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Abstract: The evaluation of localized soil-liquefaction potential is based primarily on the individual
evaluation of the liquefaction potential in each borehole, followed by calculating the liquefaction-
potential index between boreholes through Kriging interpolation, and then plotting the liquefaction-
potential map. However, misjudgments in design, construction, and operation may occur due to the
complexity and uncertainty of actual geologic structures. In this study, the coupled Markov chain
(CMC) method was used to create and analyze stratigraphic profiles and to grid the stratum between
each borehole so that the stratum consisted of several virtual boreholes. The soil-layer parameters
were established using homogenous and random field models, and the subsequent liquefaction-
potential-evaluation results were compared with those derived using the Kriging method. The
findings revealed that within the drilling data range in this study, the accuracy of the CMC model in
generating stratigraphic profiles was greater than that of the Kriging method. Additionally, if the
CMC method incorporated with random field parameters were to be used in engineering practice,
we recommend that after calculating the curve of the mean, the COV should be set to 0.25 as a
conservative estimation of the liquefaction-potential interval that considers the evaluation results of
the Kriging method.

Keywords: coupled Markov chain; soil profile; random field; liquefaction potential

1. Introduction

Located on the Pacific Ring of Fire, Taiwan’s geology is characterized by fragile geo-
logic features, a high fault density, frequent earthquakes, and soil liquefaction. Currently,
the hyperbolic function (HBF) method is the most widely adopted approach for measuring
the soil-liquefaction potential in Taiwan [1]. The steps involved in this method include as-
sessing the liquefaction potential of various boreholes, calculating the liquefaction-potential
index between the boreholes through Kriging interpolation, and, finally, generating a map
showing the liquefaction potential of different areas. While different liquefaction-potential-
assessment methods are used in other parts of the world, the Kriging method remains the
most widely used method for generating liquefaction-potential-risk maps [2–7].

A challenge involved with these types of assessments is that the geologic structures
in reality are complex and riddled with uncertainty [8,9]. Due to the practical limitations
of geological survey techniques and project budgets, only a limited number of boreholes
can be drilled in a project [10]. The Taiwanese government faces similar constraints in
its current implementation of extensive surveys on the liquefaction potential in various
cities across the country. To this end, the geological data can only be acquired accurately
onsite at the exact borehole location, as it is difficult to acquire data in other locations [11].
Consequently, this may lead to misjudgments in designs, construction, and operations. To
address this challenge, this study integrates the methods for assessing soil-liquefaction
potential and geological uncertainty in order to acquire more realistic geological data.
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There are two types of geological uncertainty [12]: (1) the spatial variability of soil
properties in homogeneous soil layers [13,14], and (2) the geological uncertainty in heteroge-
neous soil layers [15,16]. Analyzing the spatial variability of soil properties in geotechnical
engineering has generated much attention over the past few decades [17–23]. However,
the geological uncertainty in heterogeneous soil layers significantly affects the geological
structure and performance [12,24,25]. The methods for modeling the geological uncertainty
in heterogeneous soil layers can be divided into two categories. The first category relies on
variance-function modeling in geostatistics [26], such as Kriging [27], Gaussian threshold-
ing [28], and multiple-point statistics [10]. However, this method is strongly dependent
on the quality of specific locations and projects, as well as the availability of sufficient
borehole data. The second method utilizes Markov models, which include Markov random
field [28,29] and Markov chain [30] models. Previous studies have proposed the estima-
tion of geological uncertainty by using geological models based on the Markov random
field theory [25,31,32]. This approach has been used to assess the impact of geological
uncertainty on slope stability [10,33] and tunnels [11]. However, this approach requires
preexisting knowledge of the strata direction [34,35]. Elfeki and Dekking proposed the cou-
pled Markov chain (CMC) model to simulate the geological uncertainty in a heterogeneous
soil layer with an unknown strata direction [15]. Many studies have improved the CMC
model and applied new models to resolve various geotechnical engineering problems, such
as geological uncertainty [16,34–37], slope evaluation [38], tunnel construction [39], and
soil seepage [40]. More recently, several researchers have proposed other approaches to
simulating geological uncertainty, such as nonparametric methods [41] and random-field
methods [42,43]. However, compared to other methods, the CMC method requires fewer
parameters, has high applicability, and is clear, reliable, and easy to interpret [44,45]. Thus,
this study applied the CMC method to simulate the geological uncertainty in heterogeneous
soil layers.

The four most common methods for assessing soil-liquefaction potential are the
Taiwan HBF method [1], the U.S. National Center for Construction Education and Research
(NCEER) method [46], the Architectural Institute of Japan (AIJ) method [47], and the Japan
Road Association (JRA) method [48,49]. The HBF and NCEER methods were developed
based on the simplified procedure proposed by the American professor, H.B. Seed. In
particular, the HBF method is distinguished by the number of case studies it includes; in
addition to more than 300 worldwide datasets [50], it also contains 300 datasets specific to
the 1999 Chi-Chi earthquake, making it the only method with a large number of actual soil-
liquefaction cases in Taiwan. Another method commonly used in Taiwan is the JRA method,
developed in 1996. It has been validated using datasets from six earthquakes, 64 liquefaction
cases, and 23 non-liquefaction cases [51], and was recently revised in 2017 [49]. Therefore,
this study adopts the HBF and JRA methods to evaluate soil-liquefaction potential.

In recent years, a growing number of studies have adopted random-field models for
evaluating soil-liquefaction potential [42,52–55]. However, most of these studies focus on
the influence of the spatial variability of soil properties on liquefaction-potential evaluation.
Therefore, this study first applied the CMC method to create and analyze stratigraphic
profiles and to grid the stratum between each borehole to ensure that the stratum contains
several virtual boreholes. Subsequently, the HBF and JRA methods were used to evaluate
the liquefaction potential at each borehole, in which the stratum parameters were deter-
mined according to the homogenous and random field methods. Finally, the analysis results
were compared to those acquired through the Kriging method (involving interpolation
of the liquefaction-potential index between boreholes) to generate liquefaction-potential-
evaluation results that more accurately represented realistic conditions.

2. Materials and Methods
2.1. Coupled Markov Chain (CMC)

The Markov chain is a random model proposed by Russian mathematician Andrey
Markov in 1909. It describes the random process within a state space by which one state
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is converted to another. The process must be memoryless, as the random distribution of
the subsequent state can only be determined by the current state and is unassociated with
events that occur before the current state. In Equation (1), when Z0, Z1, Z2, . . . , Zm form a
random variable sequence obtained from the state space (S1, S2, . . . , Sn), the sequence is
known as a Markov chain or Markov process:

Pr
(
Zi = Sk

∣∣Zi−1 = Sl , Zi−2 = Sn, Zi−3 = Sr, . . . , Z0 = Sp
)

= Pr(Zi = Sk|Zi−1 = Sl) =: plk
(1)

where | is a conditional probability.

2.1.1. Transition Probability Matrix

In a one-dimensional problem, a Markov chain can be described by a single transition-
probability matrix. A transition probability is the relative frequency with which one state
converts to another. In Equation (2), these transition probabilities can be arranged into a
matrix form, as follows:

p =


p11 p12 . . p1n
p21 . . . .

. . plk . .

. . . . .
pn1 . . . pnn

 (2)

where plk represents the probability of state Sl converting to state Sk, and n is the number
of states in the system. Thus, the probability of state Sl converting to states S1, S2, . . . , Sn
is indicated in p1l in the first row, and l = 1, 2, . . . n, and so on. The transition probability
matrix p must have the following features: (a) its elements cannot be negative, and (b) the
sum of each row of elements is 1.

2.1.2. Markov Chain

Krumbein (1968) first used a one-dimensional Markov model to construct stratigraphic
sequences [56]. A one-dimensional Markov chain event is shown in Figure 1. Assuming
that the state of a preceding unit cell i− 1 is Sl , and the state of the unit cell N is Sq, then the
probability that the state of the unit cell i is Sk can be represented mathematically as follows:

Pr
(
Zi = Sk

∣∣Zi−1 = Sl , ZN = Sq
)

(3)

Through derivations, Equation (3) transforms to Equation (4):

plk|q =
plk p(N−i)

kq

p(N−i+1)
lq

(4)

in which plk|q is the probability that the state of the unit cell i is Sk, the state of a preceding
unit cell i− 1 is Sl , and the state of the unit cell N is Sq.

In Equation (4), when the unit cell i is separated away from unit cell N, p(N−i+1)
lq

and p(N−i)
kq ineffective, because they are seemingly equivalent to a stationary probability.

However, when we approach unit cell N, its state becomes effective, and the simulation
results are influenced by the state of unit cell N.
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2.1.3. Two-Dimensional Markov Chain

Because the concepts supporting the means to define “the future” in a two-dimensional
system remain unclear, it is challenging to extend the future state conditions of a one-
dimensional Markov chain to a two-dimensional Markov chain. Amro Elfeki and Michel
Dekking, in 2001, proposed an extremely simple yet low-cost approximation method [15] in
which the one-dimensional transition probabilities at the vertical and horizontal directions
are placed into a CMC, as shown in Figure 2. This method also assumes that if the state of a
preceding unit cell i− 1, j is Sl , and the state of the unit cells i, j− 1 and Nx, j is Sm and Sq,
respectively, then the probability that the state of the unit cell i, j is Sk can be represented
mathematically in Equation (5), as follows:

Pr
(
Zi,j = Sk

∣∣Zi−1,j = Sl , Zi,j−1 = Sm, ZNx ,j = Sq
)

(5)

Through derivations, Equation (5) transforms to Equation (6):

plm,k|q := Pr
(
Zi,j = Sk

∣∣Zi−1,j = Sl , Zi,j−1 = Sm, ZNx,j = Sq
)

=
ph

lk ·p
h(Nx−i)
kq ·pv

mk

∑ f ph
l f ·p

h(Nx−i)
f q ·pv

m f

k = 1, . . . n
(6)

Buildings 2022, 12, x FOR PEER REVIEW 4 of 19 
 

However, when we approach unit cell 𝑁, its state becomes effective, and the simulation 

results are influenced by the state of unit cell 𝑁. 

2.1.3. Two-Dimensional Markov Chain 

Because the concepts supporting the means to define “the future” in a two-dimen-

sional system remain unclear, it is challenging to extend the future state conditions of a 

one-dimensional Markov chain to a two-dimensional Markov chain. Amro Elfeki and 

Michel Dekking, in 2001, proposed an extremely simple yet low-cost approximation 

method [15] in which the one-dimensional transition probabilities at the vertical and hor-

izontal directions are placed into a CMC, as shown in Figure 2. This method also assumes 

that if the state of a preceding unit cell 𝑖 − 1, 𝑗 is 𝑆𝑙, and the state of the unit cells 𝑖, 𝑗 − 1 

and 𝑁𝑥, 𝑗 is 𝑆𝑚 and 𝑆𝑞, respectively, then the probability that the state of the unit cell 

𝑖, 𝑗 is 𝑆𝑘 can be represented mathematically in Equation (5), as follows: 

Pr(𝑍𝑖,𝑗 = 𝑆𝑘|𝑍𝑖−1,𝑗 = 𝑆𝑙 , 𝑍𝑖,𝑗−1 = 𝑆𝑚, 𝑍𝑁𝑥,𝑗 = 𝑆𝑞) (5) 

Through derivations, Equation (5) transforms to Equation (6): 

𝑝𝑙𝑚,𝑘|𝑞 ≔ Pr(𝑍𝑖,𝑗 = 𝑆𝑘|𝑍𝑖−1,𝑗 = 𝑆𝑙 , 𝑍𝑖,𝑗−1 = 𝑆𝑚, 𝑍𝑁𝑥,𝑗 = 𝑆𝑞) 

=
𝑝𝑙𝑘

ℎ ∙ 𝑝𝑘𝑞
ℎ(𝑁𝑥−𝑖)

∙ 𝑝𝑚𝑘
𝑣

∑ 𝑝𝑙𝑓
ℎ

𝑓 ∙ 𝑝𝑓𝑞
ℎ(𝑁𝑥−𝑖)

∙ 𝑝𝑚𝑓
𝑣

   𝑘 = 1,…𝑛 
(6) 

 

Figure 2. Two-dimensional field-numbering system in a coupled Markov chain. 

2.1.4. Estimation of the Transition-Probability Matrix 

The vertical-transition-probability matrix (VTPM) and horizontal-transition-proba-

bility matrix (HTPM) are two important input parameters for a CMC model. 

VTPM(𝑝𝑣) can be directly estimated based on the borehole data [16]. First, the geo-

logic profile is divided into numerous units of the same size, each with a soil type. Next, 

each element (𝑝𝑙𝑘
𝑣 ) in VTCM(𝑝𝑣) can be obtained through Equation (7): 

𝑝𝑙𝑘
𝑣 =

𝑇𝑙𝑘
𝑣

∑ 𝑇𝑙𝑓
𝑣𝑛

𝑓=1

 (7) 

where 𝑇𝑙𝑘
𝑣  represents the number of vertical observations in which state 𝑆𝑙 converts to 

state 𝑆𝑘. 

However, unlike VTCM (𝑝𝑣), the elements in HTPM (𝑝ℎ) cannot be directly obtained 

using the borehole data, because the boreholes are not continuous on the horizontal direc-

tion, in addition to the long interval between them. Thus, this study applied the calcula-

tion process and method proposed by Cao, W. et al. [34], Walther’s law, and the drilling 

data to evaluate HTPM (𝑝ℎ), as shown in Equation (8). According to Walther’s law, in 

lithology, the depositional sequences are similar on the vertical and horizontal directions 

but have different magnitudes [16,44,57]. 

Figure 2. Two-dimensional field-numbering system in a coupled Markov chain.

2.1.4. Estimation of the Transition-Probability Matrix

The vertical-transition-probability matrix (VTPM) and horizontal-transition-probability
matrix (HTPM) are two important input parameters for a CMC model.

VTPM(pv) can be directly estimated based on the borehole data [16]. First, the geologic
profile is divided into numerous units of the same size, each with a soil type. Next, each
element (pv

lk) in VTCM(pv) can be obtained through Equation (7):

pv
lk =

Tv
lk

∑n
f=1 Tv

l f
(7)

where Tv
lk represents the number of vertical observations in which state Sl converts to

state Sk.
However, unlike VTCM (pv), the elements in HTPM (ph) cannot be directly obtained

using the borehole data, because the boreholes are not continuous on the horizontal direc-
tion, in addition to the long interval between them. Thus, this study applied the calculation
process and method proposed by Cao, W. et al. [34], Walther’s law, and the drilling data to
evaluate HTPM (ph), as shown in Equation (8). According to Walther’s law, in lithology,
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the depositional sequences are similar on the vertical and horizontal directions but have
different magnitudes [16,44,57].

Th
lk =

{
Tv

lk l 6= k
KTv

lk l = k
(8)

Thus, it is evident that the Walther’s constant (K) is the only parameter required to
calculate HTPM (ph). The value of K can be estimated based on the actual borehole data,
and using an approach similar to the maximum-likelihood-estimation method [16,58].

2.2. Liquefaction-Potential Evaluation

Iwasaki et al. proposed the liquefaction-potential index (LPI) to determine the soil-
liquefaction potential [51]. The factor of safety (FS) of each soil layer without a surface
structure needs to be considered when calculating LPI. Regarding the FS calculations, a
simplified method is usually employed in engineering practice. In the simplified method,
FS can be defined as cyclic-resistance ratio (CRR) divided by cyclic-stress ratio (CSR).
CSR and CRR are seen as liquefaction loading and liquefaction resistance, respectively.
CSR and CRR are calculated through empirical formulas. In this study, the HBF and JRA
methods were adopted to evaluate the FS of each soil layer. The main input parameters are
related to earthquake and soil information. The earthquake parameters have peak ground
acceleration and the earthquake magnitude. In general, a desired condition should be
assumed, such as a real earthquake event or designed earthquakes. The soil parameters
include standard penetration test N-value (SPT-N), effective stress, and fines content. They
can be estimated by field drilling and laboratory testing.

2.2.1. Hyperbolic Function (HBF) [1]

This method is primarily based on the base framework of the simplified procedure
developed by Seed et al. [59], in which the degree of the liquefaction resistance of soil is
determined based on the data of in situ liquefaction and non-liquefaction areas during an
earthquake. The HBF method includes more than 300 datasets of worldwide cases [50], as
well as 300 datasets pertaining to the 1999 Chi-Chi earthquake. During regression analysis,
the liquefaction resistance of soil is represented by a hyperbolic function and, thus, the HBF
method is considered as a liquefaction-evaluation method developed based on the Chi-Chi
earthquake data. The analytical process of the HBF method is shown in Figure 3.

2.2.2. JRA Method (2017) [48,49]

The JRA method, in which soil-liquefaction tests were performed indoors on a large
number of high-quality onsite samples, which were vibrated for 20 h, was developed
by Iwasaki et al. (1982) [60] and Tatsuoka et al. (1980) [61]. Liquefaction potential is
evaluated based on the relationship between the derived liquefaction resistance SR20
and the SPT-N value. The reliability of the JRA method has been validated through6
earthquakes, 64 liquefaction cases, and 23 non-liquefaction cases [51], and was recently
revised in 2017 [49].

Following the Great Hanshin earthquake in 1995, the JRA revised its 1990 method due
to the remarkably higher liquefaction values and the strength of the earthquake. In particu-
lar, it reassessed the types of soil required for liquefaction evaluation, underestimated the
liquefaction behaviors of soils with high N values, considered the influence of fines on the
liquefaction-resistance strength, and included the fine content (FC, in %) in the evaluation.
The analytical procedure is shown in Figure 4. The characteristics of this method are as
follows: (a) the basis for comparison is the maximum cyclic-stress ratio, instead of the mean
cyclic-stress ratio; (b) the design of earthquake parameters only requires the peak ground
acceleration (PGA), and not the magnitude of an earthquake (M).
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2.3. Drilling Data

This study utilized the drilling data of a construction project in northern Taiwan,
as shown in Figure 5, and analyzed its A-A′ profile. The main texture classes were clay,
silty sand and silt in this project. The A-A′ profile was categorized using the Unified
Soil Classification System (USCS), and consisted of CL, ML, SM, and SP-SM, as shown in
Figure 6. The mean number and coefficient of variation (COV) of each soil Liquefaction
potential-related parameter is presented in Table 1. Additionally, when evaluating the
liquefaction potential, the groundwater level (GWL) and the maximum ground acceleration
(Amax) of the examined region during an earthquake must be set. Based on the drilling
data of the project, the GWL was −5.5 m underground, and the designed earthquake
acceleration of the region was 0.32 g.



Buildings 2022, 12, 2095 7 of 19Buildings 2022, 12, x FOR PEER REVIEW 7 of 19 
 

 

Figure 4. Analytical procedure of the JRA (2017) method [48,49]. 

2.3. Drilling Data 

This study utilized the drilling data of a construction project in northern Taiwan, as 

shown in Figure 5, and analyzed its A-A’ profile. The main texture classes were clay, silty 

sand and silt in this project. The A-A’ profile was categorized using the Unified Soil Clas-

sification System (USCS), and consisted of CL, ML, SM, and SP-SM, as shown in Figure 6. 

The mean number and coefficient of variation (COV) of each soil Liquefaction potential-

related parameter is presented in Table 1. Additionally, when evaluating the liquefaction 

potential, the groundwater level (GWL) and the maximum ground acceleration (𝐴𝑚𝑎𝑥)  of 

the examined region during an earthquake must be set. Based on the drilling data of the 

project, the GWL was −5.5 m underground, and the designed earthquake acceleration of 

the region was 0.32 g. 

Table 1. The relevant parameters and coefficients of variance in the liquefaction-potential evalua-

tion of a construction project in northern Taiwan. 

USCS 
𝛄𝐭 Mean 

(𝐤𝐍/𝐦𝟑) 

𝛄𝐭 
COV 

N Mean 
N 

COV 

FC Mean 

(%) 

FC 

COV 

ML 18.64 0.04 7 0.67 70 0.21 

CL 18.15 0.04 6 0.43 97 0.05 

SM 19.03 0.05 9 0.40 45 0.45 

SP-SM 18.25 0.06 10 0.21 10 0.74 

Figure 4. Analytical procedure of the JRA (2017) method [48,49].
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Table 1. The relevant parameters and coefficients of variance in the liquefaction-potential evaluation
of a construction project in northern Taiwan.

USCS γt Mean
(kN/m3)

γt
COV N Mean N

COV
FC Mean

(%)
FC

COV

ML 18.64 0.04 7 0.67 70 0.21
CL 18.15 0.04 6 0.43 97 0.05
SM 19.03 0.05 9 0.40 45 0.45

SP-SM 18.25 0.06 10 0.21 10 0.74

3. Results and Discussion
3.1. Testing the Accuracy of the CMC and Selecting the Suitable Grid Size

To evaluate the accuracy of the simulated stratum, we set Holes 7, 8, and 9 in Figure 6
as observation holes (which were not subjected to stratigraphic analysis). The scheme is
shown in Table 2, and the borehole-accuracy index [35] is defined as:

Id =
1

Nr

Nr

∑
i=1

Gd,i

Nz
× 100% (9)

where:
Nr is the total number of realizations by using the enhanced Markov chain model.
Gd,i is the number of cells whose soil types are consistent with that in observation

borehole d.
Nz is the number of rows in borehole d.

Table 2. Different borehole schemes considered in the study.

Borehole Scheme Hole 6 Hole 7 Hole 8 Hole 9 Hole 10

Scheme 1
√ √ √ √

Scheme 2
√ √ √ √

Scheme 3
√ √ √ √

To compare the stratigraphic profiles generated through the Kriging and CMC meth-
ods, we first used both methods to generate the stratigraphic profiles and gridding the data
for the three schemes in Table 2, and the results as shown in Figures 7 and 8, respectively.
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The stratigraphic profile generated through the CMC method was based on the procedure
and method proposed by Cao et al. [34], in which the VTPM, K and HTPM of each scheme
was derived, as shown in Tables 3–5. Lastly, we used Equation (9) to deduce the accuracy,
as shown in Table 6. Based on the drilling data in this study, the CMC method has a 70%
accuracy in stratigraphic-profile generation, which is higher than that observed using the
Kriging method. This means that the CMC method can better build stratigraphic profiles.
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Table 3. The estimated VTPMs for various borehole schemes.

(a) Scheme 1
Soil Type ML CL SM SP-SM

ML 0.7727 0.1364 0.0909 0.0000
CL 0.0077 0.969 0.0233 0.0000
SM 0.0555 0.0278 0.8611 0.0556

SP-SM 0.1111 0.1111 0.0000 0.7778
(b) Scheme 2

Soil Type ML CL SM SP-SM
ML 0.7586 0.1724 0.0690 0.0000
CL 0.0078 0.9609 0.0313 0.0000
SM 0.1000 0.0333 0.8000 0.0667

SP-SM 0.1111 0.1111 0.0000 0.7778
(c) Scheme 3

Soil Type ML CL SM SP-SM
ML 0.7000 0.2500 0.0500 0.0000
CL 0.0073 0.9635 0.0292 0.0000
SM 0.0909 0.0303 0.8485 0.0303

SP-SM 0.0000 0.1667 0.0000 0.8333

Table 4. The estimated values of K for various borehole schemes.

Borehole Scheme KLR KRL KMAX Simulation Sequence

Scheme 1 4.1 6.6 6.6 From right to left
Scheme 2 9.2 10.1 10.1 From right to left
Scheme 3 22.9 15.1 22.9 From left to right

Table 5. The estimated HTPMs for various borehole schemes.

(a) Scheme 1
Soil Type ML CL SM SP-SM

ML 0.9573 0.0256 0.0171 0.0000
CL 0.0012 0.9952 0.0036 0.0000
SM 0.0095 0.0048 0.9762 0.0095

SP-SM 0.0207 0.0207 0.0000 0.9586
(b) Scheme 2

Soil Type ML CL SM SP-SM
ML 0.9695 0.0218 0.0087 0.0000
CL 0.0008 0.9960 0.0032 0.0000
SM 0.0121 0.0040 0.9758 0.0081

SP-SM 0.0138 0.0138 0.0000 0.9724
(c) Scheme 3

Soil Type ML CL SM SP-SM
ML 0.9816 0.0153 0.0031 0.0000
CL 0.0003 0.9984 0.0013 0.0000
SM 0.0046 0.0015 0.9924 0.0015

SP-SM 0.0000 0.0087 0.0000 0.9913
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Table 6. Comparison of the accuracy of the Kriging and CMC methods (100 cyc.).

Borehole Scheme

Accuracy (%)

Hole No.

6 7 8 9 10

Scheme 1 Kriging - 55.3 - - -
Scheme 1 CMC - 71.6 - - -

Scheme 2 Kriging - - 52.8 - -
Scheme 2 CMC - - 76.3 - -

Scheme 3 Kriging - - - 44.3 -
Scheme 3 CMC - - - 70.0 -

In the Kriging method, the liquefaction potential of each borehole was evaluated,
and then the liquefaction potential index between each borehole was calculated through
linear interpolation. Thus, the number of boreholes determines the quantity of the results,
and the values between boreholes are represented as linear connections. It has relatively
short overall calculation time for liquefaction potential evaluation. Based on the drilling
data in this study, the liquefaction potential evaluation was performed only 5 times for
5 real boreholes in the Kriging method. However, In the CMC method, the soil layer
between each borehole is gridding. The stratum consists of numerous virtual boreholes
with a sufficient density. The liquefaction potential evaluation was performed 140 times for
5 real boreholes and 135 virtual boreholes when the grid size was set to 0.5 m. In addition,
the soil layer distribution acquired in each calculation differs, the liquefaction potential
evaluation results may differ slightly. An interval will be generated based on the 100 cycles
performed in this study. It will cause the CMC method to be more time consuming than
the Kriging method.

Given that the grid number affects the computational speed, this study examined the
accuracy of the CMC model using different grid sizes (0.5 m, 1 m, 2 m, 2.5 m) for a total of
100 cycles, as shown in Table 7 and Figure 9. The results showed a significant decline in the
accuracy at a grid size of 2 m. This study suggests that the grid size should be noted when
performing stratigraphic profile analysis using the CMC model. Based on our drilling data,
the grid size should be no larger than 1.5 m.

Table 7. Accuracy of the CMC model (100 cyc.) under different grid sizes.

Scheme Grid Size (m) KLR KRL KMAX
Simulation
Sequence

Accuracy (%)

Hole No.

6 7 8 9 10

1 0.5 4.1 6.6 6.6 From right to left - 71.6 - - -
1.0 2.0 3.2 3.2 From right to left - 71.4 - - -
2.0 1.0 1.6 1.6 From right to left - 71.6 - - -
2.5 1.0 1.3 1.3 From right to left - 69.5 - - -

2 0.5 9.2 10.1 10.1 From right to left - - 76.3 - -
1.0 4.5 4.9 4.9 From right to left - - 75.8 - -
2.0 2.1 2.4 2.4 From right to left - - 75.2 - -
2.5 1.7 1.9 1.9 From right to left - - 73.2 - -

3 0.5 22.9 15.1 22.9 From left to right - - - 70.0 -
1.0 11.4 7.5 11.4 From left to right - - - 69.9 -
2.0 5.6 3.7 5.6 From left to right - - - 69.5 -
2.5 4.4 2.9 4.4 From left to right - - - 68.0 -
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3.2. Comparison and Analysis of the Soil Liquefaction Potential Evaluations under the
Two Methods

This study utilized three models, including (1) the Kriging method, (2) the CMC method
incorporating homogenous soil parameters, and (3) the CMC method incorporating random
field-soil parameters. The overlaid liquefaction potential evaluation results for all three models
derived using the HBF and JRA methods are shown in Figures 10 and 11, respectively.
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Figure 10. Comparison of the liquefaction-potential-evaluation results of three models through the
HBF method (100 cyc.).
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JRA method.

Most of the results of the Kriging method (see the green lines in Figures 10 and 11)
were within the limits of the results derived through the CMC method. Furthermore,
in Location = 46 and 57 in Figure 10 and Location = 0 and 57 in Figure 11, the Kriging-
method results are close to the extreme values in the CMC-method results. Nonetheless,
this finding was acquired through actual borehole analysis. Therefore, this would be a
disadvantage of the Kriging method. This means that the liquefaction potential may be
overestimated or underestimated if the Kriging method only is used. When evaluating
the liquefaction potential using the HBF approach, the average results of every virtual
borehole generated through the CMC method incorporating homogenous-soil parameters
and random-field parameters were 0.74–2.2 and 0.68–1.17 times higher than those of the
Kriging method, respectively. When evaluating the liquefaction potential using the JRA
approach, the average results of every virtual borehole generated through the CMC method
incorporating homogenous-soil parameters and random-field parameters were 0.81–1.17
and 0.81–1.09 times higher than those of the Kriging method, respectively. This study does
not discuss whether the HBF approach or the JRA approach is more suitable for Taiwan
because this would require more actual liquefaction data.

In Figures 10 and 11, the results of the CMC method incorporating homogenous-soil
parameters and random-field parameters are shown in light purple and pink, respectively,
while the overlay region is presented in dark purple. Comparing both methods, the latter
generated a larger liquefaction-potential-result interval than the former in most cases. This
indicates that the effects of geological uncertainty can be accounted for more cautiously
through the CMC method incorporating random-field parameters.

To help engineers utilize the CMC method incorporating the random-field-parameters
model for evaluating the soil-liquefaction potential, we compared the results derived
through 30 and 100 simulation cycles, as shown in Figures 12 and 13, respectively. In all
three realizations, the maximum COV was 0.25, while the curves of the mean in the 30 and
100 simulation cycles were extremely similar. If the CMC method incorporating random-
field parameters is to be used in engineering practice, we suggest that after calculating the
curve of the mean, the COV should be set at 0.25 as a cautious estimation of the liquefaction-
potential interval, which includes the evaluation results of the Kriging method.
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4. Conclusions

This study first generated stratigraphic profiles through the CMC method and then
gridded the soil layer between each borehole so that the stratum consisted of numerous
virtual boreholes. Next, we evaluated the liquefaction potential by setting the soil-layer
parameters through homogenous and random-field methods. Lastly, we compared the
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results generated through the traditional method (evaluating the liquefaction potential
for each borehole and then calculating the liquefaction-potential index through Kriging
interpolation). The following conclusions are only applicable to Taiwan, due to regional
geological characteristics and drilling quality issues.

Based on the drilling data in this study, more accurate stratigraphic profiles can be
created by using the CMC method than by using the Kriging method. However, if the
soil layer between each borehole is gridded in the CMC method, this creates a significant
computational workload for the CMC method compared to the Kriging method. Therefore,
the grid size should be properly considered when performing stratigraphic-profile analysis
using the CMC model. Based on our drilling data, the grid size should be smaller than
1.5 m.

Most of the Kriging-method results in our study were within the limits of the results of
the CMC method. However, some of the Kriging-method results were close to the extreme
values in the CMC-method results, indicating that the liquefaction potential may have been
overestimated or underestimated. Therefore, it is more prudent to use the CMC method for
liquefaction-potential evaluation. Based on the drilling data in this study, when evaluating
liquefaction potential using the HBF and JRA approach, the average results of every virtual
borehole generated through the CMC method incorporating random-field parameters were
0.68–1.17 times and 0.81–1.09 times higher than those of the Kriging method, respectively.
Therefore, we suggest that after calculating the curve of the mean, the COV should be set at
0.25 as a cautious estimation of the liquefaction-potential interval when engineers use the
CMC method incorporating random-field parameters for liquefaction-potential evaluation.

Comparing the CMC methods incorporating homogenous-soil parameters and random-
field parameters, the latter generated a larger liquefaction-potential-result interval than the
former in most cases. This indicates that the effects of geological uncertainty can be accounted
for more cautiously through the CMC method incorporating random-field parameters.
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