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Abstract: This paper is a continuation of a previously published paper on this issue that studied the
microencapsulation of calcium nitrate in urea-formaldehyde shell using Aerosol OT (AOT) in hexane
solution. The aim of this paper is to determine the quantity of AOT that optimizes microcapsule
distribution, diameter, and shell thickness. Different quantities of AOT, namely 0.25 g, 0.50 g, 1.5 g,
and 2.5 g were dissolved in 180 g of hexane solution to prepare the continuous phase. A Scanning
Electron Microscopy (SEM) was used to characterize the distribution and the diameters of the
prepared microcapsules. A Transmission Electron Microscopy (TEM) was used to investigate the
microcapsule shell thicknesses. The SEM images have shown that using 0.25 g of AOT may be
insufficient to totally polymerize the whole quantity of the core materials into fully independent
capsules. On the other hand, using 0.50 g of AOT has shown a uniform distribution and almost
complete polymerization of the core material components into distinct microcapsules. Higher
quantities of AOT (i.e., 1.50 g and 2.5 g) have resulted in agglomerated microcapsules and nonuniform
distributions. The results have also demonstrated that the quantity of AOT does not have a significant
impact on the microcapsule diameter. Microcapsule average shell thicknesses were found to decrease
by increasing AOT amount up to 0.50 g and to increase again due to the agglomeration witnessed
for increased AOT quantity. Accordingly, 0.50 g of AOT was recommended for the preparation of
calcium nitrate microcapsules in future research work.

Keywords: calcium nitrate microcapsules; self-healing; aerosol OT amount; hexane; distribution;
diameter; shell thickness

1. Introduction

Recently, microencapsulation has become a promising technology to protect a core
material inside a specific shell using in situ polymerization technique. The produced
microcapsules have been successfully used in fields such as electronics, catalysts, pharma-
ceuticals, [1–4].

Many researchers have recently utilized microencapsulation technology to produce
self-healing microcapsules for concrete structure repair and crack prevention [5–17]. When
cracks develop in concrete elements, their tips rupture the microcapsules shells and, con-
sequently, the released microcapsule healing agents react with a catalyst to form calcium–
silicate–hydrate gels (C-S-H) to fill the cracks and hinder their propagation.

Many materials have been investigated as healing agents for construction applications.
Sodium silicate and polyurethane have been successfully encapsulated as healing agents,
which were used in cementitious mixes [11,15,18]. Due to their high costs, alternative
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low-cost healing agents have been investigated by researchers. Hassan et al. [8] were
the first to encapsulate low-cost calcium nitrate material into a urea–formaldehyde shell.
However, these microcapsules have reduced the compressive and flexural strengths of
cementitious mixes despite their satisfactory healing efficacy [7]. Therefore, Hassan et al. [8]
have proposed modifications to the original microencapsulation procedure to alleviate
strength reductions. The modifications included partial replacement of the sulfonic acid
catalyst with low Hydrophilic–Lipophilic (HLB) emulsifiers, namely Span 85 (Sorbitane
trioleate) or Sorbitan monostearate (Span 60) surfactant to stabilize the emulsion [5,6]. Span
85 microcapsules have caused a 40% elastic modulus reduction for the mortar samples
incorporating 0.75%, by cement weight, of these microcapsules [6]. It is worth noting
that the prepared microcapsules and those used in the original procedure had average
diameters of 70 µm and 51 µm, respectively [6]. On the other hand, Span 60 [5] has
generated microcapsules with an average diameter of 22 µm using an agitation rate of
1500 rpm. However, after incorporating them into steel fiber concrete mixes, their healing
efficiencies were found to be less than those prepared using the original procedure [8].

He and Shi [19] have evaluated the cement mortar early-age durability improvement
of a self-healing system consisting of calcium nitrate in urea–formaldehyde shell micro-
capsules and polyvinyl alcohol (PVA) microfibers. The reported results showed that the
system has eliminated 25% of the total shrinkage and decreased the gas permeability of the
mortar samples by more than 75%. However, the system has decreased the compressive
strength and chloride migration coefficient of the tested samples.

Recently, AbuTaqa et al. [20] have prepared submicron calcium nitrate refined micro-
capsules using the anionic surfactant Aerosol OT (AOT) in hexane solution. The idea of
using AOT as a stabilizer for the synthesis of calcium nitrate microcapsules arse from the
fact that AOT has been successfully and extensively used to prepare oil and water emul-
sions for the synthesis of different nano particles and also used to prepare pharmaceutical
formulations due to its biocompatibility [21–30].

The modification proposed by Abu Taqa et al. [20] consisted of (1) keeping the aqueous
phase components in the original encapsulation procedure unaltered and (2) using 5.8 g of
AOT as a stabilizer in hexane solution for the polymerization. The amount of AOT has been
considered a preliminary one given that a water to AOT ratio (w) of 10 has been used. Scan-
ning Electron Microscopy (SEM) has been used to characterize the produced microcapsules.
The examination of the SEM images of the produced microcapsules has helped to prepare
refined calcium nitrate microcapsules with an average diameter of 2.5 µm and approxi-
mately 0.58 µm average shell thickness. It is worth noting that the values of diameter and
shell thickness were smaller than those reported by other authors [5,6,8,19]. The literature
has reported that adding higher percentages of smaller size microcapsules to cementitious
mixes may lead to an optimum self-healing efficiency [6,31]. Abu Taqa et al. [20] have
suggested that refined and small-sized self-healing microcapsules enhance the healing
efficiency because they are uniformly distributed within the matrix and fill the macro and
microcracks as also reported by other authors [32]. Moreover, Abu Taqa et al. [20] have
incorporated 75% of microcapsules (by weight of cement) into mortar samples, which
have shown insignificant reduction in their mechanical properties due to the addition of
these microcapsules.

This study is an extension to the work of Abu Taqa et al. [20] on polymerization of
calcium nitrate microcapsules using Aerosol OT (AOT) in hexane solution. Using the same
encapsulation procedure, the study will optimize AOT amount in the hexane solution to
fully polymerize the calcium nitrate core material into perfectly separated self-healing
microcapsules. The preliminary AOT amount proposed by Abu Taqa et al. [20] (i.e., 5.8 g)
will be reduced in the study because the constituent cost may be relatively high. In the
study, different reduced amounts of AOT (i.e., 0.25 g, 0.50 g, 1.5 g and 2.5 g AOT amounts)
will be dissolved in the hexane solution to prepare the continuous phase. It is worth
noting that the aqueous phase in the original encapsulation procedure will not be altered.
The distribution and the diameters of the prepared microcapsules will be characterized
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using Scanning Electron Microscopy (SEM). On the other hand, the Transmission Electron
Microscopy (TEM) will be used to investigate the microcapsule shell thicknesses.

The relevance of this study arises from the fact that repairing cracks in concrete
structures by the conventional methods became a tedious work that wastes a lot of time
and cost; hence, using self-healing microcapsules to repair the cracks in structures may
be considered a viable solution to achieve sustainable concrete structures. Accordingly,
the main objective of this study is to determine the amount of AOT for the preparation
of the calcium nitrate microcapsules to achieve the most optimum uniform distribution,
diameter and shell thickness of the produced microcapsules. Additionally, this research
may demonstrate results that fill the gap between the industrial/construction sectors
and research incomes by introducing the prepared microcapsules to be incorporated into
mortar and/or concrete samples. Future work will be directed towards investigating
the mechanical properties of such samples and the self-healing efficiency of the prepared
self-healing microcapsules.

2. Experimental Program
2.1. Microcapsule Preparation
2.1.1. Synthesis

This study uses the preparation procedure of self-healing submicron calcium nitrate
microcapsules using Aerosol-OT in hexane solution developed by AbuTaqa et al. [20]. In
the procedure, the calcium nitrate healing agent is polymerized in urea–formaldehyde shell
using water-in-oil emulsion. In this study, the amounts of the aqueous phase components
(urea, formaldehyde, resorcinol, ammonium chloride, calcium nitrate and the distilled
water) were kept the same as in the previous study [20]. For the continuous phase, the
amount of the organic solvent (Hexane) was unaltered. On the other hand, the amount
of the anionic surfactant (AOT) was changed to investigate the effect of its dosage on the
distribution, diameter, and shell thickness of the prepared microcapsules. Instead of using
5.8 g AOT in the continuous phase (water to AOT ratio (w)), different reduced amounts of
0.25 g, 0.50 g, 1.5 g and 2.5 g were investigated. The trial compositions are summarized in
Table 1. Each trial has been repeated 3 times and the prepared microcapsules of the three
repetitions have been mixed to obtain a representative sample.

Table 1. The compositions of all microcapsule preparation trials.

Trial-1 Trial-2 Trial-3 Trial-4

Aqueous
Phase

Constituent Amount (g)

Urea 5.00

Formaldehyde
(37% solution) 12.67

Resorcinol 0.50

Ammonium Chloride 0.50

Calcium Nitrate 10.00

Distilled Water 50.00

Continuous
Phase

Organic Solvent (Hexane) 180.0

Dioctyl Sodium
Sulfosuccinate (AOT) 0.25 0.50 1.5 2.5

2.1.2. Emulsification and Polymerization

An agitation rate of 1500 RPM and a temperature of 40−45 ◦C were used herein ([7,8,20]).
A dropwise addition of the aqueous phase into the AOT-in-hexane continuous phase
was also adopted. It is worth noting that the polymerization time increased for low-
concentration AOT. The agitation has been completed for all trials by visually observing
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that the stirring stopped working indicating that the whole aqueous phase amount has
been polymerized. Finally, the solution was let to settle for some time, and the excess
hexane was decanted. The settled microcapsules were air-dried in a wide pan. Figure 1a,b
shows the stirring setup and the settled microcapsules, respectively.
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2.2. Scanning Electron Microscopy (SEM)

A Scanning Electron Microscopy (SEM) was used for the characterization of the
microcapsule diameters. A Nova NanoSEM model was used to analyze the prepared
microcapsules, which were scattered on the top of a double-sided tape attached to a pin
stub specimen mount. The samples were coated with platinum for four minutes. An
accelerating voltage of 3 kV secondary electron mode was used to image them. The
images were captured for the scales of 10 µm and 30 µm while the average diameters of all
microcapsules shown in the images were considered.

2.3. Transmission Electron Microscopy (TEM)

The Transmission Electron Microscopy (TEM) was used to characterize the microcap-
sule shell thickness because their shell thicknesses were smaller than their diameters. TEM
may be considered as a high-resolution imaging technique in which a beam of electrons
passes through a thin sample to produce a contrast in the resulting image depending on the
sample thickness, density, and crystallinity. However, SEM only gathers the net intensity of
secondary electrons in each point of the scan. Accordingly, and due to the small wavelength
of the transmitted electrons, TEM microscopy can collect sub-nanometer scale images. Thus,
TEM is considered to be more precise than SEM, especially when small wavelengths are to
be measured.

FEI Tecnai G2 F20 X-TWIN Transmission Electron Microscope with 200 kV operating
voltage was used in this study. The prepared microcapsules were dispersed in isopropanol
using sonicator for 15 min and then drop-casted on a carbon—200 copper mesh. The mesh
was then properly dried and put under the TEM microscope. The shell thicknesses were
considered as the average of those in all images taken at scales of 500 nm and 1µm in
each trial.

3. Results and Discussion
3.1. Microcapsule Diameter (Scanning Electron Microscopy)

Figure 2a,b, Figure 3a,b, Figure 4a,b and Figure 5a,b show the microcapsule diameters
for all the trials prepared using AOT in Hexane solution using SEM images at 10 µm
and 30 µm scales, respectively. The study investigates the effect of AOT dosage on the
distribution, diameter, and shell thickness of the prepared microcapsules. Because of their
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large numbers, the microcapsules were randomly selected from the SEM images [7,8].
Table 2 summarizes the microcapsule minimum, maximum, and average diameter in each
trial for the image scales of 10 µm and 30 µm.
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Table 2. Microcapsule minimum, maximum, and average diameters at different image scales.

Image Scale 10 µm 30 µm

Trial AOT
Amount (g)

Min. Dia.
(µm)

Max. Dia.
(µm)

Average Dia.
(µm)

Min. Dia.
(µm)

Max. Dia.
(µm)

Average Dia.
(µm)

Trial-1 0.25 1.42 3.40 2.13 1.48 3.73 2.39

Trial-2 0.50 1.24 4.21 2.54 1.39 4.51 2.57

Trial-3 1.50 1.14 4.08 2.63 1.34 4.03 2.77

Trial-4 2.50 0.60 4.48 2.78 1.20 5.05 2.88

The SEM images in Figure 2 of the microcapsules produced using only 0.25 g AOT
show that the encapsulated component shapes are spherical and large parts of the products
are agglomerated or partially polymerized. This observation is more visible in Figure 2b
due to larger image scale. This may indicate that the amount of AOT used (i.e., 0.25 g) is
not sufficient to totally polymerize the whole core materials into full independent capsules.

Figure 3 shows that the shape of the produced microcapsules using larger amount
of AOT (i.e., 0.50 g) is uniform and the shape of the microcapsules is perfectly spherical.
The SEM images in Figure 3 show that almost all of the core material components have
been polymerized into single distinct microcapsules. These observations suggest that using
0.50 g of AOT-in-hexane solution is sufficient to fully polymerize the whole component
amounts of the aqueous phase presented in Table 1.

The SEM images in Figures 4 and 5 show the distribution, shape, and diameters of
the microcapsules produced with higher AOT amounts of 1.50 g and 2.5 g, respectively.
They also show that (1) the shape of the produced microcapsules is spherical and (2) almost
all the components have been polymerized. However, the produced microcapsules are
agglomerated or stuck to each other resulting in a nonuniform distribution. This suggests
that increasing the amount of AOT above 0.50 g is not feasible and does not produce the
promising self-healing efficiency for single separated microcapsules.

Table 2 shows that the minimum microcapsule diameter is reduced by increasing
the AOT amount. On the other hand, the maximum microcapsule diameter increases by
increasing the amount of AOT for polymerization. Moreover, the average microcapsule
diameter increases for higher AOT concentrations. The average diameters are 2.13–2.39 µm,
2.54–2.57 µm, 2.63–2.77 µm, 2.78–2.88 µm for AOT amounts of 0.25, 0.50, 1.50 and 2.5 g,
respectively. These values are very close to each other and hence the AOT amount may not
have a significant effect on the produced microcapsules.
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Considering all above observations, using 0.50 g of AOT along with the other com-
ponent amounts listed in Table 1 is recommended in terms of microcapsule distribution,
shape, and average diameter. Testing the healing efficiency of the microcapsules produced
using 0.50 g of AOT-in-hexane solution should be investigated thoroughly in future work.

3.2. Microcapsule Shell Thickness (Transmission Electron Microscopy)

Figure 6a,b, Figure 7a,b, Figure 8a,b and Figure 9a,b show the TEM images of the
microcapsules prepared using AOT in Hexane solution using scales of 500 nm and 1 µm,
respectively. Table 3 summarizes the shell thickness averages of randomly selected micro-
capsules from the TEM images of each trial using scales of 500 nm and 1 µm, respectively.

The TEM images in Figures 6–9 show the microcapsule shell thicknesses as the lighter
parts surrounding the core. The shell thicknesses have been measured at random locations
of each image for two scales (500 nm and 1µm) and their average values are summarized
in Table 3.

Table 3. Microcapsule average shell thicknesses for all trials at different image scales.

Image Scale 500 nm 1 µm

Trial AOT Amount (g) Average Dia. (µm) Average Dia. (µm)

Trial-1 0.25 0.010 0.166

Trial-2 0.50 0.098 0.146

Trial-3 1.50 0.130 0.154

Trial-4 2.50 0.191 0.192
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Table 3 shows that the average shell thickness of the produced microcapsules decreased
by increasing the AOT amount up to 0.50 g. However, for higher AOT concentrations (1.5 g
and 2.5 g), the shell thicknesses increased again. This may be due to the agglomeration effect
witnessed due to AOT increased amount as explained in Section 3.1. The microcapsules
with thinner shell thicknesses are more easily ruptured by the initiated cracks. Therefore,
incorporating microcapsules with smaller shell thickness into cementitious materials may
improve their self-healing efficiency. Incorporating microcapsules prepared with 0.50 g
AOT-in-hexane solution may lead to the optimum healing efficiency and this should be
investigated in a subsequent study.
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4. Conclusions

The experimental study results lead to the following conclusions:

• SEM images showed that spherically shaped microcapsules could be produced using
only 0.25 g of AOT; however, they showed that considerable product parts are partially
polymerized. This may indicate that using 0.25 g of AOT may not be sufficient to
totally polymerize the whole core material amount.

• The SEM images of the microcapsules prepared using 0.50 g of AOT showed a uniform
distribution of the produced microcapsules with perfectly spherical shape. Moreover,
almost all core material components have been polymerized into distinct microcap-
sules. These observations suggest that using 0.50 g of AOT is sufficient to fully
polymerize the whole components of the aqueous phase.

• The shape of the microcapsules produced using 1.50 g and 2.5 g of AOT is still spherical
and almost all the components have been polymerized. However, the SEM images
show that the produced microcapsules are agglomerated resulting in a nonuniform
distribution. This might indicate that increasing the amount of AOT above 0.50 g may
not facilitate the promising self-healing efficiency single separated microcapsules.

• The average diameters of all trials of various AOT concentrations are very close to
each other which suggests that the amount of AOT used does not have a significant
effect on the diameter of the produced microcapsules. In all cases, the diameters were
found within the range of 2.13–2.88 µm. A value of 2.5 µm may be considered in
future studies.

• TEM was used to characterize microcapsule shell thicknesses because they are smaller
than microcapsule diameters. It could be noted that the average shell thickness of the
produced microcapsules decreased by increasing AOT amount up to 0.50 g. However,
shell thicknesses increased again for higher AOT concentrations (1.5 g and 2.5 g).
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This may be due to the agglomeration effect resulting from increased AOT amount as
shown in the SEM images.

• For the preparation of calcium nitrate microcapsules, 0.50 g of AOT may be recom-
mended using the methodology proposed by the authors in previous work [20].

• In order to assess the practical aspect from the research carried out, a successive future
study will be directed towards incorporating self-healing microcapsule prepared using
0.5 g of AOT in hexane solution into mortar and/or concrete samples with different
microcapsule concentrations to investigate the mechanical properties of such samples
and the healing efficiency of the prepared microcapsules.

5. Future Work

The mechanical properties and healing efficiency of mortar and/or concrete samples
incorporating self-healing microcapsule prepared using 0.5 g of AOT in hexane solution
with different microcapsules concentrations should be investigated in future work. De-
termining the appropriate percentages of the microcapsules to be incorporated into the
concrete samples may be challenging in such future work; however, such percentages may
be determined preliminarily based on previous similar studies on incorporating other types
of self-healing microcapsules into concrete samples. The limitations of the percentages of
the microcapsules will be demonstrated in the future work and will be considered as the
basis for other successive works.
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