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Abstract: Current codes and guidelines for the dynamic design of footbridges often only specify
the pedestrian-induced excitations. However, earthquakes may occur during the passing stage of
pedestrians in earthquake-prone regions. In addition, modern footbridges tend to be slender and
are sensitive to vertical ground motions. Therefore, we investigate the effects of vertical ground
motion on pedestrian-induced vibrations of footbridges. A total of 138 footbridges with different
materials, dimensions, and structural types are considered as the target structures. The classical
social force model combined with the pedestrian-induced load is used to simulate crowd loads
for the scenarios with six typical pedestrian densities. Furthermore, 59 vertical ground motions
with four seismic intensities are taken as the seismic inputs. An amplification factor is introduced
to quantify the amplification effects of vertical ground motion on human-induced vibrations of
footbridges. Four machine learning (ML) algorithms are used to predict the amplification factor. The
feature importance indicates that the scaled peak ground acceleration, the pedestrian density, and the
bridge span are the three most important parameters influencing the amplification factor. Finally, the
vibration serviceability of the footbridge subjected to both crowd load and vertical ground motion
is assessed.

Keywords: footbridge; vibration; serviceability; crowd load; earthquake; machine learning

1. Introduction

Pedestrians are the main users of footbridges. Therefore, pedestrian-induced foot-
bridge vibration has drawn much attention from researchers in the past two decades, espe-
cially since the London Millennium Bridge incident that was induced by crowds [1]. Till
now, researchers have made great contributions on human-induced loads [2–5], vibration
serviceability evaluation [6–12], pedestrian–structure interaction [13–20], and pedestrian-
induced vibration control [21–31]. The pedestrian-induced footbridge vibration falls into
the serviceability category. Excessive vibration may cause pedestrian uncomfortableness
and even endanger the bridge’s safety. Correspondingly, several specifications have been
issued, e.g., Sétra (2006) [32], ISO (2007) [33], and HiVoSS (2008) [34], regarding the service-
ability design of footbridges. It is notable that current specifications for the dynamic design
of footbridges only consider the relevant pedestrian-induced excitations.

When located in earthquake-prone regions, it is also possible that footbridges are sub-
jected to not only pedestrian-induced loads but also ground motions. Simply, earthquakes
can occur during the crowd passing process. In fact, the earthquake action is non-negligible
for footbridges in earthquake-prone regions. In addition, modern footbridges tend to be
slender, which makes these footbridges also sensitive to vertical earthquake loads. After
the London Millennium Bridge incident, great efforts have been made to avoid lateral
vibrations of footbridges. For instance, the UK National Annex to Eurocode 1 (2008) [35]
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specifies lock-in stability boundaries to avoid unstable lateral responses under crowd
loads. However, vertical crowd-induced vibration is also an important issue and cannot
be ignored. Therefore, this study mainly focuses on footbridge vibrations in the verti-
cal direction, which is subjected to much larger loads than other directions. There are
also studies investigating the influence of vertical ground motions on different types of
structures, e.g., long-span cable-stayed bridges [36], segmental post-tensioned bridges [37],
vehicle–bridge systems [38,39], long-span steel structures [40,41], long-span latticed arch-
type structures [42], masonry structures [43], underground subway stations [44], undersea
shield tunnels [45], and multi-directional base isolation systems [46]. The aforementioned
studies indicate that vertical ground motion has a significant impact on structural per-
formance. To the best knowledge of the authors, however, there is no existing research
considering the combined effects caused by human-induced loads and vertical ground mo-
tions. It should be noted that the occurrence of an earthquake may induce crowd panic and
increase the vibration. Therefore, it is quite meaningful to investigate the influence of verti-
cal ground motion on crowd-induced vibration. Table 1 summarizes some representative
references related to the topic of the current study.

To fill the gap, this study conducts a series of time-history analyses for 138 footbridges
with various dimensions, materials, and structural types subjected to the combined ac-
tions of crowd-induced loads and vertical ground motions. The crowd-induced loads
consider the crowd scenarios with six typical pedestrian densities ranging from 0.1 to
1.5 pedestrians/m2. In total, there are 59 vertical ground motions with four different in-
tensities for the seismic inputs. Thus, the total amount of calculation cases is 195,408
(=138 × 6 × 59 × 4). Furthermore, the amplification factor, which is defined as the ratio of
the maximum acceleration induced by the combined actions to the maximum acceleration
induced by crowds only, is calculated for each case and used as a guide for the serviceability
design of footbridges subjected to both crowds and vertical ground motions. As there exists
a strong nonlinear relationship between the inputs and the output (amplification factor),
machine-learning (ML) techniques [47–52], which are quite suitable for solving nonlinear
regression problems, are used to predict the amplification factor. Two individual-type ML
algorithms, i.e., decision tree (DT) [53] and artificial neural network (ANN) [54], and two
ensemble ML algorithms [55], i.e., random forest (RF) [56] and gradient boosting regression
tree (GBRT) [51,52], are adopted to construct the predictive models. Ten parameters, includ-
ing four structure-related parameters, pedestrians’ density, and five earthquake-related
parameters, are taken as the input variables, while the amplification factor is taken as the
output variable. By using ML techniques, it relates the multiple factors (the structure,
pedestrian, and earthquake parameters) to the amplification factor. Therefore, the total
peak response of the structure due to combined loads can be obtained by multiplying the
amplification factor with the pedestrian-induced vibration amplitudes. For a specific struc-
ture, the pedestrian-induced vibration levels can be conveniently measured by real-world
measurements or predicted by numerical models. Finally, the vibration serviceability of the
footbridge subjected to both crowd load and vertical ground motion is assessed.

The remaining parts of the paper are organized as follows. Section 2 introduces the
simulation method and results of the footbridges under crowd loads. In Section 3, a total
of 59 vertical ground motions with four intensities are selected. Section 4 investigates
the influence of vertical ground motion on crowd-induced vibrations of footbridges. The
amplification factor is then defined in Section 5. Four ML algorithms are adopted to predict
the amplification factor based on a database containing 171,572 datasets. The vibration
serviceability is evaluated in Section 6. Finally, several important conclusions are presented
in Section 7.
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Table 1. Summary of related previous research.

Reference
Number Authors (Year) What Was Performed Main Findings

1. Pedestrian-induced loads and vibrations

1.1 Human-induced loads

[2] Ingólfsson and
Georgakis (2011)

A new stochastic load model was proposed
to simulate the frequency and

amplitude-dependent pedestrian-induced
lateral forces.

The prediction of the critical number of
pedestrians is consistent with the incident

on the London Millennium Bridge.

[3] Racic and Brownjohn
(2012)

A mathematical model was developed to
create synthetic narrow-band lateral forces

induced by pedestrians.

The model can be used to assess the
dynamic performance in everyday design

practice.

[4] Bruno and Corbetta
(2017)

A new multi-scale model was developed to
simulate uncertainties in pedestrian traffic.

The variability of traffic random variables
is larger than structural properties ones.

[5] Casciati et al. (2017)
A time-variant stochastic field model was

proposed to model the walking forces
induced by a small group of pedestrians.

The developed model can consider
different idealizations of human-induced

excitation and can be used in a
serviceability limit state design.

1.2 Vibration serviceability evaluation

[6] Bruno and Venuti
(2010)

A simplified serviceability assessment
method for footbridges under lateral crowd

loading was proposed.

The proposed method can reflect the actual
walking behaviour of pedestrians by using

the speed–density and frequency–speed
relationship.

[7] Živanović (2012)
A comprehensive experimental dataset of a
box-girder footbridge that is lively in the

vertical direction was provided.

Walking frequency, step length, and
pedestrian speed in normal traffic obey a

normal distribution, while pedestrian
arrival time follows a Poisson distribution.

[8] Setareh (2016)
Three important issues regarding vibration

serviceability were investigated on a
slender steel footbridge.

When the crowd speed closes to the
first-mode resonance frequency of the

footbridge, the enhancement factor for the
group effect becomes closer to the group

size.

[9] Bedon (2019)

A preliminary dynamic characterization of
an existing suspension glass footbridge

was presented using on-site vibration tests
and refined Finite Element methods.

A combination of multiple aspects has a
significant influence on the structural

performances and modal dynamic
estimations.

[10] Feng et al. (2019)
The acceleration of 21 pedestrian bridges in

Beijing were recorded under different
service conditions.

The fundamental frequency and
acceleration are the two most important

controlling factors in vibration
serviceability design.

[11] Fu and Wei (2021)
A two-stage ML-based analysis method for
the human-induced vibration of a concrete

footbridge was proposed.

The elastic modulus of concrete can
markedly affect the human-induced

vibration of concrete footbridges

[12] Gong et al. (2022)

The vibration serviceability of two recent
long-span footbridges in China was

comprehensively assessed with six current
specifications.

The total structural responses considering
the contributions of closely spaced multiple
modes are significantly larger than those

using the specifications based on the single
dominating mode only.
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Table 1. Cont.

Reference
Number Authors (Year) What Was Performed Main Findings

1.3 Pedestrian–structure interaction

[13] Morbiato et al. (2011)
The pedestrian–structure interaction was

considered by developing a non-linear
double pendulum model.

When synchronization occurs, pedestrian
motion becomes in-phase quadrature with

a quarter-of-period before the bridge
motion.

[14] Carroll et al. (2012)
A discrete element theory (DET)-based
method was proposed to simulate the

crowd–bridge interaction.

The proposed method can predict
emergent crowd behaviour better than

earlier hydrodynamic models.

[15] Jiménez-Alonso et al.
(2016)

A biomechanical crowd–structure
interaction model was developed.

The proposed model can accurately reflect
the change in the dynamic properties of the

structure induced by pedestrian flows.

[16] Shahabpoor et al.
(2017)

A vibration serviceability assessment
method was proposed according to the

actual vibration level experienced by each
pedestrian.

The method can accurately estimate the
structural responses compared to current

design guidelines.

[17] Toso et al. (2017)

A fully synchronized force model for
walking pedestrians was proposed and

compared with a simple force-only model
and experimental vibration data was

recorded in a real composite footbridge.

The proposed model can improve the
simple force-only model and this may

obtain a more realistic simulation of the
dynamic structural behaviour.

[18] Mulas et al. (2018)

The footbridge-walking pedestrian coupled
equation of motion in the vertical direction
was analytically derived using Lagrange’s

equation and a discrete modelling
framework.

The numerical simulations exhibit
significant variability in the response due

to relatively small variations in the loading
scenarios.

[19] Setareh and Gan (2018)
The human–structure interaction on the

dynamic behaviour of a slender two-span
steel footbridge was studied.

The contribution of the wood decking to
the structural stiffness is limited while their

mass can be included.

[20] Ahmadi et al. (2019)

The influence of human–structure
interaction on the structural response of a
lively lightweight GFRP footbridge was

studied.

The bridge vibration has a significant
impact on walking force, and to a lesser

extent on the dynamics of the
human–structure system.

1.4 Pedestrian-induced vibration control

[22] Li et al. (2010)

The multiple tuned mass damper (MTMD)
designed by a random optimization

procedure was adopted to reduce the
crowd-induced vibration of a footbridge.

The proposed MTMD is more effective
than the traditional MTMD in terms of
reduction efficiency and reducing the

off-tuning effect of MTMD.

[24] Venuti and Bruno
(2013)

A new strategy of using walkway shaping
was developed to mitigate the

human-induced lateral vibrations on
footbridges.

The new strategy is less expensive and
more durable than traditional structural

countermeasures based on increasing
stiffness and damping, respectively.

[27] Venuti and Anna
(2018)

A crowd flow control strategy by installing
obstacles located along the footbridge span

was proposed to control the
human-induced vertical vibrations of

footbridges.

The maximum reduction of 31% can be
achieved if the obstacles are placed to
generate local bottlenecks along the

footbridge.

[31] Gong et al. (2021)

The effectiveness of installing TMD on
mitigating the pedestrian-induced

vibration on a typical glass suspension
footbridge in China was studied.

The commonly used TMD can effectively
reduce the vibration levels of the

footbridge.
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Table 1. Cont.

Reference
Number Authors (Year) What Was Performed Main Findings

2. Seismic performance of long-span structures subjected to vertical earthquakes

[36] Shrestha (2015)

The effect of the near-fault vertical ground
motions on the seismic response of a
long-span cable-stayed bridge was

numerically studied.

Vertical displacement of the bridge deck at
mid-span is sensitive to vertical ground

motion.

[40] Xiang et al. (2017)

The seismic response of steel structures
subjected to vertical seismic excitation was
studied by using an idealized model and

inelastic displacement ratio.

The inelastic displacement ratio-based
method can estimate the seismic responses

of steel structures subjected to severe
vertical ground motions.

[41] Fayaz and Zareian
(2019)

The influences of the vertical component of
near-fault ground motions on special

moment-resisting steel frames and special
concentrically braced frame-braced steel

frames were studied.

The current seismic load combinations in
ASCE 7 are inadequate to consider the

influences of the vertical near-fault ground
motions.

[42] Qu et al. (2019)

An improved multidimensional modal
pushover approach with two-stage
analyses was developed for seismic

assessment of latticed arches subjected to
lateral and vertical ground motions.

The developed method has good
agreement with those of time-history

analysis and is superior to the existing
methods in terms of accuracy.

The main contributions of the study can be summarized as three aspects. Firstly,
the structural responses of footbridges subjected to the combination of crowd loads and
vertical earthquakes are analysed. Secondly, a huge amount of time-history analysis is
conducted to consider the influences of structure-related, crowd-related, and earthquake-
related parameters on the structural responses. Thirdly, four ML models are used to predict
the amplification factor.

The driving ideas traced from the literature review and organization of the paper are
depicted in Figure 1.
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2. Simulation of Footbridge Vibration under Crowd Loads
2.1. Analytical Model of Footbridge

Wei et al. (2019) [57] comprehensively reviewed 138 footbridges, which were mostly
built after 1991 and reported in the literature, e.g., 73 footbridges were also evaluated
by [58]. In this study, an analytical footbridge model is constructed based on the typical
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characteristics of real-world footbridges as summarized by Wei et al. (2019) [57] and the
popular guidelines, e.g., Sétra and HiVoSS. Typical footbridge characteristics are summa-
rized as follows.

• Material: Different materials are applied in footbridge construction. As shown in
Figure 2a, conventional construction materials include steel, concrete, steel–concrete
composites, timber, and aluminium. Almost half of the footbridges are made of steel
(67/138, i.e., 48.6%). Furthermore, the proportion of concrete footbridges is over
a quarter (38/138, i.e., 27.5%). New constructional materials such as FRP (14/138,
i.e., 10.1%) are also increasingly applied. Based on available data, the conventional
footbridges (1200 kg/m2) can be approximately 8.6 times heavier than FRP footbridges
(140 kg/m2), in terms of the physical mass per square meter.

• Dimension: Very few bridge decks have variant widths along the spans, with almost
all bridge decks being typical rectangles. The rectangular decks vary in the main spans
and widths of bridge decks (Figure 3a). For those bridges with variable widths along
the spans, the corresponding mean widths are considered in Figure 3a. As presented
in Figure 3a, the spans and widths are within the ranges of [4.8, 230] m and [0.78, 13.4]
m, respectively. In particular, most spans and widths are correspondingly smaller
than 50 m and 5 m, respectively. Furthermore, no obvious trend is found between the
width–span relationships.

• Structural type: To satisfy engineering and realistic needs, different types are selected
in bridge construction (Figure 2b). Most footbridges are typical bridge types, e.g.,
girder (25.4%), truss/truss-girder (20.3%), arch (10.9%), cable-stayed (9.4%), suspen-
sion (5.1%), and stress-ribbon (2.9%). The remaining bridge types are unknown due to
unavailable information from the literature [57,58]. The boundary conditions of the
reported footbridges are basically simply supported. Simply supported is not only
the simplest boundary condition, but also the basic element for other more complex
boundary conditions [59]. This is also in accordance with the common practice that, in
the calculations of human-induced vibrations for footbridges, it often applies a simply
supported beam model with sinusoidal mode shapes as the analytical model [60–63];
when experimental data with good quality are available, a good match between the
calculated and measured responses can often be obtained, e.g., with the help of model
updating techniques [64].

• Fundamental natural frequency: Figure 3b shows the fundamental natural frequencies
of the vertical modes for the bridges. Most of the frequencies are below 5 Hz and
may fall into the frequency range of human-induced excitations [32,34]. Furthermore,
the fundamental natural frequency f1,v (unit: Hz) basically follows a fitted numerical
relationship with the main span L (unit: m) as [57]:

f1,v =
100.5

L
(1)

• Damping ratio: The damping ratios fall within the range of [0.14%, 7.9%]. Based on the
estimated non-exceedance probability, less than 50% of the footbridges have damping
ratios higher than 1.0%. Most (92%) damping ratios are lower than 3%.

To model real-world footbridges as realistically and simply as possible, an analytical
model is proposed. The model considers different construction materials, bridge span
lengths and widths, natural frequencies, damping ratios, modal masses, etc. Different
boundary conditions and cross-sectional properties can also be considered when necessary.
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Figure 3. Plots of (a) main widths and (b) fundamental natural frequencies of the vertical modes over
the main spans of constructed footbridges.

Therefore, in the current investigations, the basic assumptions of the proposed analyti-
cal model are:

1. Bridge type, boundary conditions, and mode shapes: The simply supported beam-
like footbridge with sinusoidal mode shapes is considered as the basic analytical
model [65]. The applied analytical model of the footbridge is idealized as a simply sup-
ported beam in the vertical (Z) direction. The bridge deck has a rectangular walking
surface in the XY plane, with X the longitudinal direction and Y the lateral direction.
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2. Bridge deck span lengths and widths: The considered bridge decks are typical rectan-
gles with different widths and lengths as summarized by the real-world footbridges
in Figure 3.

3. Natural frequencies, damping ratios, and modal masses: The fundamental natural
frequencies, as shown in Figure 4, are calculated based on the span length, according
to Equation (1). In Figure 4, the solid line is the mean value of the frequencies, while
the two dashed lines represent mean± St.D. (standard deviation). The damping ratios
are random values within the range of [0.14%, 7.9%]. However, in this study, damping
ratios are assumed to be identical if the bridge is made of the same material. Typical
(average) damping ratios for different materials are 0.4% (steel), 1.3% (concrete), 0.6%
(steel–concrete), 1.5% (timber), 1.1% (aluminium), and 2.5% (FRP), according to the
real-world footbridges [57] and HiVoSS guidelines. Therefore, the aforementioned
six damping ratios are used in the following analytical analysis. The modal masses of
the fundamental mode can be set as half of the total masses of the footbridges, which
are mainly governed by the construction material density, cross-sectional properties,
and bridge length and width. In accordance with the ratio of the physical mass
per square meter [57] for conventional and FRP footbridges, the modal masses of
conventional footbridges are considered as 8.6 times higher than FRP footbridges.
Specially, the modal mass for the fundamental vertical mode is considered as:

M1,v =
m·L·W

2
(2)

with m the physical mass per square meter, i.e., m = 1200 kg/m2 for conventional foot-
bridges and 140 kg/m2 for FRP footbridges [57], while W is the bridge width.
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According to modal analysis of the simply supported beam [65], the mode shape, nat-
ural frequency, and modal mass of the nth vertical mode are expressed as Equations (3)–(5),
respectively. It should be noted that the current study assumes that the structure has
constant natural frequencies and damping ratios. In the future study, it is more realistic to
use variable natural frequencies and damping ratios induced by long-term effects such as
prestressing losses [66–68].

∅n,v(x) = sin
(nπx

L

)
(3)

fn,v = n2· f1,v = n2·100.5
L

(4)

Mn,v = M1,v =
m·L·W

2
(5)
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2.2. Model of Crowd-Induced Loads under Evacuation
2.2.1. Crowd-Induced Load

During the crowd evacuation on a footbridge, each person excites the structure. The
human-induced load of a person in a crowd is not the same as the case when he/she
is in free walking status. In particular, his/her behaviour is affected by others and the
surroundings [61,62,69]. Thus, it is realistic to consider the inter- and intra-subject variabili-
ties in pedestrian behaviour and the induced forces. To model the pedestrian evacuation
behaviour, a microscopic crowd evacuation model is required.

Since its development in 1995 [69], the social force model has been widely applied to
simulate pedestrian dynamics in many applications, such as in transport stations, buildings,
and other urban public area scenarios [70]. Despite its simplicity of mathematical formula-
tion, the model demonstrates a good ability of pedestrian dynamics reproduction. Till now,
the model has been applied not only for crowd evacuation in normal situations [69], but
also for unusual situations when people are in panic mode [71], e.g., in earthquakes [72].
Thus, in this study, the social force model is utilized to model the crowd evacuation be-
haviour during an earthquake. The crowd’s evacuation behaviour is guided by physical
and psychological interactions with other persons and borders (obstacles). These phys-
ical and psychological interactions are considered as physical and psychological forces
(accelerations), respectively. Based on Newtonian mechanics, for a random pedestrian α

with a mass of mα, the relationship between displacements (time-variant location
→
r α(t)),

velocities (time-variant velocity
→
v α(t)), and accelerations (time-variant acceleration

→
a α(t))

are coupled as:
d
→
r α(t)
dt

=
→
v α(t) (6)

d
→
v α(t)
dt

=
→
a α(t) =

→
F α(t)
mα

(7)

The solutions of these coupled equations output the real-time walking behaviour, i.e.,
the realistic evacuation behaviour of each person in earthquakes. By including pedestrian-
induced forces following the time-variant pedestrian locations and velocities, the crowd-
induced loads under an evacuation scenario are obtained. The harmonic load model in
terms of Fourier series from Bachmann and Ammann (1987) [73] was applied. To be concise,
detailed information on crowd behaviour modelling and crowd-induced load formulation
is referred to in [11,61,62,69,71].

2.2.2. Parameter Settings

This subsection presents the parametric settings for a case of the structure with main
span length L = 50 m and width W = 3 m. Table 2 summarizes the six representative crowds
with different pedestrian densities ρcrowd, from 0.1 (very weak traffic) to 1.5 (exceptionally
dense traffic) pedestrians/m2, as defined in HiVoSS.

Table 2. Parameters of considered crowds.

Pedestrian Density
(Pedestrians/m2)

Number of
Persons (-)

Arrival Time of
First Person (s)

Arrival Time of
Last Person (s)

Expected Speed
(m/s)

Expected
Passing Time (s)

0.1 15 3.56 34.86 1.34 37.32
0.2 30 3.32 37.32 1.34 37.32
0.5 75 2.26 35.96 1.30 38.50
0.8 120 0.80 42.90 1.17 42.90
1.0 150 0.38 46.96 1.06 47.26
1.5 225 0.22 61.74 0.81 61.99

For each simulated scenario, it assumes that when people are evacuating on the bridge
from one end (x = 0) to another end (x = L), the earthquake occurs at a random time
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instant teq. The arrival times on the bridge of the pedestrians are assumed to follow a
Poisson distribution [7,61]. The arrival times of the first and last persons are listed in Table 2.
For instance, for 0.1 pedestrians/m2, the first pedestrian arrives on the structure at a time
instant t1 = 3.56 s. The arrival time of the last person is t25 = 34.86 s, where the subscript
25 denotes the number of pedestrians for 0.1 pedestrians/m2. For 1.5 pedestrians/m2, the
first pedestrian arrives on the structure at a time instant t1 = 0.22 s. The arrival time of the
last person is t375 = 61.74 s, where the subscript 375 denotes the number of pedestrians
for 1.5 pedestrians/m2. The pedestrians arrive on the bridge with random positions, i.e.,
with a random value of a coordinate in the Y direction in the range of [rα, W − rα]. rα is
the radius of a random pedestrian α and thus the range meets the minimum requirement
of the pedestrian body to avoid a collision with the borders. As suggested by [61,63], rα is
assigned as 0.3 m.

The initial desired speeds of the crowd can be described as following a normal distri-
bution: N(1.34, 0.26) m/s [69]. In a pedestrian crowd in daily-life conditions, the mean
walking speed decreases with an increase in crowd density, according to experimental
observations by [74]. Detailed formulations on the relationship between the speed of move-
ment and crowd density is referred to in [75]. Based on their results, the expected mean
walking speeds and average passing times of the crowd are determined for walking crowds
in normal situations. For example, as shown in Table 2, mean walking speed is expected
to be approximately 1.34 m/s and 0.81 m/s for densities of 0.1 and 1.5 pedestrians/m2,
respectively. Correspondingly, it can be predicted that the crowd needs approximately
37.32 s and 61.99 s to pass the bridge, respectively. Due to a lack of real-world walking
speed data of pedestrian evacuation in earthquakes, the average passing times needed
in normal situations for each relevant density case are considered as the time span in the
simulations. The time steps in the crowd simulations are adopted as 0.02 s, in accordance
with the time step of the recorded earthquake accelerations.

For any other footbridges with different main span lengths and widths, similar proce-
dures can be taken as the illustrative example. For different span lengths and widths, the
corresponding arrival times of pedestrians may be different.

2.3. Dynamic Response of Bridge under Crowd Loads

In this subsection, the structural responses due to crowd loads are calculated. The
social force model with the parametric values used in the illustrative example is applied to
realistically simulate crowd behaviour. The induced vibrations by the pedestrian crowd are
also determined.

2.3.1. Simulated Crowd Behaviour

Figure 5 shows the mean speed of the dynamic crowd on the bridge. For both densities,
in the first approximately 5 s, the mean walking speed experiences abrupt changes. This
results from the fact that it needs large adjustments in walking parameters at the entrance of
the bridge, where newly arrived persons start evacuations and need more sufficient adjust-
ments (see Figure 5). For most of the time instants after the initial stage, the mean speed of
the crowd fluctuates at a lower value than the desired mean speed. This demonstrates that
after the initial stage, walking speeds are partially restricted in the crowd. Late-arriving
persons tend to maintain similar walking speeds as the pedestrians ahead. These ‘traffic
jam’ effects most probably occur in a very crowded situation. After the fluctuation stage,
the mean walking speed in a high pedestrian density crowd decreases gradually with
increasing pedestrian numbers on the bridge. For the low-density case, the mean speed
can even show an increasing trend after the abrupt fluctuation stage, depending on the
initial desired walking speed of the persons. This reflects the fact that ‘conflicts’ among
pedestrians do not occur very often in a low-density crowd. Thus, late-arriving faster
pedestrians can maintain their walking speeds for a longer time. Furthermore, the mean
speed in the low-density case is more sensitive to the scatter in the initial desired walking
speeds of newly arrived pedestrians in the crowd. It also proves that the speed–density
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relationship in earthquakes may be quite different from the experimental observations from
daily-life conditions as discussed in [74]. The pedestrian evacuation in earthquakes may
suffer from anxiety and even panic. The walking speeds in earthquakes may experience
more abrupt changes.
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Figure 5. The mean speed of real-time evacuating persons on the bridge. (a) 0.1 pedestrians/m2,
(b) 0.2 pedestrians/m2, (c) 0.5 pedestrians/m2, (d) 0.8 pedestrians/m2, (e) 1.0 pedestrians/m2,
(f) 1.5 pedestrians/m2.
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Figure 6 presents the behaviour of an evacuating pedestrian in a crowd who arrives
on the bridge at 4.14 s and stops walking at 37.32 s when the simulation ends. As shown
in Figure 5, more abrupt changes in the walking speed are observed during the first
approximately 5 s, when the person needs to quickly adjust his/her walking parameters
when entering the bridge to avoid collisions as much as possible.
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Figure 6. The walking speed (figure above) and trajectory (figure below) of a random pedestrian who
arrives at 4.14 s and stops walking at 37.32 s when the simulation ends.

2.3.2. Single Pedestrian-Induced Forces and Vibrations

Figure 7 illustrates the representative person-induced walking forces in the vertical (Z)
direction acting on the structure. The excited walking forces are not perfectly harmonic
loads because the step frequencies are time-variant, resulting from the time-variant walking
speeds. The most ‘imperfect’ part is at the beginning when the person arrives on the
structure, which is in accordance with abrupt changes in both the walking speed and
trajectory, as shown in Figure 6.
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Figure 7. The time history of a representative single pedestrian-induced load in the vertical (Z)
direction. The pedestrian is the one who arrives at 4.14 s and stops walking at 37.32 s when the
simulation ends.

Figure 8 shows the real-time induced structural responses in the vertical (Z) direction
by the representative person. The amplitude of the vertical responses is 0.08 m/s2. The
maximum acceleration amplitudes occur when the person is passing near the midspan of
the structure, as the time instant when the modal load amplitudes are a maximum.
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2.3.3. Crowd-Induced Loads and Vibrations

The crowd-induced loads are obtained by superimposing the force contributions of all
individuals, who have different timings for arriving and leaving the bridge. For each time
instant, it considers all the real-time persons on the bridge. Figure 9 depicts the time-variant
crowd-induced loads in the vertical (Z) direction for different pedestrian densities. As
expected, the load fluctuates and has a general increasing tendency with time due to the
increasing number of pedestrians for each density case. The fluctuations in the induced
load are caused by the adjustments of walking parameters of pedestrians in the crowd. The
minimum and maximum load are induced by the lowest and the highest considered density
of 0.1 and 1.5 pedestrians/m2, respectively. Furthermore, the load increases nonlinearly
with the density. It results from the crowd-induced load being superimposed by the force
contributions of all single persons, while each pedestrian has different timings for arriving
and leaving the bridge and different timings for each footfall.

Figure 10 exhibits the time history of the crowd-induced vibrations in the vertical (Z)
direction for different pedestrian densities. The lowest and highest structural responses
are obtained for the lowest and highest density of 0.1 and 1.5 pedestrians/m2, respec-
tively. The maximum acceleration response amplitude does not always increase with
the density, with the turning point at a density of 0.8 pedestrians/m2. At the case with
0.8 pedestrians/m2, although the crowd-induced loads are higher than the lower density
cases, the corresponding excitation frequency contents are off the near-resonance.
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Figure 9. The time history of the crowd-induced loads in the vertical (Z) direction for differ-
ent pedestrian densities. (a) 0.1 pedestrians/m2, (b) 0.2 pedestrians/m2, (c) 0.5 pedestrians/m2,
(d) 0.8 pedestrians/m2, (e) 1.0 pedestrians/m2, (f) 1.5 pedestrians/m2.
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3. Vertical Ground Motions

In this study, a total of 59 vertical earthquake records are collected from a publicly
accessible database via the website (https://www.strongmotion.org/, accessed on 6 Febru-
ary 2021). The original peak ground accelerations (PGAs) of the 59 earthquake records
range from 0.054 g to 2.370 g. Apart from PGA, three other intensity measures, i.e., peak
ground velocity (PGV), Sa-1s (spectral acceleration at a period of 1 s), and Sa-2s (spectral
acceleration at a period of 2 s), are also taken to characterize the ground motions. The basic

https://www.strongmotion.org/
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information of the selected vertical ground motions is summarized in Table 3. It is assumed
that the bridge is located in regions in China with seismic intensities of 6, 7, 8, and 9 [76].
When conducting elastic time-history analysis of the horizontal earthquakes, the PGAs of
the minor earthquakes with a return period of 50 years should be scaled to 0.018 g, 0.035 g,
0.07 g, and 0.14 g for the four intensities, respectively. Furthermore, it is recommended that
the V/H (Vertical to Horizontal) ratio should be large or equal to 2/3 (e.g., [44]). Finally,
the PGAs of the selected vertical ground motions are scaled to 0.012 g, 0.023 g, 0.047 g,
and 0.093 g for the four intensities, respectively. Figure 11 shows the response spectra and
average spectrum of the scaled vertical ground motions.

Table 3. Vertical ground motions used in this study.

Number Earthquake Station Year Magnitude PGA (g) PGV
(m/s)

Sa-1s
(g)

Sa-2s
(g)

1 Gazli, Uzbekistan Karakyr 1976 6.8 1.257 0.602 0.515 0.153
2 Kobe, Japan Nishi-Akashi 1995 6.9 0.371 0.174 0.148 0.040
3 Kobe, Japan JR Takatori 1995 6.9 0.272 0.162 0.252 0.225

4 Northridge, USA Beverly Hills—14145
Mulholland Drive 1994 6.7 0.319 0.201 0.311 0.057

5 Northridge, USA Canyon Country—W Lost
Cany 1994 6.7 0.286 0.189 0.194 0.299

6 Kobe, Japan Shin–Osaka 1995 6.9 0.059 0.065 0.089 0.048
7 Izmit-Kocaeli, Turkey Arcelik 1999 7.4 0.079 0.082 0.082 0.040
8 Landers, USA Yermo Fire Station 1992 7.3 0.136 0.132 0.222 0.059
9 Loma Prieta, USA Capitola 1989 6.9 0.510 0.194 0.227 0.043

10 Loma Prieta, USA Gilroy Array #3 1989 6.9 0.369 0.448 0.410 0.369
11 Manjil, Iran Abbar 1990 7.4 0.538 0.448 0.563 0.248
12 Cape Mendocino, USA Rio Dell Overpass–FF 1992 7.0 0.195 0.104 0.263 0.100
13 Chi-Chi, Taiwan CHY101 1999 7.6 0.156 0.274 0.199 0.180
14 Chi-Chi, Taiwan TCU045 1999 7.6 0.339 0.201 0.270 0.131
15 Lytle Creek, USA Wrightwood Park 1970 5.3 0.054 0.045 0.030 0.004
16 Livermore-02, USA Liv.-Morgan TP 1980 5.4 0.079 0.035 0.079 0.005
17 Chi-Chi, Taiwan CHY006 1999 7.6 0.216 0.232 0.327 0.244
18 NW China-03 Jiashi 1997 6.1 0.384 0.102 0.104 0.030
19 Kobe, Japan Kakogawa 1995 6.9 0.158 0.107 0.257 0.055
20 Hollister-03, USA Hollister City Hall 1974 5.1 0.068 0.030 0.020 0.011
21 Kozani, Gr-02, Greece Chromio 1995 5.1 0.072 0.023 0.007 0.000
22 Loma Prieta, USA SF Intern. Airport 1989 6.9 0.065 0.056 0.121 0.033
23 Loma Prieta, USA Fremont, Mission 1989 6.9 0.083 0.092 0.178 0.024
24 Northridge, USA Arleta—Nordhoff 1994 6.7 0.552 0.178 0.260 0.194
25 Whittier, USA Whittier Dam 1987 5.7 0.532 0.101 0.071 0.024
26 San Fernando, USA Pacoima Dam 1971 6.6 0.710 0.585 0.350 0.332
27 Chi-Chi, Taiwan TCU065 1999 7.6 0.263 0.706 0.444 0.411
28 Kobe, Japan Takarazuka 1995 6.9 0.433 0.354 0.405 0.196
29 Kobe, Japan Takatori 1995 6.9 0.272 0.162 0.252 0.225
30 Loma Prieta, USA Saratoga 1989 6.9 0.361 0.272 0.297 0.158
31 Northridge, USA Rinaldi 1994 6.7 0.847 0.159 0.088 0.040
32 Northridge, USA Newhall 1994 6.7 0.548 0.313 0.332 0.098
33 Northridge, USA Converter 1994 6.7 0.535 0.389 0.310 0.181
34 Northridge, USA W. Pico Canyon 1994 6.7 0.286 0.294 0.414 0.151

35 Superstition Hills,
USA Wildlife Liquef 1987 6.6 0.423 0.055 0.103 0.037

36 Tabas, Iran Tabas 1978 7.4 0.746 0.415 0.653 0.254
37 Kobe, Japan KJMA 1995 6.9 0.343 0.391 0.658 0.294
38 Imperial Valley-06 Bonds Corner 1979 6.5 0.355 0.127 0.218 0.068
39 Imperial Valley-06 El Centro Array #5 1979 6.5 0.479 0.469 0.182 0.195
40 Imperial Valley-06 El Centro Array #6 1979 6.5 1.644 0.581 0.439 0.246
41 Imperial Valley-06 El Centro Array #7 1979 6.5 0.472 0.279 0.323 0.230
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Table 3. Cont.

Number Earthquake Station Year Magnitude PGA (g) PGV
(m/s)

Sa-1s
(g)

Sa-2s
(g)

42 Imperial Valley-06 El Centro Array #8 1979 6.5 0.356 0.250 0.193 0.149
43 Imperial Valley-06 El Centro Differential Array 1979 6.5 0.464 0.275 0.183 0.123
44 Imperial Valley-06 Holtville Post Office 1979 6.5 0.209 0.149 0.067 0.074
45 Kobe, Japan Port Island (0 m) 1995 6.9 0.562 0.718 0.505 0.670
46 Izmit-Kocaeli, Turkey Yarimca 1999 7.4 0.241 0.325 0.327 0.497

47 Northridge, USA Jensen Filter Plant
Administrative Building 1994 6.7 0.401 0.412 0.509 0.280

48 Northridge, USA Sylmar—Converter Sta East 1994 6.7 0.494 0.265 0.290 0.276
49 Nahanni, Canada Site 1 1985 6.8 2.370 0.421 0.457 0.231
50 Nahanni, Canada Site 3 1985 6.8 0.182 0.158 0.085 0.084
51 Cape Mendocino, USA Cape Mendocino 1992 7.0 0.754 0.781 0.394 0.227

52 Northridge, USA Jensen Filter Plant
Generator Building 1994 6.7 0.760 0.329 0.511 0.201

53 Northridge, USA Los Angeles Dam 1994 6.7 0.323 0.260 0.271 0.124
54 Northridge, USA Pacoima Kagel Canyon 1994 6.7 0.180 0.144 0.260 0.206
55 Northridge, USA Arleta—Nordhoff Fire Sta 1994 6.7 0.552 0.178 0.260 0.194

56 Northridge, USA Newhall—W Pico Canyon
Rd. 1994 6.7 0.286 0.294 0.414 0.151

57 Northridge, USA Rinaldi Receiving Sta 1994 6.7 0.847 0.477 0.516 0.208

58 Northridge, USA Sylmar—Converter Sta
Valve Group 1–6 1994 6.7 0.535 0.389 0.310 0.181

59 Northridge, USA Sylmar—Converter Sta
Valve Group 7 1994 6.7 0.787 0.429 0.533 0.233
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vertical ground motions (scaled PGA is 0.023 g). 
Figure 11. The response spectra (dashed lines) and average spectrum (bold solid line) of 59 scaled
vertical ground motions (scaled PGA is 0.023 g).

4. Influence of Vertical Ground Motion on Crowd-Induced Vibration of Footbridge

In this section, the footbridge subjected to earthquake loads is firstly given. Next, the
vibration levels are calculated for the case with both crowd loads and earthquake loads.
Because of the limited space available in this paper, the numerical results of the earthquakes
with intensity 7 are provided as an illustration.

4.1. Footbridge Vibration Induced by Earthquake Loads

In this subsection, the footbridge is only subjected to earthquake loads. The earthquake
loads described in Section 3 are applied to calculate the induced vibrations of the illustrative
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structure. In the response calculation, considering the ‘rich’ frequency contents of the
seismic inputs, the contributions from the first five vertical modes are considered. The
earthquakes can occur at a random time instant teq within the relevant total simulation
time span.

Figure 12 illustrates the time history of the structural acceleration responses in the
vertical direction subjected to the Kobe Earthquake (intensity 7), which is assumed to occur
at time instant teq = 0 s for the illustrative example. The maximum acceleration amplitude
reached 1.81 m/s2.
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Figure 12. The time history of the structural acceleration responses in the vertical (Z) direction
subjected to the Kobe Earthquake (intensity 7), which occurs at time instant teq = 0 s.

Figure 13 shows the empirical cumulative distribution function (CDF) based on the
59 maximum acceleration amplitudes induced by different ground accelerations which are
assumed to occur at time instant teq = 0 s. As shown in Figure 13, most amplitudes ranged
from 0.39 to 3.07 m/s2.
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Figure 13. An empirical cumulative distribution function (CDF) plotted by the ‘cdfplot’ Matlab
function, based on the 59 maximum acceleration amplitudes (intensity 7 as an example) induced by
different ground accelerations in the vertical (Z) direction.
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4.2. Footbridge Vibration Induced by Crowd Loads and Earthquake Loads

This subsection investigates the case that the footbridge is subjected to both crowd
loads and earthquake loads. The induced total response is a combination of the vibrations
due to crowd loads and earthquake loads. Theoretically, an earthquake can occur at any
time during the crowd passing. To consider the randomness of the earthquake occurring at
time instant teq, it can be considered as:

0 s ≤ teq ≤ tlast (8)

where tlast is the arrival time of the last person in the crowd, e.g., for the illustrative example,
tlast = t25 = 34.86 s for 0.1 pedestrians/m2 and tlast = t375 = 61.74 s for 1.5 pedestrians/m2.
The time is long enough for the structural responses to reach maxima. Furthermore, a time
shift of 0.02 s is adopted for each pair of two different neighbouring teq.

Figure 14 depicts the maximum amplitudes in the time history of the total structural
acceleration responses in the vertical direction subjected to crowd loads and the Kobe
Earthquake (intensity 7) that occur at a different time instant teq. The combined structural
responses are significantly affected by the time instant teq for all density cases. The maxi-
mum amplitudes of the total responses are 2.01, 2.11, 2.25, 2.14, 2.27, and 2.52 m/s2 for the
responses induced by the earthquake and the six crowds with different densities. For the
same earthquake, the maximum amplitude does not increase linearly with the density.
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Figure 14. The maximum amplitudes in the time history of the total structural acceleration re-
sponses in the vertical (Z) direction to the crowd and the Kobe Earthquake (intensity 7 as an ex-
ample) that occurs at different time instants teq. (a) 0.1 pedestrians/m2, (b) 0.2 pedestrians/m2,
(c) 0.5 pedestrians/m2, (d) 0.8 pedestrians/m2, (e) 1.0 pedestrians/m2, (f) 1.5 pedestrians/m2.

Figure 15 presents the empirical cumulative distribution functions (CDFs) based on
7 times of 59 maximum acceleration amplitudes induced by different ground accelerations
(1 time) and by both earthquake and crowd loads (6 times). The cases with both the crowd
and earthquake loads basically have much higher acceleration amplitudes than the cases
with crowd load or earthquake load only. As expected, the lowest and the highest accelera-
tion amplitude curves are obtained by the cases with a low density of 0.1 pedestrians/m2

and high density of 1.5 pedestrians/m2, respectively. However, the amplitudes do not
increase with density and there exists a valley for the case with 0.8 pedestrians/m2. For the
densities in between, the case with a lower density of 0.2 pedestrians/m2 may induce even
higher acceleration amplitudes than the case with 0.8 pedestrians/m2.
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Figure 15. Empirical cumulative distribution functions (CDFs) based on 7 times of 59 maximum
acceleration amplitudes (intensity 7) induced by different ground accelerations (1 black wide solid
curve) and by both earthquake and crowd loads (6 dashed curves: the blue wide dashed curve for
low density of 0.1 pedestrians/m2, the red dotted wide curve for high density of 1.5 pedestrians/m2,
and other dashed curves for other densities: pink for 0.2, green for 0.8, cyan for 0.5, yellow for 1.0).



Buildings 2022, 12, 2138 21 of 30

For comparison, six additional vertical straight lines are added as the induced maximum responses
by the low density of 0.1 pedestrians/m2 crowd (the blue narrow solid line of 0.20 m/s2), the high
density of 1.5 pedestrians/m2 (red narrow solid line of 0.71 m/s2) crowd, and four other density
cases (pink for 0.2, green for 0.8, cyan for 0.5, yellow for 1.0).

5. Amplification Effects of Vertical Ground Motion
5.1. Amplification Factors of Structural Responses Due to Ground Motion

To quantify the effects of the ground motion on the structural response subjected to
crowd loads and earthquake loads, an amplification factor is introduced as the ratio of
maximum acceleration responses to combined loads (both crowd and earthquake) and
crowd loads only. In total, there are 195,408 (= 138 × 6 × 59 × 4) calculation cases for 138
footbridges, 6 pedestrians’ densities, and 59 vertical ground motions with 4 intensities.
In some calculation cases, the input parameters are incomplete and have been removed.
As a result, 171,572 datasets are finally selected. Table 4 shows the statistical values of
amplification factors for different earthquake intensities. As shown in Table 4, the effects
of higher earthquake intensity are generally larger than those of the corresponding lower
earthquake intensity. It is characterized by higher mean values of the amplification factor
because larger vibration responses are caused by earthquakes with higher intensity. The
scatter (characterized with standard deviation) is also larger for higher earthquake intensity.
This results from the fact that when the pedestrian-induced vibration levels are kept
constant, the contribution of the ground motion in the structural responses is reasonably
more significant for earthquakes with higher intensity. Consequently, the amplification
factor is more easily affected by the randomness of the ground motion. In other words,
relatively higher vibration levels induced by the earthquake can result in high mean and
standard deviation values for the amplification factor. This can also be supported by the
observations in Table 5. Generally, higher mean and standard deviation amplification
factor values are found for lower acceleration amplitudes induced by the crowd, when
the earthquake intensity is kept constant (intensity 7). It is also notable that the basic
trend is slightly altered due to random characteristics of crowd loads. This is because the
amplification factor is not only determined by earthquake loads but also by crowd loads.

Table 4. Statistical values of amplification factor for different earthquake intensities.

Earthquake Intensity Maximum Minimum Mean St.D.

6 165.98 1.00 5.30 6.84
7 322.29 1.00 9.42 13.29
8 645.96 1.00 17.96 26.64
9 1290.53 1.00 34.97 53.24

Table 5. Statistical values of amplification factor for different densities in the case of intensity 7.

Density
(Pedestrians/m2)

Acceleration Amplitude Induced by
Crowd Loads (m/s2) Mean St.D.

0.1 0.20 2.26 0.63
0.2 0.30 1.87 0.44
0.5 0.44 1.69 0.35
0.8 0.33 2.26 0.64
1.0 0.49 1.70 0.36
1.5 0.71 1.66 0.33

The amplification factor is governed by the structure, the crowd, and the earthquake,
so the structural-related, crowd-related, and earthquake-related parameters are defined as
inputs and the amplification factor is taken as an output. Ten parameters, including four
structure-related parameters, one crowd-related parameter, and five earthquake-related
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parameters, are taken as the input variables, with the amplification factor taken as the only
output variable. The statistical values of the input and output variables are listed in Table 6.

Table 6. Statistical values of input and output variables.

Variable Type Parameters Unit Maximum Minimum Mean St.D.

Input Structure-related

L m 230.00 4.80 38.94 28.45
W m 13.35 0.78 2.76 1.51

M1,v kg 724,500.00 922.74 64,781.25 76,013.95
ξ % 2.50 0.40 0.95 0.66

Input Crowd-related ρcrowd pedestrians/m2 1.50 0.10 0.67 0.47

Input Earthquake-related

Scaled PGA g 0.09 0.01 0.04 0.03
Original PGA g 2.37 0.05 0.44 0.38
Original PGV m/s 0.78 0.02 0.27 0.18
Original Sa-1s g 0.66 0.01 0.28 0.16
Original Sa-2s g 0.67 0.00 0.17 0.13

Output Amplification factor - 1290.53 1.00 16.91 32.73

Figure 16 plots the relationship between the amplification factor and 10 input variables.
It shows that the scaled PGA, which is closely related to seismic intensity, has an obvious
positive correlation with the amplification factor. With the increase of the main span L,
there is a general trend that the amplification factor increases. Conversely, the amplification
factor has a descending tendency with the increase of the damping ratio ξ and pedestrian
density ρcrowd. There are no significant correlations between the remaining parameters and
the amplification factor.
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5.2. Machine Learning (ML)-Based Prediction of Amplification Factor

As there exists a strong nonlinear relationship between the inputs and output, machine-
learning (ML) techniques, which are suitable for solving the nonlinear regression problem,
are used to predict the amplification factor. Two individual-type ML algorithms, i.e.,
decision tree (DT) and artificial neural network (ANN), and two ensemble ML algorithms,
i.e., random forest (RF) and gradient boosting regression tree (GBRT), are adopted to
construct the predictive models. The characteristics of the four ML algorithms are briefly
summarized as follows.

The most widely used DT algorithm is the classification and regression tree (CART).
By using the CART, a characteristic space can be separated into several units. Each unit
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corresponds to an output. Based on the characteristic of any testing data, it can be des-
ignated into a unit and then acquire the output. The DT often has an over-fitting issue
and the drawback of processing missing data. The ANN algorithm consists of a large
number of neurons or processing elements arranged in different layers. The idea of the
ANN originates from the biological nervous systems. A neural network becomes a vector
mapper which maps input vectors to an output vector. The RF is a famous bagging-type
ensemble learning algorithm based on the DT. The principle of the bagging approach is to
separate the training dataset into m new training datasets and generate an independent
model for each training dataset. As for the RF, m training datasets can be created by the
bootstrap approach. A DT is then generated for each training dataset. The over-fitting
issue can be avoided by using the RF. The GBRT is a widely used boosting-type ensemble
learning algorithm. It uses a negative gradient of loss function to represent the residual
error. By integrating different weaker learners, the GBRT can decrease the deviation and
maintain the low variance of the weaker learners.

As mentioned in Section 5.1, a database including 171,572 datasets is used to train
and test the ML algorithms. As a common practice [77], 70% and 30% of the data are
used as the training and testing datasets, respectively. The Bayesian optimization method
is adopted to determine the optimized hyper-parameters of the ML algorithms. The
optimized parameters of the four ML algorithms are listed in Table 7.

The predictive accuracy of the ML algorithms is quantitatively evaluated by three
widely used performance indices, i.e., coefficient of determination R-squared (R2), root
mean square error (RMSE), and mean absolute error (MAE):

R2 = 1− ∑N
i=1(Ci − Pi)

2

∑N
i=1
(
Ci − C

)2 (9)

RMSE =

√
∑N

i=1(Ci − Pi)
2

N
(10)

MAE =
∑N

i=1|Ci − Pi|
N

(11)

where Ci and Pi are the calculated and predicted values, respectively; N is the number of
datasets in the database; and C is the average calculated value. A good predictive model
requires that its R2 is close to 1 and its RMSE and MAE are small.

The performance measures of the four ML algorithms are tabulated in Table 8. Figure 17
illustrates the relationship of the predicted values and the reference values for both the
training and testing datasets.

It can be concluded from Table 8 and Figure 17 that the two ensemble algorithms have
a better predictive performance than the two individual ML algorithms. In terms of the
performance measures of the testing dataset, the best predictive model is GBRT, whose
R2 is closest to 1 and RMSE and MAE are the smallest. Based on the GBRT model, the
feature importance [49,50] is conducted to quantify the importance of different features
(input variables) on the amplification factor. The relative feature importance of all input
variables is plotted in Figure 18. It can be concluded from Figure 18 that the scaled PGA
(earthquake-related), ρcrowd (crowd-related), and L (structure-related) are the three most
important features, while the influence of W on the amplification factor is less significant.
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Table 7. Optimized parameters of the four ML algorithms.

ML Algorithm Parameters

ANN

activation = ‘tanh’
alpha = 0.3030395941208759

hidden_layer_sizes = 493
max_iter = 496

random_state = 5
solver = ‘lbfgs’

DT

criterion = ‘friedman_mse’
max_depth = 29
max_features = 9

min_samples_leaf = 6
min_samples_split = 12

random_state = 5

GBRT

Criterion = ‘mse’
learning_rate = 0.3830013954408691

loss = ‘lad’
max_depth = 9

max_features = 7
min_samples_leaf = 11
min_samples_split = 11

n_estimators = 285

RF

max_depth = 25
max_features = 7

min_samples_leaf = 2
min_samples_split = 5

n_estimators = 169
random_state = 5

Table 8. Performance measures of four ML algorithms.

ML Algorithm Datasets
Performance Indices

R2 RMSE MAE

DT
Training 0.890 10.75 3.72
Testing 0.780 15.62 5.18

ANN
Training 0.837 13.11 6.04
Testing 0.791 15.23 6.25

RF
Training 0.942 7.83 2.54
Testing 0.823 14.04 4.21

GBRT
Training 0.923 9.02 2.33
Testing 0.870 12.00 3.00
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6. Vibration Serviceability Evaluation

For the case with earthquake intensity 7, the results are presented in Figure 15. It can
be concluded from the empirical cumulative distribution function plot (Figure 15) that
when the structure is only subjected to vertical ground motions, there is approximately
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50% probability that the vibration levels fall into the range of the minimum comfort
limits of 1.0–2.5 m/s2 according to Setra and HiVoSS, with the probability of the vibration
levels exceeding the human comfort limits in the vertical direction (2.5 m/s2) being very
low according to HiVoSS. For crowd load only, the acceleration level is always lower
than the comfort limits. When the structure is subjected to earthquake and pedestrian
walking by a low-density crowd, the exceedance probability to the human comfort limits
is approximately 10%. For high-density crowd evacuation during an earthquake, the
corresponding exceedance probability is approximately 20%. However, when recalling the
amplification factor values for different earthquake intensities (Table 4), the mean values
of the amplification factor are 1.91 (=17.96/9.42) and 3.71 (=34.97/9.42) times higher for
intensities of 8 and 9, respectively. Correspondingly, the acceleration amplitudes can be
nearly doubled and quadrupled, leading to the acceleration levels exceeding the comfort
limits at all or most times, which is very risky for human evacuation and may even result
in pedestrians falling. Thus, the serviceability of the footbridge may be impeded.

7. Conclusions

There is no existing research considering the combined effects caused by human-
induced loads and vertical ground motions of footbridges. To fill the gap, this paper
investigates the effects of vertical ground motion on human-induced vibrations of foot-
bridges. A total of 138 footbridges with different materials, dimensions, and structural types
are taken as the target structures. The social force model combined with the pedestrian-
induced force model is applied to simulate crowd loads with six representative pedestrian
densities as required by design codes. Fifty-nine vertical ground motions with four seismic
intensities are adopted as the seismic inputs. The amplification factor is defined to quan-
tify the amplification effects of vertical ground motion on human-induced vibrations of
footbridges. Four ML algorithms are used to predict the amplification factor. The vibration
serviceability of the footbridge subjected to both crowd load and vertical ground motion is
also assessed. Several conclusions can be drawn as follows:

1. The scaled PGA has an obvious positive correlation with the amplification factor. With
the increasing of the main span L, there is a general trend of the amplification factor
increasing. Conversely, the amplification factor has a descending tendency with the
increase of the damping ratio ξ and pedestrian density ρcrowd. There is no significant
correlation between the remaining parameters and the amplification factor.

2. The amplification factor is governed by structure-related, crowd-related, and earthquake-
related parameters. The scaled PGA, the pedestrian density, and the bridge span are
the most important parameters determining the amplification factor.

3. For the considered load scenarios in this paper, when the footbridges are only sub-
jected to crowd loads or the vertical ground motions, there is a very small probability
that the vibration levels exceed the upper limit (2.5 m/s2) of the minimum human
comfort limits in a vertical direction as suggested by current design codes. How-
ever, it is worthwhile to note that the vibration levels can be different for other cases.
Furthermore, comfort limits can be also changed by, e.g., the degree of mutual syn-
chronization of pedestrians in the crowd and their synchronization with the natural
frequency of the structure, depending on the value of this frequency.

4. With both the crowd and earthquake loads considered, the acceleration levels may
exceed the comfort limits. In particular, when the earthquake intensity is larger than 7,
the vibration amplitudes to the combined loads may be higher than the comfort limits
at all or most times, which is very risky for human evacuation and may even result in
pedestrians falling. Thus, the serviceability of the footbridge may be impeded.

This study may urge footbridge designers to consider the scenario where the crowds
are evacuated in earthquakes. A first estimation of the induced vibration levels to the
combined loads can be obtained by considering the amplification factor for different crowd
densities and earthquakes with different intensities.
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In future work, more realistic evacuation scenarios can be simulated by considering
possible running persons for the low crowd density cases and pedestrian–structure interac-
tions during earthquakes. Furthermore, the simulations can be more realistic if real-world
data for pedestrian evacuation in earthquakes are available.
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