was 34.1 ◦C, the average outdoor RH was 76%, the
maximum RH was 93%, and the minimum RH was 38%. It can be seen that the outdoor
temperature in Linyi is relatively comfortable and the outdoor RH is relatively high in
summer. The outdoor environment parameters in winter are shown in Figure 15. During
the investigation, the average temperature was 1.2 ◦C, the maximum temperature was
20.3 ◦C, the minimum temperature was −10.8 ◦C, the average RH was 52.2%, the maximum
RH was 98.7%, and the minimum RH was 12%. It can be seen that the outdoors in Linyi is
extremely cold in winter, but the humidity is relatively suitable.
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4.2.2. Comparative Analysis of Indoor and Outdoor Temperature Difference

The decentralized layout of vernacular dwellings requires that people need to access
the indoors and outdoors and various rooms frequently. Xiong et al. studied the influence
of temperature differences on human health [64]. The results show that the human body
is very sensitive to an environment with large temperature fluctuation, which will cause
uncomfortable reflection and even affect health [54]. Therefore, this study analyzed the
temperature differences between individual rooms in vernacular dwellings during both
summer and winter to assess the impact on human health.

Figure 16 shows that the temperature difference between indoors and outdoors is very
small in summer; the average temperature difference is about 0 ◦C and fluctuates between
0~3 ◦C most of the time. The reason is that the local outdoor temperature is relatively
suitable in summer, and residents open windows all day; thus, the indoor and outdoor
temperatures are very close to each other. In winter, the temperature difference between
non-heated rooms (living room/main bedroom) is relatively small, between 0~1 ◦C. While
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the temperature difference between heated and non-heated rooms is large, the temperature
difference is different for rooms with different heating methods. Owing to the intermittent
use of air conditioners, the average temperature difference between the spare room in W2
and the non-heated room (living room) is about 2 ◦C; the temperature difference fluctuates
in the range 0~5 ◦C. The average temperature difference is about 5 ◦C between the rooms
heated by a traditional heated kang and radiator; in the non-heated rooms, the temperature
fluctuates in the range 1.5~9.5 ◦C, which means that the local traditional heating methods
have good heating effects.
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In addition, the average temperature difference is 1.3 ◦C between non-heated rooms
(living room) and the outside, and the temperature fluctuates in the range 0~7.1 ◦C. The av-
erage temperature difference is 2.9 ◦C between the spare room heated by an air conditioner
in W2 and the outside, and the temperature fluctuates in the range 0~13.5 ◦C. The average
temperature difference is 8.9 ◦C between the spare room heated by traditional heating
methods in W3 and the outside, and the temperature fluctuates in the range 0~21 ◦C.
Therefore, considering the effects on thermal comfort of the temperature difference between
indoors and outdoors, the space layout arrangement should be centralized, so that residents
can reach each room within indoor rooms, thus avoiding the influence of temperature
difference on human health.

4.2.3. Analysis of Indoor Temperature and Relative Humidity Distribution

In summer, the indoor thermal environment data in the two dwellings are extremely
close, with an average indoor temperature of 26 ◦C and an average RH of 78% and 79%,
respectively (Table 7 and Figure 17). Ninety-eight percent of the indoor temperature data in
summer meet the GB/T 18883-2002 standard (22~28 ◦C), and 73% of the relative humidity
data meet the GB/T 18883-2002 standard (40~80%).

Table 7. Statistics of indoor environmental parameters in summer.

Average Max Min

Temperature 26 ◦C 29.4 ◦C 24.4 ◦C

RH 78.5% 84% 65%
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In winter, the indoor temperatures of W1 are shown in Table 8. The distribution of
the indoor environment in the main rooms (Figure 18), of which the living room and main
bedroom are similar during the measurement time, with average temperatures of 3.6 and
3.8 ◦C, respectively, both higher than the average 2.5 ◦C in the spare room. Meanwhile,
the indoor relative humidity in the spare room is higher than in the living room and main
bedroom, with an average RH of 65.6% in the spare room, 59.5% in the main bedroom, and
50% in the living room, and the relative humidity of the spare room is the most stable. This
is mainly because the spare room is less affected by solar radiation. All the temperature
data of all rooms do not meet the GB/T 18883-2002 standard. In terms of relative humidity,
17.2% of the data in the living room do not meet the GB/T 18883-2002 standard, 40% of the
data in the main bedroom do not meet the GB/T 18883-2002 standard, and all the data in
the spare room do not meet the GB/T 18883-2002 standard.

Table 8. Statistics of indoor environmental parameters for W1.

Average Max Min

Temperature 3.3 ◦C 11.6 ◦C −1.9 ◦C

RH 58.3% 74% 33%
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The indoor temperatures of W2 (Table 9 and Figure 19) show the average temperature
of the spare room is the highest at 4.2 ◦C in W2 followed by the living room and main
bedroom at 3.2 and 2.3 ◦C, and all temperature data do not meet the GB/T 18883-2002
standard. Residents usually turn on the air conditioner in the spare room when they wake
up in the morning and before they go to bed at night, and the indoor temperature rises
by 2.6~6.5 ◦C within 20~30 min, and after turning off the air conditioner, the temperature
drops by 1.9~5.9 ◦C in 2~2.5 h, which indicates that the thermal performance of the wall
is poor. Most of the dwellings in rural areas of China adopt brick and concrete structures
without insulation layers, which leads to the poor thermal performance of walls and causes
high energy consumption. Thus, the self-built dwellings should give more attention to the
thermal performance of walls. The average RH of the living room is the lowest at 48%,
and only 1.3% of the data do not meet the GB/T 18883-2002 standard. The spare room and
main bedroom are very close to the average RH at 60% and 62%, respectively, with 39%
and 54.6% of the data not meeting the GB/T 18883-2002 standard. The main reason is that
the solar radiation in the living room is more sufficient and less affected by human use.

Table 9. Statistics of indoor environmental parameters for W2.

Average Max Min

Temperature 3.2 ◦C 10.8 ◦C −2.3 ◦C

RH 56.4% 74% 34%
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In W3, two elderly people over 70 years old live all day in the spare room. Table 10
shows the indoor temperature and Figure 20 shows that the average temperature is the
highest at 9 ◦C among all the rooms, while the average temperature in the living room and
the main bedroom is lower at 3.9 and 3.1 ◦C, respectively. The temperature data for all the
rooms do not meet the GB/T 18883-2002 standard. As the living activities throughout the
day are all carried out in the spare room, the average RH is the highest at 79.6%, and 98.2%
of the data do not meet the GB/T 18883-2002 standard. The average RH in the living room
and main bedrooms are 49.6% and 64%, respectively, with 19.2% and 71.4% of the data not
meeting the GB/T 18883-2002 standard, which indicates that even under relatively good
local heating conditions, the indoor thermal environment is still lower than the thermal
comfort standard.
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Table 10. Statistics of indoor environmental parameters for W3.

Average Max Min

Temperature 5.5 ◦C 14.5 ◦C −1.4 ◦C

RH 64.6% 93% 13%
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A total of 8354 sets of indoor temperature and humidity data were measured during
the winter and the distribution of all data was analyzed; the results are shown in Figures 21
and 22. Figure 21 shows that the indoor temperature ranges from −2 to 8 ◦C in the non-
heating condition, the indoor thermal environment of the local vernacular dwellings in
winter is very poor and far below the normal comfort range for humans. In the case of
intermittent use of air conditioners, the indoor temperature ranges only between 0 to 8 ◦C.
Additionally, in the case of using a kang and radiator for heating, the indoor temperature
ranges from 6 to 13 ◦C, and the average temperature can be increased by 6.5 ◦C, which
indicates that the local heating methods have significant effects on increasing the indoor
temperature.
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Figure 21. Distribution of indoor temperature data in winter.

In winter, the relative humidity varies greatly within different rooms (Figure 22); 89.4%
of the data in the living room and 50.4% in the main bedroom meet the GB/T 18883-2002
standard, while the relative humidity in the spare room is commonly high and almost
all the data do not meet the GB/T 18883-2002 standard. Owing to the shortage of solar
radiation, rooms in the unoccupied dwelling W1 have higher relative humidity indoors;
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the average RH in the spare room is higher 10–15% than that in the living room and main
bedroom. In the case of occupied W3, the humidity is far above the standard humidity
range because residents perform many water-related activities. The average RH in the
spare room is 25–30% higher than that in the living room and main bedroom. The average
indoor RH of the spare room in W2 is 14% and 39.6% lower than that in the spare rooms in
W1 and W3, respectively, due to the use of air conditioners, which means that the utility of
air conditioners has positive effects on dehumidification.
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4.3. Analysis of Residents’ Thermal Satisfaction and Sensation
4.3.1. Analysis of Residents’ Thermal Satisfaction

These measurement data show that the indoor thermal environment in Linyi is poor,
especially in winter, and a verification survey was conducted by analyzing the residents’
satisfaction with the current indoor thermal environment in winter and summer. The
result (Figure 23) shows that residents are more dissatisfied with winter than summer. The
percentage of dissatisfied “−1” for the summer indoor thermal environment is only 25.9%;
however, the percentage of satisfied “1” for the summer indoor thermal environment is only
11.9%, which indicates that the indoor thermal environment in summer also needs to be
improved. The percentage of dissatisfied “−1” for the winter indoor thermal environment
is at 60.7%, and only 4% of the residents are satisfied “1”, which also reflects that the
indoor thermal environment in winter is much poorer and cannot meet the thermal comfort
requirements for local residents.
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4.3.2. Analysis of Indoor Thermal Sensation

To better understand the thermal environment from the perspective of users, this
research further conducted a thermal sensation vote, which is commonly used in thermal
comfort studies [65]. Residents were asked to make subjective evaluations of the indoor
thermal environment at different temperatures through thermal sensation votes. Residents’
thermal environment requirements refer to the comfort temperature and humidity range,
which can be calculated by establishing a scatterplot of thermal sensation and indoor
temperature. The specific questionnaire settings are shown in Table 4 and the results are
shown in Figure 24, which gives the linear regression plots of TSV in summer and winter.
The TSV values are mainly between 0 and 2 in summer and between −2 and 1 in winter,
with few people choosing −3 or 3, which indicates that residents possess adaptability to
the thermal environment.
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Calculated results show that the neutral thermal temperature of the indoor space is
26.7 ◦C in summer and 14.4 ◦C in winter. According to ASHRAE standard 55-2017 [1], when
the value of TSV is between −0.5 and 0.5, 90% of the subjects will feel comfortable. The
corresponding temperature range is 23.3~30 ◦C (Figure 25) in summer and 11.25~17.5 ◦C
(Figure 26) in winter. Comparing this comfort zone with the standard comfort zone of GB/T
18883-2002, it indicates that the comfort zone ranges calculated by TSV in both summer and
winter show a shift, and both shift in the direction of a harsher environment. This means
that residents develop adaptability to the thermal environment, and they adapt to higher
temperatures than the standard comfort zone in summer and lower temperatures in winter.
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The blue squares in Figures 25 and 26 show the distribution of measured data, which
indicates that the discomfort of thermal sensation in summer is mainly caused by high
humidity while the temperature is suitable. However, owing to the low temperature in
winter, most of the data are still out of the comfort range, even though residents have better
adaptability to the cold climate in winter.

This analysis shows that residents are highly adaptable to local summer temperatures
and only need to dehumidify to meet their thermal comfort during a certain time in summer.
However, the indoor thermal environment in winter is very harsh, and even though the
residents show high adaptability to the winter climate, they still cannot adapt to the cold
winter climate. Traditional local heating methods have visible effects on improving the
indoor thermal environment, but the poor insulation of the walls makes the temperature
still low.

5. Discussion

In this study, the thermoneutral temperature of residents in summer is 26.7 ◦C and
that in winter is 14.4 ◦C. The thermoneutral temperature in winter is similar to the research
results in cold climate regions of China such as Qingdao, Shanxi, Qinghai, and Gansu [66,67],
indicating that the winter analysis result is basically accurate. There are few studies on the
thermoneutral temperature of summer residents in cold climate regions. Some studies have
investigated the summer thermoneutral temperature in rural areas in southern China with
hot and humid climates, such as Chongqing (26.9 ◦C) and Guangdong (24.0 ◦C) [18,43].
Research on the thermoneutral temperature of rural residents in cold regions in summer
deserves further study. It should be noted that due to issues such as the age of the test
subjects, living environment, and field test environment, these may be the reasons for the
differences in the results.

To achieve improvement of the local adaptability and indoor thermal environment of
rural vernacular dwellings in Chinese cold regions, previous quantitative research mainly
focuses on the measurement of the indoor thermal environment and analysis of residents’
space usage habits [46,68,69], while there is a shortage of research concerning the residents’
subjective satisfaction and requirements. Therefore, the currently available research cannot
address residents’ real thermal requirements.

In this research, the measurement of indoor thermal environment, spatial usage,
and the investigation of residents’ thermal satisfaction and requirements were combined.
The results were then summarized, providing different indoor thermal environments in
different types of vernacular dwellings; the main problems in residents’ spatial usage
were determined. Based on the investigation in rural areas of Linyi, Shandong, China, the
local residential space usage situation, cooling and heating methods, indoor and outdoor
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thermal environment, and residents’ thermal satisfaction and indoor thermal environment
requirements were analyzed.

Through these analyses, (1) the space usage characteristics between heating time and
non-heating time were summarized. The results show that there are large contradictions
between the indoor thermal environment and residents’ space usage/living habits during
the heating time (Figure 27). For example, local residents still choose the spare room as
the main-use space instead of the living room and main bedroom with sufficient lighting
in winter. The reason is that the spare room is equipped with a heated kang and has a
smaller area, so the heating effect is better and more economical. Residents’ space-use
habit is in conflict with the functional layout and the thermal environment of the room
itself. Therefore, it is of great significance to adjust appropriately the space function and
heating equipment of local dwellings. (2) Local indoor thermal environments in different
rooms were analyzed. (3) Residents’ thermal comfort ranges were summarized based on
the site measurement, thermal satisfaction, and requirements investigation. The results
show that residents develop adaptability to the thermal environment; they can adapt to
higher temperatures than the standard comfort zone in summer and lower temperatures in
winter. (4) Main problems for the indoor thermal environment and residents’ space usage
habits are summarized.
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This study analyzes the indoor thermal environment of the main-use space in ver-
nacular dwellings, which can provide a reference and data base and for future vernacular
dwelling reconstruction in the rural areas of Linyi. However, owing to some unavoidable
reasons, this study also has several shortcomings and limitations. The main limitation
of this research is the data collection. In this paper, the main research methods are field
measurement and in-depth interviews; deviations exist in field measurements for different
equipment choices, variable weather, and different instrument operations. For the in-depth
interview, some of the respondents doubted the purpose of the investigation and were
reluctant to reveal their true thoughts. In addition, the optimization strategies proposed in
this paper were not verified by actual projects. Therefore, future studies for improving the
rural thermal environment in the Chinese cold regions should combine the analysis results
in this paper and perform simulation research on these optimization strategies. It would
be best if these future research results could be realized in the actual vernacular dwelling
construction.

6. Conclusions

The indoor thermal comfort of vernacular dwellings in the Chinese cold regions is poor,
especially in winter, which seriously affects residents’ life and health. Before the technical
optimization of vernacular dwellings, the layout design of vernacular dwellings should be
first improved, which is the basis for green building. This study measured and analyzed
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the indoor thermal environment of the main-used space in vernacular dwellings both in
winter and summer. Based on the measurement data, residents’ living habits, thermal
comfort satisfaction, and sensation were also investigated. The following conclusions can
be drawn:

(1) Local vernacular dwellings can be divided into “square” and “rectangular” accord-
ing to the shape of the dwelling base, and most of the dwellings in Linyi are quadrangle
dwellings. The spatial layout of the dwellings in Linyi is the same as traditional vernac-
ular dwellings in northern Chinese rural areas, and the space for human use is mainly
concentrated on the north and west sides of the courtyard.

(2) In Linyi, the summer climate is suitable, while the winter climate is very harsh,
and the indoor temperature is very low in local vernacular dwellings. According to our
measurement data, the indoor and outdoor temperatures are very close to each other in
summer, with an average value of about 26 ◦C. The average outdoor temperature in winter
is 1.2 ◦C, and the indoor temperature is between 0 and 5 ◦C. Therefore, the first task to
improve the thermal environment of vernacular dwellings in Linyi is to increase the indoor
temperature in winter, and to dehumidify during selected times in winter and summer.

(3) The temperature difference between indoors and outdoors in winter is large, which
can reach 20 ◦C when heating equipment is used. The temperature difference between the
heated room and the non-heated room ranges from 0 to 15 ◦C. In addition, due to poor
thermal performance, the daily temperature difference in the same room ranges from 2.6 to
6.5 ◦C, which has negative effects on human health.

(4) Residents possess adaptability to local thermal environment, with the thermal com-
fort temperature ranging from 23.3 to 30 ◦C in summer and 11.25 to 17.5 ◦C in winter. Even
though residents show stronger adaptability to the cold climate in winter, the measurement
temperature data shows that there is still a great gap between the real thermal environment
and residents’ thermal comfort requirements.

(5) There are contradictions between the residents’ space usage, functional layout, and
the current indoor thermal environment in the vernacular dwellings in Linyi. During the
heating period, for economic considerations, residents move from the living room and the
main bedroom, which are more spacious and have better lighting conditions, and settle in
the spare room, mainly because of its heated kang and radiator.

According to the field investigation, this research found that the architectural style
and layout of local vernacular dwellings are almost the same, which is fundamentally
influenced by traditional vernacular dwellings in northern Chinese rural areas. In addition,
with the continuous development of new Chinese rural construction in recent years, the
architectural style has overemphasized the uniformity of village appearance, which leads
to the monotonous and rigid forms of dwellings, and the functional layout design has grad-
ually deviated from the actual spatial use. The local space usage habits are mainly formed
by residents’ economic considerations instead of actual living requirements. Therefore,
there is a general contradiction between the actual space usage and the functional design in
vernacular dwellings.

The basic measure for residents to save energy expenditure is adjusting their space
usage for different reasons. However, only considering economic savings and ignoring
the thermal insulation of enclosure structures, which will inevitably result in more energy
consumption and space waste, and also increase economic expenditure. Therefore, before
improving the thermal insulation of enclosure structures, the actual space usage needs
reasonable adjustment according to the analysis of the thermal environment and residents’
thermal comfort requirements, which can be the most economic and feasible strategy for
improving local thermal comfort, and providing more practical meaning for the residents.
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