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Abstract: The kinematic method of limit analysis theory was adopted in this paper to calculate the
seismic bearing capacity of the shallow strip foundation on a rock mass obeying the non-linear
modified Hoek-Brown failure criterion. The generalized Prandtl failure mechanism was chosen,
which is different from the multi-wedge failure mechanism assumption commonly used in previous
research. Three angle parameters were used to control the mechanism shapes, and the equivalent
friction angle and equivalent cohesive were adopted to faithfully reflect the shape characteristics of
the failure mechanism. The seismic action was considered using the pseudo-static method, which is
simplified to the inertial force determined by the horizontal seismic coefficient. The validation of the
present method was carried out by comparing with previous analytical results and the finite element
model. Subsequently, the influences of the surface overload, the properties of the rock mass, and the
seismic action on the shape and ultimate bearing capacity of the failure mechanism were investigated.
For the convenience of practical engineering, this paper gives the ultimate bearing capacity of strip
foundations on five representative rock foundations, and the variation trend of bearing capacity with
the unit weight of rock mass, surface overload, and horizontal seismic coefficient.

Keywords: rocky foundation; seismic bearing capacity; modified Hoek-Brown criterion; limit analysis;
generalized Prandtl mechanism

1. Introduction

Nowadays, more land resources are being converted to accommodate urban construc-
tion, including rocky foundations that were once difficult to develop upon [1–8]. Numerous
residential buildings, office buildings, and transportation facilities that create large loads
have been built on rocky foundations, and these facilities may be damaged or even de-
stroyed during an earthquake, resulting in large economic and human losses. To ensure
the safety of these facilities, engineers have focused their attention on the study of seismic
bearing capacity of foundations [1]. The problem of concern in this study was the ultimate
bearing capacity of strip foundations under the action of seismic load.

The methods used for shallow foundation bearing capacity assessment can be roughly
divided into the following four categories: (1) the limit equilibrium method, (2) the slip-line
method, (3) the limit analysis method, and (4) the numerical analysis method, based on
finite element technique or finite difference technique [2–8]. The first three methods are
all traditional soil mechanics analysis methods: the limit equilibrium method establishes
a simplified failure mode that makes it possible to use simple statics methods to solve
various problems. The slip-line method is used to derive the basic differential equation
and then obtain the solutions of various problems by determining the slip-line network.
Unlike the traditional limit equilibrium and slip-line methods, the limit analysis method
selects a certain flow law to consider the stress-strain relationship of the soil in an idealized
way. As for the numerical analysis methods, they are modern calculation means that
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are rapidly emerging following the development of computers. During the calculation
process, the entire problem area is decomposed, and each sub-area becomes a simple part.
For each unit, a suitable (simpler) approximate solution is assumed, and then the total
satisfying conditions of this domain (such as structural equilibrium conditions) can be
inferred to obtain the solution of the problem. The kinematics method selected for this
study belongs to the limit analysis upper method, in which both the failure mechanism and
energy consumption are considered. The upper limit of the actual failure load is obtained
by simply selecting the appropriate stress field and velocity field, according to the principle
that the external power must be equal to the internal power consumed by the mechanism.
Since the foundation bearing capacity studied in this paper is an actual engineering problem,
the safety conditions require that the bearing capacity should be greater than the maximum
value of the calculated ultimate load, which means the foundation bearing capacity should
be at the upper limit of the ultimate load.

The calculation of the ultimate bearing capacity of a foundation placed on a rock mass
is a classic subject in the field of civil engineering [2,9–11]. Most analytical work is based on
the general assumption that the strength of rock is dominated by the Mohr-Coulomb (MC)
criterion as soil [12], under which the classical textbook of Terzaghi describes the bearing
capacity of strip loads as [13]:

qu = cNc + q′0Nq +
1
2

γB0Nγ (1)

where c denotes soil cohesion; q′0 is equivalent uniform load; γ is unit weight of soil or
rock mass; B0 is foundation width; and Nc, Nq, Nγ are the coefficients of Terzaghi bearing
capacity, which are only determined by the friction angle ϕ.

The stress-strain relationship of most rock masses is nonlinear; this has been confirmed
by numerous experiments [14–16]. Among the nonlinear failure criteria proposed in
numerous studies, the Hoek-Brown (HB) criterion shows a preferable ability to simulate
the strength properties of isotropic rock masses. Hoek et al. [17–20] proposed a method
that can transform the various parameters (m, s, n, GSI, etc.) describing the properties
of rock into the commonly used parameters c and ϕ of the MC criterion describing the
properties of soil. After the transformation, the stress-strain relationship of the rock can be
approximated by the MC criterion, and then the bearing capacity of the strip foundation
placed on the rock mass can be calculated by the above-mentioned formula for the bearing
capacity proposed by Terzaghi [13].

Based on the method used by Hoek et al. [17,19,21,22], Yang and Yin [12] assumed
that the rock mass followed the modified HB criterion, while searching for the process of
the bearing capacity for strip foundations on rock mass, and in which a certain optimal MC
criterion tangent on the original HB curve is selected for substitution. This substitution
transforms the stress-strain relationship of the foundation from the original nonlinear
relationship described by the rock parameters (mi, s, and GSI) into a linear relationship
described by the soil parameters (c and ϕ). Although this method has been adopted by
some researchers, it overestimates the strength of the rock foundation, which leads to a
subsequent overestimation of the ultimate bearing capacity of the foundation.

In addition, reductions in foundation bearing capacity caused by seismic motion is
also a key concern in civil engineering. In many studies and engineering stability analyses,
the effect of seismic motion on the foundation is usually modeled as a pseudo-static
force, which has been shown to yield a relatively reliable estimate across a wide range of
applications. Since the stability calculation is not considered in this paper, to simplify the
calculation process, the seismic action is simplified to the load imposed on the structure by
the proposed pseudo-static approach.

Most of the existing studies on the bearing capacity of rock foundations [12–14,23,24]
have adopted the optimization method recommended by Drescher and Christopoulos [25]
and Collins et al. [26]. The tangent angle (i.e., equivalent friction angle, ϕt) is determined by
moving the position of the tangent point on the HB nonlinear damage envelope, and then
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the equivalent cohesion, ct, is inferred from the equivalent friction angle, ϕt. The bearing
capacity can be calculated according to the equivalent friction angle, ϕt, and cohesion, ct.
Finally, the process is repeated until the minimum value of the calculated bearing capacity
is obtained.

However, due to the nonlinearity of the rock strength envelope, the slope of the tangent
line varies greatly when the tangent point is located at different positions on the envelope,
which explains why the slope of the equivalent MC strength line at the completion of
the iteration does not correctly represent the trend of the nonlinear HB strength envelope.
Referring to Hoek’s summary based on extensive experimental and practical engineering
experience [18,19], a method for calculating ct and ϕt that can more realistically reflect the
strength characteristics of the rock mass was chosen here. In the subsequent process, only
the shape of the failure mechanism is changed without adjusting the values of ct and ϕt.
This operation ensures that the selected ct and ϕt are always representative of the bearing
capacity characteristics of the rock mass.

One advantage of this method is that it can find the only optimal equivalent MC linear
envelope that represents the trend of the HB nonlinear damage envelope. The results were
compared with those of Yang and Yin [12], which verified the present work.

The present work was mostly focused on the evaluation of ultimate bearing capac-
ity [12], and this paper extends this work to the calculation of the ultimate bearing capacity
of a foundation under the influence of an earthquake. Additionally, this research further
gives the five types of typical rock foundations on the strip foundation bearing capacity
upper bounds and predictive failure mechanics. These failure mechanics can reflect the
characteristics of each different rock mass. Lastly, the influences of surface overloading, the
unit weight of a rock mass, the strength properties of a rock mass, and seismic action on
foundation bearing capacity were studied. A set of seismic uniaxial compression bearing
capacity coefficient tables summarizes the results of theoretical calculations. For practical
application, the engineer can select the bearing capacity coefficients from the tables for
different seismic intensities and multiply them by the uniaxial compressive strength, σc, of
rock to get the upper limit of bearing capacity under different seismic intensities.

2. Problem Statement and Theoretical Framework
2.1. Geometric Description of the Structure and Basic Assumptions

The objective of this study was to seek the minimum value of the upper limit of the
ultimate bearing capacity of a foundation expressed in the form of equivalent foundation
load under the influence of an earthquake. This was assumed to be a plane strain problem
with a homogeneous rock mass possessing infinite volume, and the failure mechanism was
always inside the rock body. The problem was placed in the rectangular coordinate system
(e1, e2), as shown in Figure 1. A strip foundation of width B0 was placed in a homogeneous
rock mass of unit weight γ, and the bottom of the foundation was at a depth of D from
the horizontal ground surface. The solution of the bearing capacity, obtained under the
condition that D is much smaller than B0, was called the shallow foundation solution, and
the solution obtained when D is much larger than B0 was the deep foundation solution.

Buildings 2022, 12, x FOR PEER REVIEW 4 of 24 
 

 

Figure 1. Strip foundation placed on rock mass. 

The vertical load, 𝑄, from the superstructure, the surface overload, 𝑞0, and the hori-

zontal seismic acceleration generated by the seismic wave passes are considered in the 

analysis. It should be noted that the significant changes in the magnitude and direction of 

the seismic acceleration in the rock mass are not considered in the analysis for the interests 

of simplicity. According to the research of Saada et al. [27], a concept of average seismic 

coefficient was adopted to calculate the acceleration distribution in rock mass, only con-

sidering the horizontal component of the seismic acceleration. The horizontal component 

was assumed to be homogeneous within the range of the rock mass involved in the failure 

mechanism. 

The specific loading pattern is presented in Figure 1. The vertical force acting on the 

unit area of the strip foundation is noted as 𝑄 = 𝑞𝐵0. The horizontal inertia force is noted 

as 𝐹ℎ = 𝑘ℎ𝑄, in which 𝑘ℎ  is the average horizontal seismic coefficient. The surface over-

load is divided into two parts, namely, the vertical component 𝑞0 and the seismically in-

duced component 𝑘ℎ𝑞0. The vertical body force, 𝛾, was induced by gravitational acceler-

ation, and horizontal body force, 𝑘ℎ𝛾, was induced by seismic acceleration.  

The analysis considers the foundation ground roughness to be infinite, and the inter-

face of footing rock as perfectly bonded. Damage to the structure caused by seismic wave 

action is the result of the compound effect of an increase in external driving force and a 

decrease in the shear resistance of the rock foundation. In addition, the focus of the study 

was the strength of the foundation, without considering the effect of seismic loading on 

the stability of the foundation. 

2.2. Modified HB Failure Criterion 

It has been demonstrated that the damage envelope of rock foundations in 𝜎 − 𝜏 

stress space is not linear [28], and the direct application of linear MC criterion will lead to 

a great deviation. Therefore, the foundation damage on rock mass obeying the modified 

HB criterion is investigated in this manuscript. The modified HB criterion introduced by 

Yang and Yin [12] is adopted in the analysis, which is given as follows: 

𝜎1 − 𝜎3 = 𝜎𝑐 [
𝑚𝜎3

𝜎𝑐

+ 𝑠]
𝑛

 (2) 

where 𝜎1  and 𝜎3  are the major and minor principal stresses, respectively, and 𝜎𝑐  is the 

uniaxial compressive stress during rock failure. The parameters 𝑚, 𝑠, and 𝑛 were de-

fined by Hoek et al. [19], which are calculated as follows: 

𝑚

𝑚𝑖

= 𝑒𝑥𝑝 (
𝐺𝑆𝐼 − 100

28 − 14𝐷
) (3) 

𝑠 = 𝑒𝑥𝑝 (
𝐺𝑆𝐼 − 100

9 − 3𝐷
) (4) 

Q=qB0

Fh=khQ

1

2

k qh 0 k qh 0

q
0 q

0

D

γ
k γh

e

e

B0

Figure 1. Strip foundation placed on rock mass.
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The vertical load, Q, from the superstructure, the surface overload, q0, and the horizon-
tal seismic acceleration generated by the seismic wave passes are considered in the analysis.
It should be noted that the significant changes in the magnitude and direction of the seismic
acceleration in the rock mass are not considered in the analysis for the interests of simplicity.
According to the research of Saada et al. [27], a concept of average seismic coefficient
was adopted to calculate the acceleration distribution in rock mass, only considering the
horizontal component of the seismic acceleration. The horizontal component was assumed
to be homogeneous within the range of the rock mass involved in the failure mechanism.

The specific loading pattern is presented in Figure 1. The vertical force acting on the
unit area of the strip foundation is noted as Q = qB0. The horizontal inertia force is noted
as Fh = khQ, in which kh is the average horizontal seismic coefficient. The surface overload
is divided into two parts, namely, the vertical component q0 and the seismically induced
component khq0. The vertical body force, γ, was induced by gravitational acceleration, and
horizontal body force, khγ, was induced by seismic acceleration.

The analysis considers the foundation ground roughness to be infinite, and the inter-
face of footing rock as perfectly bonded. Damage to the structure caused by seismic wave
action is the result of the compound effect of an increase in external driving force and a
decrease in the shear resistance of the rock foundation. In addition, the focus of the study
was the strength of the foundation, without considering the effect of seismic loading on the
stability of the foundation.

2.2. Modified HB Failure Criterion

It has been demonstrated that the damage envelope of rock foundations in σ− τ stress
space is not linear [28], and the direct application of linear MC criterion will lead to a
great deviation. Therefore, the foundation damage on rock mass obeying the modified HB
criterion is investigated in this manuscript. The modified HB criterion introduced by Yang
and Yin [12] is adopted in the analysis, which is given as follows:

σ1 − σ3 = σc

[
mσ3

σc
+ s
]n

(2)

where σ1 and σ3 are the major and minor principal stresses, respectively, and σc is the
uniaxial compressive stress during rock failure. The parameters m, s, and n were defined
by Hoek et al. [19], which are calculated as follows:

m
mi

= exp
(

GSI − 100
28− 14D

)
(3)

s = exp
(

GSI − 100
9− 3D

)
(4)

n =
1
2
+

1
6

[
exp
(
−GSI

15

)
− exp

(
−20

3

)]
(5)

where GSI is the Geological Strength Index characterizing the quality of the rock mass,
and its value range is generally 10–80; D is the disturbance coefficient of the intact rock
mass, and its variation range is from 0.0 for intact rock mass to 1.0 for strongly disturbed
rock mass; and mi is the m-value of the intact rock mass with a variation range of 4 to 33,
which is generally obtained by experiment. It should be noted that the upper limits of
mi correspond to coarse igneous rocks such as granite, while the lower limits correspond
to very weak rocks such as clay rocks. The approximate mi values of five types of rocks
proposed by Hoek [18,19] were selected in the analysis as parameters for discussion, which
include 22 (intense shear zones), 20 (brecciated shear/faults), 15.5 (sericite with low quartz),
14 (sericite with similar quartz), and 25 (sericite with high quartz). More mi values for
typical rocks listed in the literature [18] were used for replacement in subsequent studies.
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2.3. Generalized Tangent Method

In the upper limit analysis, a linear yield surface, as an externally tangent of the real
nonlinear damage envelope, was selected to evaluate the actual load, which is called the
generalized tangent technique [15,16], and is shown in Figure 2. It can be seen in Figure 2
that the strength of the tangent line is greater than that of the nonlinear HB failure criterion
for the same positive stress. Therefore, the material ultimate load obtained from the tangent
line gives the upper limit of the actual ultimate load of the material that conforms to
the nonlinear HB criterion. In the following analysis, instead of using the nonlinear HB
criterion in Equation (1), the linear equivalent MC criterion in Equation (6) is used to
calculate the external power and internal energy dissipation rate. The tangent line of the
nonlinear HB destruction criterion at the point M is shown in Figure 2, which is described
by the following equation:

τ = ct + σn tan ϕt (6)

where ϕt is the equivalent tangential friction angle, and ct is the intercept of the tangent
line on the τ axis. The relationship between ϕt and ct is given as follows [12]:

ct

σc
=

cos ϕt

2

[
mn(1− sin ϕt)

2 sin ϕt

] n
1−n
− tan ϕt

m

(
1 +

sin ϕt

n

)[
mn(1− sin ϕt)

2 sin ϕt

] 1
1−n

+
s
m

tan ϕt (7)
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The equivalent cohesion, ct, corresponding to different equivalent friction angles, ϕt,
can be obtained by using the generalized tangent technique. In the following, the seismic
bearing capacity of a strip foundation placed on the surface of a rock mass will be evaluated
using the generalized Prandtl mechanism.

3. Kinematic Analysis of Strip Foundation on Rock Foundation under Seismic Action

The rock mass considered in the analysis obeyed the modified HB failure criterion,
which was simplified by using the generalized tangent technique. The inertia forces caused
by seismic motion was also taken into consideration to investigate its effect on the ultimate
bearing capacity of foundation. It has been shown [24] that the kinematic analysis of
structures is an effective method for solving the upper limit of the bearing capacity. The
upper limit theorem shows that in any kinematically allowed virtual velocity field (the field
is compatible with the velocity at the boundary of the rock mass), the rate of work done
by the actual external forces is less than or equal to the rate of internal energy dissipation
within the rock and soil mass itself due to friction. The power of external force considered in
the following analysis includes the vertical load on the foundation, the ground overload, the
inertia force of the weight of the rock mass, and the earthquake acceleration. After loading,
the work done by the frictional force on the velocity discontinuity surface inside the rock
causes the internal energy to be consumed to balance the work done by the external force.
Meanwhile, in order to obtain the smallest upper limit solution, it is necessary to simulate
as many kinematically allowed velocity fields as possible. The analysis was performed
in this study using a generalized Prandtl failure mechanism to find the smallest possible
upper bound solution using multiple optimizations.
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The seismic effect of a strip foundation placed on the surface of a rock foundation
(D = 0) is analyzed in the following section considering a case corresponding to the classical
problem of a shallow foundation on a semi-infinite horizontal rock medium.

3.1. Generalized Prandtl Failure Mechanism

The Prandtl failure mechanism is extended to rock foundations obeying the modified
HB criterion, as shown in Figure 3. As the seismic action is considered in the analysis, there
is a tendency toward movement to the right in the horizontal direction.
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Figure 3. Generalized Prandtl failure mechanism.

The right side of failure mechanism consists of three parts, which include:

- The rigid wedge ABC (defined by the angular parameters α, α′) under the base of the
foundation with velocity, vp along the direction at an angle of ϕt with BC for rigid
body motion.

- The sector ACD (defined by the angle δ) delineated by the logarithmic helix CD with
A as the focal point, the side length of logarithmic helix shear zone is AD = ACeδ tan ϕt ,
where the length of AC is r0 = B0

sin α′
sin(α+α′) . The velocity increases exponentially from

v0 = vp
sin(α+α′−2ϕt)

cos ϕt
on the AC side so that v1 = v0eδ tan ϕt on the AD side.

- The rigid wedge ADE in the rock masses on the side of the foundation, which carries
out rigid body motion along the direction of angle ϕt with the velocity v1.

- The rest of the rock body remains stationary.

3.2. Calculation of Work Done by External Forces

As the rock mass below the edge of the body BCDE shown in Figure 3 remains station-
ary, BCDE is a velocity interruption line. According to the flow law, the velocity of each
point along this line must be at an angle of ϕt with the line. Since AC is a velocity interrup-
tion line, the velocity v0 (velocity of the rock masses at the right of AC) is perpendicular to
AC, when the body moves. Therefore, the value of v0 is vp

sin(α+α′−2ϕt)
cos ϕt

, and vp0, the change
of velocity vector across AC, is at an angle of ϕt with AC. The compatible velocity diagram
at AC is shown in Figure 4. AD is not a velocity interruption line, so the motion of rigid
wedge ADE and the sector area ACD can be kept continuous, and the wedge ADE will be
rigidly translated with velocity v1. The velocity vector triangle consisting of vp, vp0, and v0
mentioned in this paragraph and the direction of v1 are shown in Figure 4.
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The work done by external forces in assumed failure mechanism includes the self-
weight action of the rock mass, γ; the vertical load, Q, borne by the foundation; the surface
overload, q0; and the related pseudo-static inertia force simplified by the seismic action.
Since the effect of vertical seismic acceleration is ignored in this consideration, therefore,
the work done by the external forces include:

(1) work done by the vertical load, Q:

We1 = Qvp
[
sin
(
α′ − ϕt

)
+ kh cos

(
α′ − ϕt

)]
(8)

(2) work done by rock mass gravity, γ:

We2 =

{
γB2

0 sin α′ sin α

2 sin(α+α′) · vp sin(α′ − ϕt)

}
+

{
γ
2 · vp

sin(α+α′−2ϕt)
cos ϕt

·
(

B0
sin α′

sin(α+α′)

)2
· [3 tan ϕt cos(α+δ)+sin(α+δ)]e3δ tan ϕt−sin α−3 tan ϕt cos α

9tan2 ϕt+1

}
+

{
− γ

4 ·
(

B0
sin α′

sin(α+α′)

)2
· e3δ tan ϕt sin 2(α + δ) · vp

sin(α+α′−2ϕt)
cos(α+δ−ϕt)

}
+

{
kh

γB2
0 sin α′ sin α

2 sin(α+α′) · vp cos
(

α′−ϕt
)}

+

{
kh

γ
2 · vp

sin(α+α′−2ϕt)
cos ϕt

·
(

B0
sin α′

sin(α+α′)

)2
· [3 tan ϕt sin(α+δ)−cos(α+δ)]e3δ tan ϕt+cos α−3 tan ϕt sin α

9tan2 ϕt+1

}
+

{
−kh

γ
2 ·
(

B0
sin α′

sin(α+α′)

)2
e3δ tan ϕt sin2(α + δ) · vp

sin(α+α′−2ϕt)
cos(α+δ−ϕt)

}
(9)

(3) work done by surface overload, q0:

We3 =
{
−q0 · B0

sin α′
sin(α+α′) · vp

sin(α+α′−2ϕt)
cos ϕt

· cos ϕt cos(α+δ)
cos(α+δ−ϕt)

e2δ tan ϕt
}

+
{
−kh · q0 · B0

sin α′
sin(α+α′) · vp

sin(α+α′−2ϕt)
cos ϕt

· cos ϕt sin(α+δ)
cos(α+δ−ϕt)

e2δ tan ϕt
} (10)

Then the total work done by the external forces applied to the mechanism can be
written as:

We = Qvp
[
sin
(
α′ − ϕt

)
+ kh cos

(
α′ − ϕt

)]
+

γvpB2
0

2
[
( f1 + f2 + f3) + kh

(
f ′1 + f ′2 + f ′3

)]
+ q0vpB0

(
f4 + kh f ′4

)
; (11)

where f1, f2, f3, f4, f ′1, f ′2, f ′3, and f ′4 are the functions of the angle parameters α, α′, δ,
and ϕt, which are shown here:

f1 =
sin α′ sin α

sin(α + α′)
sin
(
α′ − ϕt

)
; (12)
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f2 =
sin(α + α′ − 2ϕt)

cos ϕt
·
(

sin α′

sin(α + α′)

)2

· [3 tan ϕt cos(α + δ) + sin(α + δ)]e3δ tan ϕt − sin α− 3 tan ϕt cos α

9tan2 ϕt + 1
; (13)

f3 = −1
2

(
sin α′

sin(α + α′)

)2

· e3δ tan ϕt sin 2(α + δ) · sin(α + α′ − 2ϕt)

cos(α + δ− ϕt)
; (14)

f4 = − sin α′

sin(α + α′)
· sin(α + α′ − 2ϕt)

cos ϕt
· cos ϕt cos(α + δ)

cos(α + δ− ϕt)
e2δ tan ϕt ; (15)

f ′1 =
sin α′ sin α

sin(α + α′)
· cos

(
α′ − ϕt

)
; (16)

f ′2 =
sin(α + α′ − 2ϕt)

cos ϕt
·
(

sin α′

sin(α + α′)

)2

· [3 tan ϕt sin(α + δ)− cos(α + δ)]e3δ tan ϕt + cos α− 3 tan ϕt sin α

9tan2 ϕt + 1
; (17)

f ′3 = −
(

sin α′

sin(α + α′)

)2

· e3δ tan ϕt sin2(α + δ) · sin(α + α′ − 2ϕt)

cos(α + δ− ϕt)
; (18)

f ′4 = − sin α′

sin(α + α′)
· sin(α + α′ − 2ϕt)

cos ϕt
· cos ϕt sin(α + δ)

cos(α + δ− ϕt)
e2δ tan ϕt ; (19)

The functions f1, f2, and f3 reflect the influence of the unit weight of rock mass;
function f4 reflects the influence of surface overload; functions f ′1, f ′2, f ′3, and f ′4 reflect the
influence of the horizontal seismic acceleration.

3.3. Calculation of Internal Energy Consumption

As the internal energy dissipation in the mechanism comes from the velocity jump on
the velocity interruption lines BC, AC, CD, DE, and the shear energy dissipation inside the
sector area ACD, the internal frictional resistance of the mechanism consists of:

(1) shear energy dissipation inside the rock mass:

Wi1 =
1
2

ctvp
sin(α + α′ − 2ϕt)

cos ϕt
B0

sin α′

sin(α + α′)

e2δ tan ϕt − 1
tan ϕt

; (20)

(2) energy dissipation for velocity discontinuity on the velocity discontinuity line BC:

Wi2 = ctvpB0 cos ϕt
sin α

sin(α + α′)
. (21)

(3) energy dissipation for velocity discontinuity on velocity interruption line AC:

Wi3 = −ctvpB0
sin α′

sin(α + α′)
cos
(
α + α′ − ϕt

)
. (22)

(4) energy dissipation for velocity discontinuity on velocity discontinuity line CD:

Wi4 =
1
2

ctvp
sin(α + α′ − 2ϕt)

cos ϕt
B0

sin α′

sin(α + α′)

e2δ tan ϕt − 1
tan ϕt

; (23)

(5) energy dissipation for velocity discontinuity on the velocity interrupted line DE:

Wi5 = −ctvpB0 sin
(
α + α′ − 2ϕt

) sin α′

sin(α + α′)

sin(α + δ)

cos(α + δ− ϕt)
e2δ tan ϕt (24)

Finally, the internal energy dissipation rate of the failure mechanism can thus be
rewritten as:

Wi = ctvpB0(g1 + g2 + g3 + g4); (25)
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where g1, g2, g3, and g4 are the functions of the angle parameters α, α′, δ, and ϕt, which can
be calculated as:

g1 =
sin(α + α′ − 2ϕt)

cos ϕt
· sin α′

sin(α + α′)
· e2δ tan ϕt − 1

tan ϕt
(26)

g2 = cos ϕt
sin α

sin(α + α′)
; (27)

g3 = − sin α′

sin(α + α′)
cos
(
α + α′ − ϕt

)
. (28)

g4 = − sin
(
α + α′ − 2ϕt

) sin α′

sin(α + α′)

sin(α + δ)

cos(α + δ− ϕt)
e2δ tan ϕt ; (29)

3.4. Calculation of Upper Bound of Mechanism Bearing Capacity

The work done by the external force on the mechanism and the energy consumed
internally by the drag force are expressed in this subsection as functions of four angles:
α, α′, δ, and ϕt, which are

{
f1, f2, f3, f4, f ′1, f ′2, f ′3, f ′4

}
and {g1, g2, g3,g4}. According to the

geometry in Figure 3, the range of values for the four angular parameters is limited to
π
2 < α + α′ − ϕt < π. 0 < α, α′, ϕt, δ < π

2 . 0 < α′ − ϕt <
π
2 . π

2 + ϕt < α + δ < π.
An upper limit of the upper load, q, that can be carried by the strip foundation located

on the surface of the rock mass under the influence of seismic acceleration in the Prandtl
failure mechanism is then expressed as:

q ≤ qu = min
α,α′ ,δ,ϕt

ctG− 0.5B0γF1 − q0F2

sin(α′ − ϕt) + kh cos(α′ − ϕt)
(30)

where G =
4
∑

i=1
gi; F1 = ( f1 + f2 + f3) + kh

(
f ′1 + f ′2 + f ′3

)
; and F2 = f4 + kh f ′4.

The upper bound, qu, of the bearing capacity of strip foundation could obtained by
adjusting the three control angle parameters of failure mechanism α, α′, δ.

The calculation process in this section can be illustrated by Figure 5:
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4. Verification

Verification of the present work was carried out in two parts. In Section 4.1, a com-
parison with the analytical results of Yang and Yin [12] is first presented. In Section 4.2,
the ultimate bearing capacity of strip foundations placed on five typical rock masses is
calculated using this method, and the calculated results are compared with those of the
finite element model.

4.1. Verification against Existing Theoretical Results (Analytical Solutions)

The estimation of the upper limit of the ultimate bearing capacity of a strip foundation
on a rock foundation, such as conducted in studies by Yang and Yin [12] and Saada [27], is
usually based on the assumption of a multi-wedge body failure mechanism. The control
parameters of such mechanisms include the angle parameter, θ, of the rigid body under
the foundation; the top angle, αi, and bottom angle, βi, of each wedge; and the equivalent
friction angle, ϕt, which represents the nature of the rock mass itself. The computational
accuracy of such mechanisms is mainly determined by the total number of divided wedges,
k. To demonstrate the validity of the assessment method based on the generalized Prandtl
mechanism provided in this study, a hypothetical failure mechanism with GSI = 30,
mi = 17, D = 0, σc = 10 MPa , γ = 22 kN/m3, and B0 = 1.0 m was selected without
considering the seismic effect (assuming kh = 0), and the trend of the upper limit of the
bearing capacity with the variation of q0 was demonstrated and then compared with the
experimental results of Yang and Yin [12]. The comparison results are shown in Table 1.

Table 1. Comparison of the calculated results of this study with those of Yang and Yin [12].

Bearing Capacity q0 (kPa) 10 20 30 40

Results of Yang and Yin (MPa) 14.383 14.568 14.745 14.914
Results of present work (MPa) 14.684 15.707 16.099 16.492

Error (%) 2.05 7.25 8.42 9.57

Table 1 shows that the ultimate bearing capacity calculated by the present method is
larger relative to the upper bound estimate of the bearing capacity of Yang and Yin [12].
The maximum error does not exceed 10%, which indicates that the upper bound estimate
of the bearing capacity in this paper is reliable. The reason for this discrepancy is that the
equivalent friction angle selection method recommended by Drescher and Christopou-
los [25] and Collins et al. [26] was adopted in the study by Yang and Yin [12], while the
equivalent ct and ϕt calculation methods summarized by Hoek [18,19] based on practical
engineering experience were chosen here.

This equivalence friction angle generation, conducted by fitting the nonlinear HB dam-
age criterion envelope, was used in the analysis of the present work to solve Equation (2),
as recommended by Evert Hoek et al. [18,19]. The purpose of adapting this process was
mainly to balance the area of the nonlinear HB curve above and below the linear MC
envelope, so that one could find the fitting line that can best represent the change trend of
HB strength envelope:

ϕt = sin−1

[
6nm(s + mσ3n)

n−1

2(1 + n)(2 + n) + 6nm(s + mσ3n)
n−1

]
(31)

in which σ3n = σ3max
σc

, and:

σ3max

σcm
= 0.47

(
σcm

γH

)−0.94
(32)

σcm = σc
[m + 4s− n(m− 8s)]

(m
4 + s

)n−1

2(1 + n)(2 + n)
(33)

where H is the depth of layer, which is assumed to be 100 m in this study.
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Since the equivalent MC envelope is always on the upper side of the nonlinear HB fail-
ure envelope, the equivalent friction angle, ϕt, and equivalent cohesive force, ct, determined
by the equivalent MC envelope, can be used to solve the upper limit of bearing capacity.
In the following calculation process, the values of ϕt and ct do not change, ensuring that
the equivalent friction angle, ϕt, is always the angle that represents the direction of the
HB criterion envelope. In the following calculation, by changing the shape of the failure
mechanism itself (namely, adjusting the three control angle parameters, α’, α, and δ), the
minimum of the upper bound of the ultimate bearing capacity can be found.

One advantage of this method is that the minimization process of ultimate bearing
capacity is accomplished by changing the shape of the mechanism itself. The method can
find the equivalent friction angle, ϕt, and the corresponding equivalent cohesive force, ct,
which best represent the characteristics of the rock mass after determining the type of rock
mass (namely, determining the rock mass parameters GSI, mi, and σc).

4.2. Verification against Numerical Analysis Results

Different rock masses have unique mechanical characteristics, and the HB criterion
uses the parameters GSI, D, and mi to describe the characteristics of different rocks. In
the following, five typical rocks provided by Hoek [18,19] were selected as examples to
seek the supremum (the minimum values of the upper limit) of the ultimate bearing
capacity, and the corresponding failure mechanisms when the supremum is obtained are
shown in Table 2. More parameters for typical rocks are provided in the literature [18] for
reference. The results presented in this section are the supremum of the bearing capacity
without considering overload and seismic action (q0 = 0, kh = 0). Since only the load
carrying capacity calculation case cited in the previous section was carried out in Yang and
Yin’s study [12], the predicted results in this section will be compared with the numerical
calculation results of the ABAQUS finite element model.

Table 2. The parameters and upper limit of ultimate bearing capacity of five typical rocks.

No. Rock Mass Properties σc (MPa) GSI D mi
qu,analysis

(MPa)
qu,numerical

(MPa)
∆q

(MPa)
Error
(%)

I Intense shear zones 7.5 25 0 22 11.43 11.10 0.33 2.9
II Brecciated shear/faults 25 25 0 20 38.35 37.57 0.78 2.0
III Sericite with low quartz 20 34 0 15.5 35.85 35.62 0.23 0.6
IV Sericite with similar quartz 40 47 0 14 170.30 163.48 6.82 4.0
V Sericite with high quartz 60 60 0 25 216.36 214.76 1.6 0.7

As shown in Figure 6, this model is a simulation of the ultimate load of a strip
foundation on a rock mass. The width of the strip foundation was B = 0.5 m, and to
eliminate the influence of size effect, the foundation was therefore set as a 5 m× 5 m square
rock mass. The model had 918 nodes, 845 elements, and the element type was CPE4. The
size of the rock unit decreases as the distance from the base of the bar increases. In the X
direction (horizontal), the unit size increases from left to right with a minimum of 0.05 m
(left) and a maximum of 0.5 m (right). In the Y direction (vertical), the unit size increases
from top to bottom with a minimum of 0.05 m (top) and a maximum of 0.5 m (bottom).
The ultimate bearing capacity obtained from each numerical simulation is given in the
following table. When comparing the prediction results of this study with the numerical
simulation results, the error between them is less than 5%.

The failure mechanisms corresponding with the supremum of the ultimate bearing
capacity on the same kind of rock (with the same GSI, D, and mi) remain unchanged when
the consideration of overload and seismic action is added in the subsequent sections. The
critical failure surfaces for different rock mass are shown in Figures 7–12.
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Figure 6. Multi-wedge failure mechanism commonly used in research by Yang and Yin [12].

Buildings 2022, 12, x FOR PEER REVIEW 15 of 24 
 

 

Figure 7. Finite element model meshing in ABAQUS. 

I. Intense shear zones 

 

Figure 8. Critical failure surface (𝜑𝑡 =  34.33°; 𝛼′ =  57.82°; 𝛼 = 87.14°; 𝛿 = 89.33°). 

II. Brecciated shear/faults  

 

Figure 9. Critical failure surface (𝜑𝑡 = 41.93°; 𝛼′ =  62.56°; 𝛼 = 87.14°; 𝛿 = 88.34°). 

III. Sericite with low quartz  

1.613 m

C

D
E

Qu1=qu1B0=11.43×103kN/m

α' α
δ

1.821 m

C

D

E

α' α
δ

Qu2=qu2B0=38.35×103kN/m

Figure 7. Finite element model meshing in ABAQUS.

I Intense shear zones

Buildings 2022, 12, x FOR PEER REVIEW 15 of 24 
 

 

Figure 7. Finite element model meshing in ABAQUS. 

I. Intense shear zones 

 

Figure 8. Critical failure surface (𝜑𝑡 =  34.33°; 𝛼′ =  57.82°; 𝛼 = 87.14°; 𝛿 = 89.33°). 

II. Brecciated shear/faults  

 

Figure 9. Critical failure surface (𝜑𝑡 = 41.93°; 𝛼′ =  62.56°; 𝛼 = 87.14°; 𝛿 = 88.34°). 

III. Sericite with low quartz  

1.613 m

C

D
E

Qu1=qu1B0=11.43×103kN/m

α' α
δ

1.821 m

C

D

E

α' α
δ

Qu2=qu2B0=38.35×103kN/m

Figure 8. Critical failure surface (ϕt = 34.33◦; α′ = 57.82◦; α = 87.14◦; δ = 89.33◦).

II Brecciated shear/faults



Buildings 2022, 12, 2083 13 of 21

Buildings 2022, 12, x FOR PEER REVIEW 15 of 24 
 

 

Figure 7. Finite element model meshing in ABAQUS. 

I. Intense shear zones 

 

Figure 8. Critical failure surface (𝜑𝑡 =  34.33°; 𝛼′ =  57.82°; 𝛼 = 87.14°; 𝛿 = 89.33°). 

II. Brecciated shear/faults  

 

Figure 9. Critical failure surface (𝜑𝑡 = 41.93°; 𝛼′ =  62.56°; 𝛼 = 87.14°; 𝛿 = 88.34°). 

III. Sericite with low quartz  

1.613 m

C

D
E

Qu1=qu1B0=11.43×103kN/m

α' α
δ

1.821 m

C

D

E

α' α
δ

Qu2=qu2B0=38.35×103kN/m

Figure 9. Critical failure surface (ϕt = 41.93◦; α′ = 62.56◦; α = 87.14◦; δ = 88.34◦).

Ш Sericite with low quartz
Buildings 2022, 12, x FOR PEER REVIEW 16 of 24 
 

 

Figure 10. Critical failure surface (𝜑𝑡 = 40.92°; 𝛼′  = 61.55°; 𝛼 = 87.14°; 𝛿 = 87.33°). 

IV. Sericite with similar quartz  

 

Figure 11. Critical failure surface (𝜑𝑡 = 49.12°; 𝛼′ = 66.89°; 𝛼 = 87.14°; 𝛿 = 89.80°). 

V. Sericite with high quartz  

 

Figure 12. Critical failure surface (𝜑𝑡 = 59.24°; 𝛼′ = 71.27°; 𝛼 = 87.14°; 𝛿 = 88.46°). 

A large GSI value (>25) indicates a high quality rock mass, while a larger 𝑚𝑖  denotes 

a stronger and more complete rock mass. Therefore, sample I is a poor quality rock mass, 

while II and III have relatively similar strength and rock mass, and samples IV and V have 

very good rock integrity and very high quality. As can be seen from the table, the bearing 

capacity results predicted in this study match the rock masses of the samples. 

1.893 m

Qu3=qu3 B0=35.85×103kN/m

α' α δ

C

D

E

Qu4=qu4B0=170.3×103kN/m

α'
α

δ

C

D

E

2.375 m

Qu5=qu5B0=216.36×103kN/m

α' α
δ

C

D

E

2.991 m

Figure 10. Critical failure surface (ϕt = 40.92◦; α′ = 61.55◦; α = 87.14◦; δ = 87.33◦).

IV Sericite with similar quartz

Buildings 2022, 12, x FOR PEER REVIEW 16 of 24 
 

 

Figure 10. Critical failure surface (𝜑𝑡 = 40.92°; 𝛼′  = 61.55°; 𝛼 = 87.14°; 𝛿 = 87.33°). 

IV. Sericite with similar quartz  

 

Figure 11. Critical failure surface (𝜑𝑡 = 49.12°; 𝛼′ = 66.89°; 𝛼 = 87.14°; 𝛿 = 89.80°). 

V. Sericite with high quartz  

 

Figure 12. Critical failure surface (𝜑𝑡 = 59.24°; 𝛼′ = 71.27°; 𝛼 = 87.14°; 𝛿 = 88.46°). 

A large GSI value (>25) indicates a high quality rock mass, while a larger 𝑚𝑖  denotes 

a stronger and more complete rock mass. Therefore, sample I is a poor quality rock mass, 

while II and III have relatively similar strength and rock mass, and samples IV and V have 

very good rock integrity and very high quality. As can be seen from the table, the bearing 

capacity results predicted in this study match the rock masses of the samples. 

1.893 m

Qu3=qu3 B0=35.85×103kN/m

α' α δ

C

D

E

Qu4=qu4B0=170.3×103kN/m

α'
α

δ

C

D

E

2.375 m

Qu5=qu5B0=216.36×103kN/m

α' α
δ

C

D

E

2.991 m

Figure 11. Critical failure surface (ϕt = 49.12◦; α′ = 66.89◦; α = 87.14◦; δ = 89.80◦).

V Sericite with high quartz



Buildings 2022, 12, 2083 14 of 21

Buildings 2022, 12, x FOR PEER REVIEW 16 of 24 
 

 

Figure 10. Critical failure surface (𝜑𝑡 = 40.92°; 𝛼′  = 61.55°; 𝛼 = 87.14°; 𝛿 = 87.33°). 

IV. Sericite with similar quartz  

 

Figure 11. Critical failure surface (𝜑𝑡 = 49.12°; 𝛼′ = 66.89°; 𝛼 = 87.14°; 𝛿 = 89.80°). 

V. Sericite with high quartz  

 

Figure 12. Critical failure surface (𝜑𝑡 = 59.24°; 𝛼′ = 71.27°; 𝛼 = 87.14°; 𝛿 = 88.46°). 

A large GSI value (>25) indicates a high quality rock mass, while a larger 𝑚𝑖  denotes 

a stronger and more complete rock mass. Therefore, sample I is a poor quality rock mass, 

while II and III have relatively similar strength and rock mass, and samples IV and V have 

very good rock integrity and very high quality. As can be seen from the table, the bearing 

capacity results predicted in this study match the rock masses of the samples. 

1.893 m

Qu3=qu3 B0=35.85×103kN/m

α' α δ

C

D

E

Qu4=qu4B0=170.3×103kN/m

α'
α

δ

C

D

E

2.375 m

Qu5=qu5B0=216.36×103kN/m

α' α
δ

C

D

E

2.991 m

Figure 12. Critical failure surface (ϕt = 59.24◦; α′ = 71.27◦; α = 87.14◦; δ = 88.46◦).

A large GSI value (>25) indicates a high quality rock mass, while a larger mi denotes
a stronger and more complete rock mass. Therefore, sample I is a poor quality rock mass,
while II and III have relatively similar strength and rock mass, and samples IV and V have
very good rock integrity and very high quality. As can be seen from the table, the bearing
capacity results predicted in this study match the rock masses of the samples.

Comparing the failure mechanisms of the five types of rock masses, it can be deter-
mined that:

1. The calculated value of the equivalent friction angle, ϕt, is greater for rock masses
with good properties, and the ultimate bearing capacity increases with an increase
in ϕt.

2. The shapes of the slip surfaces of different masses are similar when reaching the
failure, but with the increase in ultimate bearing capacity that can be provided, the
depth of the mobilized rock mass increases and the overall volume increases.

3. The angular parameters of the failure mechanism can basically be determined within
a general range: the range of values for α′ can be set at 55◦ to 70◦, the better the rock
mass, the larger the value taken; α can be set at 87◦; and δ can be set at 90◦. The shape
of the damage mechanism of the rock foundation can be roughly depicted using this
set of parameters.

5. Parametric Analysis

This section focuses on the effects of surface overload, q0, rock self-weight, γ, and
horizontal seismic coefficient, kh, on the seismic bearing capacity of the foundation. The
conclusion is consistent with the existing results [6]; that is, the elevation of the surface
overload and the self-weight of the rock mass is beneficial for improving the ultimate
bearing capacity of the foundation, while an increase in the horizontal seismic coefficient
will lead to a sharp decrease in the bearing capacity.

5.1. Effect of Surface Overload, q0, and Rock Mass Gravity, γ

The effects of surface overload, q0, and rock mass gravity, γ, on the upper limit of
bearing capacity, qu, was investigated on a rock mass much like the intense shear zones
above, where σc = 7.5 MPa, GSI = 25, D = 0, and mi = 22.

The variation trend of the upper limit of ultimate bearing capacity of foundations
when q0 changes from 0–50 kPa (fixed γ = 23.1 kN/m3) was first studied. Figure 13 shows
the variation of the upper limit with surface overload, q0, in the static case (kh = 0) and
the seismic case (kh = 0.1). The results were as expected: the ultimate bearing capacity
of the foundation decreases under the seismic action. Inspection of Figure 13 suggests
that the decrease in bearing capacity during the earthquake was significant and became
more dramatic with an increase in the surface overload, q0. Table 3 shows the differences
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between the estimated upper limit of the bearing capacity for the static case (kh = 0) and
the earthquake case (kh = 0.1).
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Figure 13. Effect of surface overload, q0, on the upper limit of ultimate bearing capacity, qu.

Table 3. Upper bound of ultimate bearing capacity under different seismic intensities.

q0 (kPa)
qu (MPa)

∆qu
kh = 0 kh = 0.1

0 11.43 9.23 2.20
10 11.74 9.46 2.28
20 12.05 9.70 2.35
30 12.35 9.94 2.41
40 12.66 10.17 2.49
50 12.97 10.41 2.56

As can be seen in Figure 14, the effect of the unit weight, γ, was lower compared to
the effect of the surface overload, q0, on the bearing capacity, which is also consistent with
the results of a study by Saada [27]. For the determined overload, q0, the unit weight, γ,
rose from 20 kN/m3 to 24 kN/m3, while the ultimate bearing capacity rose by less than
0.1 MPa. Meanwhile for the determined unit weight, γ, every 10 kPa rise in the value of
the surface overload caused the ultimate bearing capacity to rise by 0.25 MPa.
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In addition, it can also be seen in Figures 13 and 14 that the variation in the upper
bound of the bearing capacity, qu, exhibits a linear dependence on the surface overload, q0,
and the unit weight of the rock mass, γ.
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5.2. Effect of Seismic Action and Rock Properties

The calculation of bearing capacity can be rewritten into the following form by analogy
with the classical form of foundation bearing capacity of Terzaghi [12]:

qu =
√

sσcNσ + q0Nq + 0.5γB0Nγ (34)

where the dimensionless parameters Nσ, Nq, and Nγ are the bearing capacity coefficients
of uniaxial compressive strength of rock, surface overload, and self-weight of rock mass,
respectively. To facilitate application in practical geotechnical engineering, it is further
extended to allow for the surface overload, q0, and the unit weight of the rock mass, γ, to
not be considered.

qu =
√

sσcNσ (35)

where N′σ =
√

sNσ is defined as the seismic uniaxial compressive strength bearing capacity
coefficient to further facilitate the use of the table in subsequent research. The upper limit
of bearing capacity calculation formula can be reduced to qu = σcN′σ.

This leads to the expression for the seismic uniaxial compressive strength bearing
capacity coefficient: N′σ = qu

σc
. The following Tables 4–8 summarize several sets of N′σ

values for the five types of typical intact, unweathered (taking D = 0) rocks mentioned
above (mi = 22, 20, 15.5, 14, and 25, respectively) at different seismic strengths.

Table 4. Seismic bearing capacity factor N′σ for rock-type intense shear zones.

GSI kh = 0 kh = 0.05 kh = 0.1 kh = 0.15 kh = 0.2

5 0.36 0.33 0.30 0.27 0.25
10 0.56 0.51 0.47 0.42 0.38
15 0.80 0.73 0.66 0.60 0.54
20 1.09 0.99 0.89 0.80 0.72
25 1.43 1.30 1.17 1.05 0.94
30 1.85 1.67 1.50 1.34 1.19
35 2.35 2.12 1.90 1.69 1.50
40 2.98 2.67 2.38 2.12 1.87
45 3.77 3.37 2.99 2.65 2.34
50 4.77 4.25 3.77 3.32 2.91
55 6.07 5.39 4.76 4.18 3.65
60 7.79 6.89 6.05 5.30 4.61
65 10.09 8.87 7.77 6.77 5.88
70 13.16 11.53 10.06 8.73 7.56
75 17.40 15.19 13.20 11.42 9.83
80 23.37 20.32 17.59 15.12 12.96

Table 5. Seismic bearing capacity factor N′σ for rock-type brecciated shear/faults.

GSI kh = 0 kh = 0.05 kh = 0.1 kh = 0.15 kh = 0.2

5 0.24 0.22 0.20 0.18 0.16
10 0.43 0.39 0.35 0.31 0.28
15 0.68 0.61 0.55 0.49 0.43
20 1.00 0.90 0.80 0.71 0.63
25 1.42 1.26 1.12 0.99 0.87
30 1.95 1.73 1.53 1.34 1.17
35 2.64 2.33 2.04 1.78 1.55
40 3.53 3.10 2.71 2.35 2.04
45 4.70 4.11 3.58 3.10 2.68
50 6.31 5.49 4.76 4.10 3.51
55 8.52 7.38 6.35 5.44 4.65
60 11.59 9.97 8.54 7.29 6.20
65 15.91 13.63 11.62 9.87 8.36
70 22.15 18.89 16.04 13.57 11.44
75 31.26 26.54 22.43 18.90 15.85
80 44.50 37.61 31.67 26.50 22.12
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Table 6. Seismic bearing capacity factor N′σ for rock-type sericite with low quartz.

GSI kh = 0 kh = 0.05 kh = 0.1 kh = 0.15 kh = 0.2

5 0.19 0.17 0.16 0.14 0.13
10 0.32 0.29 0.27 0.24 0.22
15 0.50 0.45 0.41 0.37 0.33
20 0.72 0.65 0.58 0.52 0.46
25 0.99 0.89 0.80 0.71 0.63
30 1.33 1.20 1.07 0.94 0.83
35 1.76 1.57 1.40 1.24 1.09
40 2.31 2.05 1.82 1.60 1.40
45 3.03 2.68 2.36 2.07 1.80
50 3.98 3.51 3.07 2.68 2.33
55 5.24 4.60 4.02 3.49 3.03
60 6.98 6.10 5.31 4.60 3.98
65 9.42 8.20 7.11 6.13 5.26
70 12.90 11.19 9.63 8.26 7.06

Table 7. Seismic bearing capacity factor N′σ for rock-type sericite with similar quartz.

GSI kh = 0 kh = 0.05 kh = 0.1 kh = 0.15 kh = 0.2

5 0.14 0.13 0.12 0.11 0.10
10 0.26 0.24 0.21 0.19 0.17
15 0.43 0.39 0.35 0.31 0.28
20 0.66 0.59 0.53 0.47 0.41
25 0.96 0.85 0.76 0.67 0.59
30 1.34 1.19 1.05 0.92 0.81
35 1.86 1.64 1.44 1.25 1.09
40 2.53 2.22 1.94 1.68 1.46
45 3.43 3.00 2.61 2.26 1.95
50 4.69 4.08 3.53 3.04 2.62
55 6.46 5.59 4.81 4.12 3.52
60 8.95 7.71 6.60 5.63 4.79
65 12.52 10.73 9.16 7.79 6.60
70 17.66 15.08 12.83 10.87 9.18
75 24.95 21.25 18.02 15.22 12.82
80 35.02 29.74 25.16 21.20 17.81

Table 8. Seismic bearing capacity factor N′σ for rock-type sericite with high quartz.

GSI kh = 0 kh = 0.05 kh = 0.1 kh = 0.15 kh = 0.2

5 0.29 0.26 0.24 0.21 0.18
10 0.58 0.51 0.45 0.40 0.35
15 1.01 0.89 0.78 0.68 0.59
20 1.61 1.41 1.23 1.07 0.92
25 2.46 2.14 1.85 1.59 1.37
30 3.62 3.13 2.69 2.30 1.96
35 5.19 4.45 3.80 3.24 2.75
40 7.37 6.29 5.34 4.52 3.81
45 10.47 8.88 7.50 6.31 5.28
50 14.95 12.58 10.54 8.79 7.32
55 21.33 17.84 14.85 12.32 10.19
60 30.69 25.51 21.12 17.42 14.33
65 44.64 36.91 30.38 24.93 20.40
70 65.55 53.85 44.10 35.99 29.30
75 96.33 78.76 64.21 52.16 42.27
80 140.37 114.33 92.86 75.13 60.68
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In practical engineering, the seismic uniaxial compressive strength bearing capacity
coefficients at different seismic intensities are selected and multiplied with the uniaxial
compressive strength, σc, of this type of rock to obtain the upper bound of the bearing
capacity. For each rock, the parameter GSI, which characterizes the mass of the rock mass,
is taken to vary in the interval from 5 to 80 in the calculation.

5.3. Effect of Horizontal Seismic Coefficient

Figure 15 shows the variation of the upper bound of the bearing capacity for the intense
shear zones with increases in the horizontal seismic coefficient. The parameters of the rocks
in the figure are shown in Table 2, and the surface overload q0 = 0. qu(kh=0.2)

qu(kh=0) = 65.3% is
taken into consideration. It can be clearly seen that the bearing capacity decreases very
severely when kh increases and is approximately linearly related to the horizontal seismic
coefficient. This significant drop indicates that seismic action has a huge weakening effect
on the bearing capacity of the foundation, when kh rises from 0 to 0.2. The predicted value
of the ultimate bearing capacity, qu, drops from 10.8 MPa to 7 MPa.
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6. Summary and Conclusions

In this research, the effect of seismic action on ultimate bearing capacity of a strip
foundation on rock mass was studied using the pseudo-static method. The generalized
Prandtl failure mechanism was chosen to simulate the failure critical state of foundations,
which is more consistent with the real shape of the soil failure mechanism than the multi-
wedge body failure mechanism selected in studies by Yang and Yin [12] and Saada [27].
The modified HB failure criterion was used to calculate the strength of the rock mass. The
generalized tangent method proposed by Hoek, based on a wide range of engineering
practice [18,19], was adopted to seek the optimal equivalent linear MC criterion envelope
of the nonlinear HB envelope. The equivalent envelope was a tangent line to the original
nonlinear failure envelope and above the original envelope, to ensure that the calculated
value of the bearing capacity was an upper bound value of the bearing capacity. Compar-
isons were carried out between the results of Yang and Yin [9], obtained by the traditional
multi-wedge failure mechanism, and those of the finite element model, which verified
the present work. Next, the ultimate bearing capacity of the strip foundation placed on
five typical rock masses was calculated by the present method, and the calculated results
were compared with the simulation results of the finite element model. Meanwhile, the
main deficiency of this study is reflected in the simplification of the seismic forces. This
simplification means that the dynamic action of seismic loads was not considered.

Comparing the failure mechanisms of the five rock masses, the following conclusions
can be drawn:



Buildings 2022, 12, 2083 19 of 21

1. The calculated value of the equivalent friction angle, ϕt, is greater for high quality
rock, and the ultimate bearing capacity increases as ϕt increases.

2. The shapes of the failure mechanisms for different masses are similar when approach-
ing the failure, but with increases in the ultimate bearing capacity, the depth of the
mobilized rock mass and the overall volume increase.

3. The angular parameters of the failure mechanism can basically be determined within
a general range: the range of values for α’ can be set at 55◦ to 70◦, and the better the
rock mass, the larger the value taken; α can be set at 87◦; and δ can be set at 90◦. The
shape of the damage mechanism of the rock foundation can be roughly depicted using
this set of parameters.

4. The influence of rock mass bearing capacity parameters GSI, mi, and horizontal
seismic coefficient, kh, on the upper limit of foundation bearing capacity was evaluated
as well. It was found that:

(1) Decreases in the bearing capacity during an earthquake are significant, and the
decrease in bearing capacity will be more drastic with the rise of the surface
overload, q0. When the horizontal seismic coefficient, kh, rises from 0 to 0.1,
the ultimate bearing capacity, qu, corresponding with the surface overload,
q0, of 10 kPa, decreases from 11.4 MPa to 9.3 MPa, with a decrease of 18%.
Meanwhile, qu, corresponding with the q0 of 50 kPa, decreases from 13 MPa to
10.4 MPa, with a decrease of 20%.

(2) The effect of the unit weight, γ, is lower in contrast to the effect of the surface
overload, q0, on the bearing capacity. For the determined overload, q0, as
the unit weight, γ, rises from 20 kN/m3 to 24 kN/m3, the ultimate bearing
capacity rises by less than 0.1 MPa, while for the determined unit weight, γ,
the ultimate bearing capacity increases with an increase in surface overload.

(3) With an increase in kh, the bearing capacity decreases sharply and is approxi-
mately linearly related to the horizontal seismic coefficient. This significant
drop indicates that seismic action has a huge weakening effect on the bearing
capacity of a foundation when kh rises from 0 to 0.2.

(4) The bearing capacity coefficient of seismic uniaxial compressive strength, with-
out considering the unit weight of rock mass and surface overload, is also
provided in the design tables, which can be used as a reference in practical
engineering.
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Notations

qu bearing capacity of strip footing (MPa) q unit vertical load (kPa)
c cohesion values of soil (kPa) Fh horizontal force caused by earthquakes (kN/m)
q′0 equivalent uniform load (kPa) kh average horizontal seismic coefficient
γ unit weight of soil or rock mass (kN/m3) σ1, σ3 major and minor principal stresses (MPa)
B0 width of strip foundation (m) τ shear stress (kPa)
Nc, Nq, Nγ the coefficients of Terzaghi bearing capacity α, α′, δ angular parameters describing the shape of

Generalized Prandtl failure mechanism (◦)
m material constants describing the v0, v1, vp, vp0 velocity of the parts of Generalized Prandtl

type of rock mass failure mechanism (m/s)
s material constants describing the We, We1, We2, . . . work done by the external forces (J)

integrity of rock mass
GSI geological strength index characterizing f1, f2, f3 functions reflecting the influence of the unit

the quality of rock mass weight of rock mass
n material constants depending on GSI f4 function reflecting the influence of surface

overload
ϕ friction angle of soil (◦) f ′1, f ′2, f ′3, f ′4 functions reflecting the influence of the

horizontal seismic acceleration
mi m-value of the intact rock mass Wi, Wi1, Wi2, . . . internal energy dissipation rate of the failure

mechanism (J)
ct, ϕt equivalent cohesion and tangent g1, g2, g3, g4 function reflecting the influence of internal

angle of rock mass (kPa, ◦) energy dissipation
σc uniaxial compressive strength of rock(MPa) θ, αi, βi, k parameters describing the shape of Multi-wedge

failure mechanism
e1, e2 principal axes of the right-angle coordinate σ3n, σ3max, σcm parameters describing the strength of a rock

e1system in Figure 1. being the horizontal mass (MPa)
axis and e2 the vertical axis

D depth of embedment of the foundation(m) H the depth of layer, which is assumed to
be 100 m in this study (m)

Q vertical load from the superstructure (kN/m) N′σ seismic uniaxial compressive strength bearing
capacity coefficient

q0 surface overload on the ground (kN)
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