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Abstract: The dynamic characteristics of existing wind turbine structures are usually monitored
using contact sensors, which is not only expensive but also time-consuming and laborious to install.
Recently, computer vision technology has developed rapidly, and monitoring methods based on
cameras and UAVs (unmanned aerial vehicles) have been widely used. However, the high cost
of UAVs and cameras make it difficult to widely use them. To address this problem, a target-free
dynamic characteristic monitoring method for wind turbine structures using portable smartphone
and optical flow method is proposed by combining optical flow method with robust corner feature
extraction in ROI (region of interest). Firstly, the ROI region clipping technology is introduced after the
structural vibration video shooting, and the threshold value is set in the ROI to obtain robust corner
features. The sub-pixel displacement monitoring is realized by combining the optical flow method.
Secondly, through three common smartphone shooting state to monitor the structural displacement,
the method of high pass filtering combined with adaptive scaling factor is used to effectively eliminate
the displacement drift caused by the two shooting states of standing and slightly walking, which can
meet the requirements of structural dynamic characteristics monitoring. After that, the structural
displacement is monitored by assembling the telephoto lens on the smartphone. The accuracy
of displacement monitored by assembling the telephoto lens on the smartphone is investigated.
Finally, the proposed monitoring method is verified by the shaking table test of the wind turbine
structure. The results show that the optical flow method, combined with smartphones, can accurately
identify the dynamic characteristics of the wind turbine structure, and the smartphone equipped
with a telephoto lens is more conducive to achieving low-cost wind turbine structure dynamic
characteristics monitoring. This research can provide a reference for evaluating the condition of wind
turbine structures.

Keywords: structural health monitoring; wind turbine structure; smartphone; optical flow method

1. Introduction

As wind energy stands out among many renewable energy sources, people are paying
more and more attention to the safety performance of wind turbine structures [1,2]. The
amount of wind energy obtained is related to wind turbine blades. In order to obtain
more wind energy and generate more power, the size of wind turbine blades has grown
exponentially in recent years [3,4]. Wind turbine blades may be defective or damaged due
to production defects, turbulent winds, lightning, irregular loads, etc. [5], which may lead
to surface changes that affect the aerodynamic efficiency of the blades [6,7], thus causing
serious safety problems. As the main component of wind turbine to capture wind energy,
the power generation efficiency and safety of wind turbine structure mainly depends on the
health status of the blades. To ensure that the wind turbine structure will not be damaged,
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thus effectively reducing economic losses, it is of great significance to monitor the vibration
response of the wind turbine structure.

The traditional wind turbine detection is mainly manual, which is not only costly
and unsafe, but also requires the experience of engineers, so it is not suitable for efficient
detection of wind turbine structures. In addition, ultrasonic, thermal imaging, telescope,
and other equipment are often used for wind turbine structure monitoring [8,9]. However,
due to its high cost and the high professional level required for the use of instruments, it
has not been widely used in the detection of wind turbine structures. Damage detection
based on vibration analysis is mainly carried out by changing dynamic characteristic
parameters [10,11]. Therefore, it is meaningful to identify dynamic characteristic parameters
of wind turbine structure through vibration data. Civil engineering monitoring mainly
uses contact sensors to monitor dynamic characteristics [12]. However, the disadvantage
of using sensors is that they are fixed to the surface of the structure. This not only causes
damage to the structure, but also substantially modifies the structure mode due to the mass
load effect [13]. These wind turbines are huge structures, so conventional methods cannot
be used for monitoring. Some wind turbines operate in complex natural environments,
including wind, salt fog, rain, etc. Thus, the sensor-based wind turbine structure monitoring
faces different types of challenges, such as sensor damage, extensive wiring, and labor
intensity. Data acquisition is still challenging despite the large number of non-contact
sensors emerging in structural health monitoring. Therefore, monitoring of the structural
dynamic characteristics has not seen its popularity [14].

Computer vision-based methods for structural health monitoring have been proposed
and applied in practice by many scholars [15–18]. Engineers favor computer vision tech-
nology with application advantages, such as non-contact, long distance, fast, low cost, and
low labor to routine operations. Feng et al. [19] performed a vision-based measurement of
dense full-field displacement with simply supported beams using the template-matching
algorithm. It was verified practically when the trains were passing though the bridge.
Dong et al. [20] used feature point extraction and optical flow tracking algorithm to identify
dynamic characteristics of the stadium stand compared with contact sensors. This overcame
the problem of small sensor monitoring area to achieve multi-point measurement. Khadka
et al. [21] used digital image correlation (DIC) method to perform target tracking on wind
turbine blades and used marker points to identify dynamic characteristics of wind turbine
blades. Song et al. [22] perfectly segmented the background through the depth learning
full convolution network (FCN) and conditional random field (CRF), and then used DIC
to measure the displacement. The feasibility of this method was verified by experiments
under different illumination conditions. Through the research of a large number of scholars,
computer vision is feasible as a supplement to traditional structural health monitoring.

A large number of structural dynamic characteristics identification methods based on
computer vision use cameras or unmanned aerial vehicles. However, because of the high
cost of cameras or UAVs, low-cost equipment is needed to monitor the structural dynamic
characteristics through the same imaging difference with the camera. In recent years, smart-
phones have developed on an unprecedented scale and can now be used as an effective
measurement tool in structural health monitoring [23]. Most researchers use the internal ac-
celerometers of smartphones in combination with the actual structure for structural health
monitoring [24–26]. However, such methods require tying bind smartphones to structures
and the smartphone can only monitor data from one point, so they are greatly limited in
structural dynamic characteristics. Zhao et al. [27] developed an APP: D-viewer that can
monitor bridge displacements by using color-matching algorithm and smartphones, and
conducted static and dynamic tests on the bridge. However, the article does not consider
the complex backgrounds, and the monitoring is not effective under lighting conditions,
which is not conducive to long-term monitoring. Zhao et al. [28] proposed a new visual
cable force measurement method based on smartphone cameras, and preliminarily ver-
ified its feasibility and practicability through cable model tests. Li et al. [29] provided
the possibility of crowd perception of all buildings in urban areas after the earthquake
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with smartphone-based monitoring technology. Ozer et al. [30] introduced the concept
of smartphone structural health monitoring and constructed a hybrid structure vibration
response measurement framework by using multi-sensor smartphone functions. A novel
hybrid motion sensing platform has been successfully implemented through the integration
of various sensor types and devices. Wang et al. [31] developed an automatic damage
detection system based on smartphones which can realize real-time damage detection of
masonry buildings through experimental verification. The research on the monitoring of
structural dynamic characteristics by cheap and commonly used smartphones was initially
minimal. It is still limited to the monitoring of artificial markers and single environments at
present. Therefore, it is necessary to explore a smartphone-based method for monitoring the
dynamic characteristics of wind turbine structures which is suitable for low-cost, target-free
structural dynamic characteristics monitoring.

This paper focuses on the research of monitoring the dynamic characteristics of wind
turbine blades based on the combination of computer vision and smartphones. In Section 2,
a smartphone-based target-free wind turbine structure dynamic characteristics monitoring
method was proposed using the optical flow method and ROI clipping. After shooting the
structural vibration videos, ROI was selected to set the threshold value to obtain robust
corner features and combined with the optical flow method to achieve sub-pixel displace-
ment monitoring. In Section 3, camera calibration and vibration tests were conducted
for different models of smartphones to verify the feasibility of smartphone monitoring.
Through the analysis of three common smartphone shooting states to monitor the structural
displacement, the method of high pass filtering combined with adaptive scaling factor
was used to effectively eliminate the displacement drift caused by the two shooting states
of standing and slightly walking to monitor the structural displacement. After that, the
structural displacement was monitored by assembling the telephoto lens on the smart-
phone, and the accuracy of displacement monitored by assembling the telephoto lens on the
smartphone was investigated. In Section 4, the proposed monitoring method was verified
by using a small shaking table test. The results show that computer vision combined with
smartphones can accurately identify the natural frequency of the wind turbine structure,
and that a smartphone equipped with a telephoto lens is more conducive to achieving
low-cost wind turbine structure dynamic characteristics monitoring. Finally, the modal
shape of wind turbine structure is obtained. Section 5 summarizes the research content of
this paper.

2. Dynamic Displacement Monitoring Based on Computer Vision

Computer vision detects, extracts, recognizes, and tracks moving objects in image
sequences to obtain moving object parameters. The dynamic characteristics monitoring
of wind turbine structures using smartphones and visual algorithms consists of four
parts: camera calibration, feature recognition, target tracking, and jitter processing and
displacement calculation.

2.1. Camera Calibration

In recent years, the lenses of modern consumer cameras have been significantly im-
proved. However, cameras tend to be smaller and more convenient. Generally, these
cameras use wide-angle lenses. Smartphone cameras increase the field of vision by intro-
ducing significant radial distortion. In order to eliminate this distortion and obtain accurate
displacement measurements with the consumer camera, the camera must be corrected.

Generally, the calibration process is divided into two steps. The first step is to convert
the world coordinate system to the camera coordinate system. This step is to convert the
three-dimensional points to three-dimensional points, including the relevant parameters of
external camera parameters such as R, t. The second step is to convert the camera coordinate
system to the image coordinate system. This step is to convert the 3D points to 2D points,
including the relevant parameters of the K isoperimetric camera internal parameters. The
camera calibration steps are shown in Figure 1. The synchronous calibration of internal
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and external parameters generally includes two strategies: optical calibration, that is, using
known geometric information (such as fixed length checkerboard) to achieve parameter
solution. Another strategy is called self-calibration, that is, using the structural motion in
static scenes to estimate the parameters.
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Camera calibration is to take the calibration plate by the camera, determining the
internal and external parameters of the camera with the intrinsic value of the calibration
plate’s feature points. Following that, the image coordinates are converted to physical
coordinates through the scale factor. The following equation is used to convert image
coordinates to physical coordinates:
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The simplified expression is:
sx = K[R|t]X (2)

where s is the scale factor; (x, y, z, 1)T is the image coordinate; K is the camera internal
parameter; (X, Y, Z, 1)T is the world coordinates; fx and fy are the focal lengths of the
camera in the horizontal and vertical directions; cx and cy are the offsets of the optical axis;
γ is the tilt factor; R and t are the camera the external parameters; rij and ti are elements of
R and t, respectively.

The camera’s internal parameters, tangential distortion, and radial distortion are used
to calibrate the video, which can effectively eliminate lens distortion and image distortion,
thus obtaining more accurate displacement measurements. In this paper, the smartphone
lens uses Zhang’s calibration method to calibrate the camera lens, followed by carrying out
the video calibration [32].

2.2. Target Tracking Principle Based on Optical Flow Method

Optical flow is an assumption based on the image brightness motion information. The
optical flow calculation is based on two assumptions about the optical characteristics of
object motion: constant brightness assumption and small motion assumption. Assume that
a pixel (x, y) on the image has a corresponding brightness of I(x, y, t) at time t, and a bright-
ness of I(x + dx, y + dy, t + dt) at time t. From the optical flow consistency assumption:

I(x, y, t) = I(x + dx, y + dy, t + dt) (3)

The basic equation of optical flow can be obtained by using Taylor expansion Equation (3):

∂I(x, y, t)
∂x

u +
∂I(x, y, t)

∂y
v +

∂I(x, y, t)
∂t

= 0 (4)

where u = dx/dt and v = dy/dt are the instantaneous velocities of pixels in the image in x
and y directions at time t.
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Assuming Ix = ∂(x, y, t)/∂x, Iy = ∂(x, y, t)/∂y and It = ∂(x, y, t)/∂t, it can be con-
verted into the optical flow constraint equation:

Ixu + Iyv + It = 0 (5)

Since one of the above optical flow constraint equations cannot solve the two un-
knowns (x, y), it is necessary to establish a new constraint equation to solve it. In 1981, the
Lucas Kanade (LK) optical flow method [33], proposed by Lucas and Kanade, put forward
the assumption of spatial consistency to solve the basic equation of optical flow.

The LK optical flow method assumes that the motion vector of the neighborhood Ω in a
space is constant. In a neighborhood Ω of n pixels, each pixel satisfies the following equation:

Ixiu + Iyiv + Iti = 0 i = 1, 2, · · · , n (6)

At this time, the constraint equation of optical flow can be changed into:

Ec(u, v) =
x

(Ixu + Iyv + It)
2
dxdy (7)

In neighborhood Ω, the error of LK optical flow is:

ELK(u, v) =
x

W2(x, y) · (Ixu + Iyv + It)
2
dxdy (8)

where W(x, y) = {wi|i = 1, 2, · · · n} is the weight value of each point in the field, and the
farther away from the center point, the smaller the corresponding weight value.

Discretization of Equation (8) leads to:
n
∑
i

wi
2 Ixi

2
n
∑
i

wi
2 Ixi Iyi

n
∑
i

wi
2 Ixi Iyi

n
∑
i

wi
2 Iyi

2

[ u
v

]
= −


n
∑
i

wi
2 Ixi Iti

n
∑
i

wi
2 Iyi Iti

 (9)

where Ixi, Iyi, and Iti are the gradient values corresponding to the x, y, and z directions of the
first pixel in the neighborhood, respectively; wi is the weight of the ith pixel. Assumptions:

A =

[
Ix1, · · · , Ixn
Iy1, · · · , Iyn

]T

(10)

W = diag(wx1, wx2, · · · , wxn) (11)

b = [It1, It2, · · · , Itn]
T (12)

Equation (7) can be expressed as:

ATW2 A
[

u
v

]
= ATW2b (13)

Then the vector optical flow can be calculated:[
u
v

]
= (ATW2 A)

−1
ATW2b (14)

Finally, the corresponding pixel position (x, y) of each target point is calculated from
the vector optical flow u = dx/dt and v = dy/dt.

2.3. Target-Free Feature Extraction Based on Optical Flow Method

The optical flow method can track the target in a low-resolution image. When the
vibration is small, the error is small. Moreover, the optical flow method occupies less
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computer memory to achieve fast calculation. Therefore, the optical flow method can be
used to monitor the displacement response of wind turbine structures. Although the optical
flow method can effectively track the structural feature points, the optical flow method
requires that the feature points must be prominent to be recognized effectively. In the actual
monitoring of wind turbine structure, it is impossible to place artificial markers on the
structures. To solve this problem, this paper proposes a robust corner feature extraction
method based on region of interest (ROI) to realize dynamic characteristics monitoring of
target-free structures.

In the optical flow method, the detector is usually used to extract the feature point as
Harris corner [34], which has been widely used in engineering practice [35,36]. Since Harris
corners use a Gaussian filtering, and the motion speed is relatively slow, there is a risk of
corner information loss and information migration. Therefore, tracking errors will occur in
optical flow tracking. J. Shi improved Harris corner algorithm in 1994 and proposed an
improved Shi–Thomasi corner detection operator [37]. The Shi–Tomasi corner operator
solves the problem of feature point aggregation by limiting the shortest distance between
two interest points, and only allows points beyond a certain distance to become interest
points from the strongest point of Harris corner. It solves the defect of Harris corner and is
more suitable for optical flow tracking. Based on this, this paper conducts ROI selection
before structural vibration video processing, and then sets the quality factor and threshold
value for the number of Shi–Thomasi corners. Pause at the first frame when the video
starts playing, and the operator manually selects the ROI. The selected ROI should not only
include the range of structural vibration, but also avoid excessive image selection to avoid
excessive calculation. Finally, corners with better robustness appear on the structure in the
ROI area for target tracking, and sub-pixel coordinate extraction is achieved by capturing
image corners and combining them with the optical flow equation. The basic flow of target
tracking based on ROI target-free robust corner feature extraction is shown in Figure 2.
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Step 1: Establish the region of interest (ROI). After taking the vibration videos, the
smartphone selects the ROI in the first frame, which aims to reduce corner recognition and
improve the recognition accuracy of the required corner area.

Step 2: Shi–Tomasi corner detection. Based on the first frame of the video, all Shi–
Tomasi corners within the ROI are detected.

Step 3: Select the corner. Not all the corners detected in step 2 are required due to
engineering requirements. Select the corner with the strongest feature in the corresponding
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area or multiple corners containing the structure itself for target tracking through such
constraints as corner distance, number of corners, quality factor, etc.

Step 4: Build an image pyramid. In view of the small motion assumption among the
three assumptions of the optical flow method, the image is sampled down in the form of an
upper pyramid to compensate for excessive motion. In this paper, considering the actual
working conditions and smartphone lens frame rate, a 4-layer pyramid was built for each
frame image.

Step 5: Update the parameters. After each image pyramid is built to meet the optical
flow conditions, the strongest corner selected in the first frame will be used for feedback
to the next frame. In each frame of image, the corners to be tracked are the corners of the
previous frame, so it is necessary to detect the corners of each frame, and then compare
them with the corners of the first frame to update the corner parameters.

Step 6: Target tracking. After updating the parameters, optical flow correlation
calculation can be carried out according to the corners to obtain the corresponding corner
coordinates of each frame. The coordinates extracted from the optical flow equation are
sub-pixel coordinates.

In the target tracking based on optical flow method, except for the first step where the
ROI area needs to be manually selected, the other steps are automatically carried out, laying
a foundation for displacement monitoring in structural dynamic characteristics monitoring.

2.4. Smartphone Jitter Processing

Although smartphones can be fixed with tripods for visual monitoring, considering
the convenience of using smartphones, measures should be taken counteract the effects of
common smartphone shooting methods on the monitoring of structural dynamic character-
istics. When the hand-held smartphone is used for shooting, it will shake, which is similar
to the situation when the UAV is monitoring. Li et al. [38] used the method of in-plane
high pass filtering and out-of-plane adaptive scaling factor to deal with the jitter of UAV
hovering monitoring when using UAV to monitor the wind turbine blades. This paper uses
similar methods to deal with the jitter of smartphones.

The high pass filter filters the low frequency noise by passing the measurement signal
across the high pass filter and can restore the projection of the displacement on the still
image plane to scaling and perspective factors. Therefore, it is expressed in the matrix form
as follows: [

xihp

yihp

]
=

[
sx pyx
pxy sy

][
Xworld
Yworld

]
(15)

where xihp and yihp respectively represent the results of high pass measurement signals.
The out-of-plane smartphone jitter processing adopts the method of adaptive scaling

factor, and its equation is as follows:

Si =
L
l
=

L
‖pi1 − pi2‖

(16)

where Si is the scale factor at the time of the ith frame, L is the actual distance between two
structural points, and pi1 and pi2 are the image coordinates of p1 and p2 on the image at
the time of the ith frame.

2.5. Displacement Calculation

The corresponding coordinate Pi(xi, yi) of the target in each frame of the time series
and the coordinate P0(x0, y0) of the target in the first frame are obtained by the optical
flow method of target tracking. Following that, the absolute displacement of the structure
was obtained by converting the image coordinate to the physical coordinate through the
adaptive scale factor. Considering the elevation problem when using smartphones to
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capture videos, the displacement dS of the structure was calculated by angle correction
using the following equation:

dS = Si ×
Pi − P0

cos2 θ
(17)

where θ is the angle between the smartphone optical axis and the measured target.
Through the above target tracking and displacement calculation, the absolute displace-

ment of the structure can be calculated. Following that, the displacement responses of
multiple monitoring points of the structure are obtained through monitoring. Finally, the
modal shape of the wind turbine structure can be calculated by responses.

3. Smartphone Performance Test
3.1. Smartphone Lens Distortion Test

This paper uses iPhone 12 and Honor X10 smartphones to investigate the performance
of the proposed method. The camera parameters of the two phones are shown in Table 1.

Table 1. Parameters of two smartphone cameras.

Smartphone
Category

Smartphone
Photo

Frame
Rate Max Pixel Pixel

Density
Zoom

Multiple Aperture

iPhone 12

1 
 

 
 

 
 

30/60 fps 12 million 460 ppi 5 f/2.4

Honor X10

1 
 

 
 

 
 

30/60 fps 40 million 397 ppi 10 f/1.8

Due to the process error of the camera optical system during manufacturing, there
is geometric distortion between the actual imaging and the ideal imaging. Distortion is
mainly divided into radial distortion and tangential distortion, as shown in Figure 3.
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Figure 3. Normal image and distorted image.

The radial distortions (pillow and barrel) are mainly caused by the lens quality and
the fact that the light is more bent away from the center of the lens than near the center.
Generally, the radial distortion can be corrected by the following equation:

xcorr = xdis(1 + k1r2 + k2r4 + k3r6) (18)

ycorr = ydis(1 + k1r2 + k2r4 + k3r6) (19)

Tangential distortion (thin lens distortion and centrifugal distortion) is caused by
defects in lens manufacturing that make the lens itself not parallel to the image plane.
Tangential distortion can be corrected by the following equation:

xcorr = xdis +
[
2p1xy + p2(r2 + 2x2)

]
(20)

ycorr = ydis +
[

p1(r2 + 2y2) + 2p2xy
]

(21)

where xcorr and ycorr represent the coordinates of the image plane in x and y directions after
repair, respectively, xdis and ydis represent the coordinates of the image plane in x and y
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directions with distortion, respectively; k1, k2, and k3 are radial distortion parameters; p1
and p2 represent tangential distortion parameters.

It can be seen that the image distortion has k1, k2, k3, p1, and p2, totaling five param-
eters. For a camera with good quality, the tangential distortion is small, and the radial
distortion coefficient can be ignored. Only two parameters need to be calculated. For a
camera with good quality, the tangential distortion is very small and can be ignored. The
radial distortion coefficient k3 can also be ignored. Only k1 and k2, need to be calculated.

Zhang’s calibration method can be carried out in the integrated package of MATLAB.
Theoretically, only two calibration photos are needed to calibrate the camera parameters. In
order to verify the accuracy of the camera parameters identified by the calibration photos
taken by smartphones, 33 marking photos taken by a smartphone were used for calibration.
The calibration plate was a 25 mm × 25 mm black and white checkerboard. The process of
using two smartphones to identify radial distortion parameters is shown in Figure 4.
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It can be seen from Figure 4 that the accuracy of parameter calibration tends to
be stable with the increase of the number of calibrations during the process of camera
calibration parameter identification for the lens of smartphone using the calibration plate.
The parameter calibration accuracy of smartphones is worse than that of cameras, but
the calibration requirements can be met by using about 20 photos. Finally, through the
camera calibration program, the radial distortion parameters k1 and k2 of the Honor X10
smartphone are 0.0431 and −0.0102, respectively. The radial distortion parameters k1 and
k2 of the iPhone 12 smartphone are 0.0611 and −0.0835, respectively.

The smartphone lens was adjusted to a wide angle to form the distortion, and then
distortion parameters were used to correct the image, as shown in Figure 5. The distorted
and distorted edges of the black and white squares of the image completed by distortion
parameter correction have been well-corrected to straight edges. Therefore, the camera
calibration method can be used to correct the image distortion in smartphone image
acquisition to obtain more accurate monitoring.

3.2. Smartphone Displacement Monitoring

In the case of simulated shutdown, smartphones were used for vibration monitoring of
scaled wind turbine models, and an LDS (laser displacement sensor) was used to evaluate
the accuracy of visual data. Canon R6 camera and 24–105 mm zoom lens were also used in
the test. The test apparatus is shown in Figure 6.
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Figure 6. Smartphone displacement monitoring test equipment.

In practical wind turbine structure monitoring state, the background is relatively
complex, and the structural health monitoring usually using the optical flow method
will be affected by the background [39]. In order to verify that the ROI-based corner
feature extraction method of unmarked robustness realizes the dynamic characteristics
monitoring of unmarked structures, the test has verified the feature-matching between
simple backgrounds and complex backgrounds, as shown in Figure 7.

It can be seen from Figure 7 that, no matter in a simple background or in a complex
background, corner-matching using the feature-matching method after selecting ROI is very
effective, and there is no error-matching. Therefore, it is feasible to use optical flow method
to select ROI for target-free dynamic characteristic monitoring. In the actual monitoring
process, multi-point monitoring is realized by selecting multiple ROIs for monitoring at
the same time, which solves the limitation that one sensor can only monitor one point in
traditional monitoring.
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To verify the accuracy of the smartphone to monitor the displacement, the wind
turbine blade was released to free vibration after given initial displacement. The LDS is
used as the data reference, and the camera is used for verification. The smartphone adopts
1080× 1920 resolution with a frame rate of 60 fps. The frequency of LDS is set to 50 Hz. The
resolution of 1080 × 1920 is adopted with a frame rate of 50 fps. The camera and mobile
phone are fixed with a tripod. Through 100 s of data acquisition, the displacement time
history is shown in Figure 8.
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Figure 8. Time history comparison of vibration displacement monitored by smartphones: (a) Whole
displacement time history; (b) 10~20 s displacement time history.

It can be seen from Figure 8a that the displacement time history through vision is
generally consistent with that of LDS. Figure 8b shows that the camera and LDS are
basically consistent in the 10~20 s displacement time history details. However, the phase is
inconsistent smartphone monitoring during operation. Therefore, such problems must be
addressed to enable smartphones to accurately monitor displacement. The frame rate is
usually used for time conversion in visual monitoring. However, due to the instability of
the sensor when the smartphone captures video, the captured video will not be consistent
with the original set frame rate. For example, if 60 fps is set, the final captured video
frame rate is 59.58 fps or 60.56 fps. This is also the reason why the phase of the visual
displacement curve and the standard displacement curve is not consistent in displacement
monitoring. To solve this problem, the video output is read at the real-time frame rate by
traversing all frames, and finally time conversion is performed at the real-time read frame
rate. The displacement time history curve after frame rate correction is shown in Figure 9.
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It can be seen from the time domain information shown in Figure 9 that the problem
of phase difference during smartphone monitoring can be effectively solved by frame
rate correction, which is consistent with the displacement curve monitored by the camera.
Through the free vibration test of wind turbine blades, it was proved that the method
of selecting target-free displacement monitoring by smartphones combined with ROI
is effective.

3.3. Performance Test of Smartphones in Different States

As one of the indispensable tools in human life, smartphone monitoring has the advan-
tages of high efficiency and low cost. However, people usually do not carry tripods when
they travel, so if they want to use smartphones more conveniently to complete structural
monitoring tasks, they must explore monitoring methods for convenient photography.
When using a smartphone to take pictures of objects without a tripod, people tend to stand
still or walk slightly. Therefore, to monitor the dynamic characteristics of the structure
based on smartphones without a tripod, the test uses three states to explore: smartphones
on the tripod, holding smartphones when standing still, and using smartphones when
walking slightly. The test used the same smartphone (Honor X10) to shoot fixed points
in three shooting states: tripod, standing handheld smartphone, and slightly walking
handheld smartphone. The monitoring statue under the three shooting states was inversely
deduced from this stationary fixed point. In order to better distinguish the three shooting
states, the direction coordinates centered on the smartphone are specified in this paper.
The schematic diagram of the tester’s shooting and the smartphone direction are shown
in Figure 10.

The tester stood at the fixed point 2 m away and photographed the fixed point for
4 min. The displacement time histories in three directions under three shooting conditions
are shown in Figure 11, and the maximum displacement is shown in Table 2.

It can be seen from Figure 11 that only the tripod is stable in three directions under
three conditions, and the last section also proves the feasibility of displacement monitoring
with support. Standing hand-held photography and light walking photography have
large displacement in three directions—the displacement deviation of light walking in
Z-direction is especially large. In the test, the moving distance is controlled within 0.5 m
when shooting with slightly walking, so the displacement deviation of this kind of shooting
will be larger in actual situations. Table 2 shows the three shooting states using smartphones
and the displacement peaks in three directions, from which it can be seen that slightly
walking has the largest displacement in three directions. The test data processing adopts the
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pixel as the unit, and the farther the distance is, the greater the actual error is in the actual
monitoring. Therefore, if the smartphone is used to monitor the dynamic characteristics of
the structure, the displacement offset under the common states must be processed.
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Figure 11. Displacement time histories comparison in three directions of three shooting states using
a smartphone.

Table 2. Displacement peak value under different conditions when using a smartphone.

Motion State X-Direction/Pixel Y-Direction/Pixel Z-Direction/Pixel

Equipped with tripod 0.015 0.034 0.018
Standing shooting 95.025 72.183 6.254

Walk slightly 150.641 282.944 61.239

The frequency domain information obtained by processing the displacement time
history data captured in Figure 11 through Fast Fourier Transform (FFT) is shown in
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Figure 12. The X-direction data are used in the tripod equipped and hand-held shooting
states, and the Z-direction data are used in the slightly moving shooting state.
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Figure 12. Frequency domain comparison of three shooting states using smartphone.

It can be seen from the frequency domain information taken in the three states shown
in Figure 12 that the frequency domain of the shooting method with a bracket is basically
0, and the frequency domain information of the shooting state of standing, holding, and
walking slightly is confused before 0.6 Hz. Therefore, high pass filtering can be used to
eliminate the displacement error caused by different shooting states of smartphones.

3.4. Structural Displacement Monitoring Using Smartphone in Different States

Since the above tests have verified the reliability of smartphone and LDS displacement
monitoring, the test will hammer the blade to make it vibrate freely, and use three shooting
states: tripod, standing hand-held smartphone, and slightly walking hand-held smartphone
to monitor the displacement.

Taking the displacement time history obtained by the shooting method equipped with
a tripod as a benchmark, the displacement time history monitored by the two shooting
states of standing hold smartphone and slightly walking hand-held smartphone is shown
in Figures 13 and 14.
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Figure 14. Displacement time history comparison under the shooting state of slightly walking
hand-held smartphone.

Figures 13 and 14 show the displacement time history comparison between the stand-
ing hold and slightly walking shooting and the tripod equipped shooting states. Although
the displacement time histories of the two states are scattered, the two trajectories inversely
calculated from the fixed points can match the structural vibration displacement time histo-
ries. When the trajectories shown in Figures 13 and 14 are consistent with the displacement
drift path, high pass filtering can be used for noise processing. In this paper, a high pass
filter with a cut-off frequency of 0.6 Hz was used to denoise smartphones. Combined with
the adaptive scaling factor method, the final processing results are shown in Figure 15.
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RMSE is calculated using Equation (22), where n  is the total number of monitoring, 
and vx  and sx  are displacement data from vision monitoring and laser displacement 
sensors, respectively. ρ  calculated using Equation (23), where vμ  and sμ  are the av-
erage values of the two displacement trajectories. The calculation equation of 2R  is 
Equation (24), which is used to determine the matching degree of the two recorded tracks 
[40]. The error comparison of vibration monitoring data of two common smartphone 
shooting methods is shown in Table 3, and the error distribution is shown in Figure 16, in 
which the displacement time history data with tripod is taken as the benchmark. 

Figure 15. Comparison of position shift time history de-noising using smartphone in different states:
(a) Whole displacement time history; (b) 10~20 s displacement time history.

It can be seen from Figure 15a that the displacement time history of the monitoring
method with support can be basically consistent with that of the method using high pass
filtering combined with adaptive scaling factor. The influence of displacement is not
completely eliminated in the area with small displacement. Since the displacement is
relatively small, it often presents low-frequency movement, and the displacement time
history is consistent on the whole, which does not affect the actual monitoring. The 10 ~ 20 s
displacement time history details show that the displacement is eliminated better by the
above methods when the handheld smartphone is shooting, and the amplitude is still
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inconsistent in some areas when the walking camera is shooting. The displacement drift
in the walking process was not completely filtered out due to the influence of the tester’s
walking during the processing.

To quantify the errors of the two common ways of holding smartphones to mon-
itor the dynamic characteristics of structures, this paper uses Root Mean Square Error
(RMSE), correlation coefficient (ρ), and determination coefficient (R2) for error analysis.
The equations are:

RMSE =
√

∑
i
(xv(i)− xs(i))

2/n (22)

ρ =
|∑i (xs(i)− µs)× (xv(i)− µv)|√
∑
i
(xs(i)− µs)

2
√

∑
i
(xv(i)− µv)

2
(23)

R2 = 1− ∑i (xv(i)− xs(i))
2

∑i (xs(i)− µs)
(24)

RMSE is calculated using Equation (22), where n is the total number of monitoring,
and xv and xs are displacement data from vision monitoring and laser displacement sensors,
respectively. ρ calculated using Equation (23), where µv and µs are the average values of the
two displacement trajectories. The calculation equation of R2 is Equation (24), which is used
to determine the matching degree of the two recorded tracks [40]. The error comparison
of vibration monitoring data of two common smartphone shooting methods is shown in
Table 3, and the error distribution is shown in Figure 16, in which the displacement time
history data with tripod is taken as the benchmark.

Table 3. Displacement monitoring error of common smartphone shooting methods.

Shooting Method RMSE ρ R2

Standing shooting 0.6219 0.8254 0.8763
Walk slightly 0.7342 0.7513 0.7925
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It can be seen from Table 3 that the errors of standing shoot and slightly walking
shooting are within the acceptable range. The maximum error shown in Figure 16 does not
exceed 2 mm, and most of the errors are concentrated within 0.5 mm, which is acceptable
in time domain monitoring. The displacement time history data monitored by the three
shooting methods are transformed by FFT, as shown in Figure 17.
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It can be seen from the comparison of monitoring frequency domains under the
three common shooting states shown in Figure 17 that, although there is a certain error
between the hold smartphone and the slightly walking shooting state in the time domain,
the natural frequency identified in the frequency domain is consistent. Therefore, it is
feasible to monitor the displacement of structures by three common shooting methods in
the frequency domain. Through the method of high pass filtering and adaptive scaling
factor, the structural dynamic characteristics can be accurately monitored by removing the
noise from displacement monitoring of hand-held smartphones and shooting methods of
slightly walking.

3.5. Structural Displacement Monitoring of Smartphone Assembled with Long Focus Lens

The actual wind turbine structure is enormous, and the use of ordinary smartphones
cannot obtain clear images due to lens limitations, so accurate monitoring cannot be
achieved. The lens is an important part of the camera, but with the development of tech-
nology and the improvement of technology, lenses are not limited to cameras. Many
manufacturers produce telephoto lenses that can be matched on smartphones. By assem-
bling a telephoto lens in a smartphone, the defect that the smartphone cannot take pictures
of distant objects can be effectively solved. Figure 18 shows the contrast of the experimenter
using a camera and a smartphone equipped with a telephoto lens to shoot the wind turbine
at a distance of 5 m from the wind turbine. The shooting area of the camera in Figure 18a
is wider than that of the telephoto lens equipped with the smartphone in Figure 18b, but
the longer objects can be shot through the smartphone. Figure 18b is just a picture taken
in a smartphone with one pixel and one distance of the telephoto lens. The telephoto lens
can be up to 32 times as long as possible and can shoot objects thousands of meters away.
The connection between the smartphone and the telephoto lens can be easily fixed by a
clamp. Therefore, the displacement of the actual wind turbine structure can be monitored
by assembling a telephoto lens on a smartphone.

Through the hammer test on the wind turbine, the smartphone was equipped with a
telephoto lens to monitor the blade tip. Limited by the test site, the smartphone was 10 m
away from the wind turbine, and the monitoring structure is shown in Figure 19.

It can be seen from Figure 19a that the displacement monitored by the telephoto lens
is consistent with that monitored by the camera. The displacement time history monitored
by the smartphone equipped with the telephoto lens is consistent with the LDS at both
the phase and peak. Therefore, smartphones can be used to assemble telephoto lenses
for structural dynamic characteristics monitoring, which enriches the way smartphones
monitor dynamic characteristics.
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4. Dynamic Characteristic Monitoring of Wind Turbine Structure
4.1. Experimental Equipment

To monitor the dynamic characteristics of the wind turbine structure, the test uses the
Honor X10 smartphone, with a lens resolution of up to 4K, a maximum frame rate of 60 fps,
a video resolution of 1080P, and a 32 times telephoto lens. At the same time, in order to
verify the reliability of smartphones, the Canon R6 camera was also used in the test. The
frame rate is 50 fps, and a 24 mm~105 mm zoom lens was used for test verification. Zhang’s
camera calibration method was used for video shooting to correct lens distortion. The
vibration test was conducted on the scaled wind turbine model under simulated shutdown.
The arrangement of test device and measuring points is shown in Figure 20. In order to
verify the accuracy of the visual test, 1 LDS and 5 accelerometers were used to monitor
the structural responses, where the sampling frequency is set to 50 Hz and the traditional
vibration test digital system is used for verification.

4.2. Natural Frequency Identification of Wind Turbine Structure

The vibration of the wind turbine structure has two directions: edgewise and flap-
wise. Since the flap-wise direction vibration belongs to out-of-plane vibration, the flap-
wise direction is more likely to cause damage to the wind turbine structure. Monitoring
the dynamic characteristics of wind turbine structure flap-wise direction is the basis for
ensuring the normal operation of wind turbine structure.
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Figure 20. Experimental equipment.

The blade tip of the scaled wind turbine model is hammered in the flap-wise direction
to make it vibrate freely. The acceleration data during the vibration were monitored by
the accelerometers, and the camera and LDS were used as the displacement reference for
verification. The acceleration time history curve monitored by the accelerometer is shown
in Figure 21. The domain information, monitored by smartphones, cameras, and LDS, is
shown in Figure 22.
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It can be seen from Figures 21 and 22 that the acceleration time history monitored by
the accelerometer after hammering the blade tip attenuates rapidly, while the displacement
monitored by LDS and vision attenuates slowly. The main reason is that the accelerometer
is attached to the structure and the monitoring frequency is high, so the data monitored
by the acceleration sensor tends to zero after the blade vibration slow down. The displace-
ment time histories show, in Figure 22, that the displacement time histories monitored
by camera and smartphone are consistent with LDS as a benchmark. Therefore, the use
of smartphones can achieve low-cost dynamic characteristics monitoring of wind turbine
structures. The displacement time history monitored by accelerometer, LDS, and smart-
phone is converted into PSD frequency domain information as shown in Figure 23. In order
to make the images more intuitive, the horizontal axis of the coordinates is expressed in
logarithmic coordinates.
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Figure 23. PSD comparison of different equipment.

Figure 23 shows that the natural frequencies obtained by monitoring the wind turbine
structure with three types of equipment are consistent. The first three natural frequencies
of the wind turbine structure under simulated shutdown in the flap-wise direction are
2.5181 Hz, 6.4041 Hz, and 8.6580 Hz, respectively. In Figure 23, the amplitude of the first
three natural frequencies recognized by the accelerometer increases sequentially, while
the third natural frequencies recognized by LDS and smartphones are fuzzy. Through
frequency domain comparison, the monitoring data of structural dynamic characteristics
represented by smartphones are consistent with LDS. The smartphone can identify the
natural frequency of the structure stably through its camera, especially for low order
frequencies. The structure of wind turbines is mainly affected by low order frequency.
Therefore, smartphones with low cost, non-contact, and remote shooting, combined with
vision technology, can be used to replace the traditional contact sensors to monitor the
dynamic characteristics of wind turbine structures.

4.3. Shaking Table Test of Wind Turbine Structure

To verify the monitoring effect of smartphones combined with visual technology
on the dynamic characteristics of wind turbine structures, the test used accelerometers,
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camera, and smartphone to conduct vibration monitoring by inputting seismic waves into
the vibration table to excite the wind turbine structures. The visual measuring points were
divided into 10 monitoring points P0~P9 from top to bottom by the wind turbine structure
(P0~P4 is on the blade and P5~P9 is on the tower), corresponding to P0, P2, P4, P7, and
P9, which are verified with acceleration sensors. Figures 24 and 25 show the response data
monitored by the acceleration sensor and smartphone in the flap-wise direction. Since LDS
is only used for verification at P0 in the test, to make the article more concise, the full data
part of displacement time history shown in Figure 25 was monitored by smartphones. Since
the error of smartphones and LDS in time domain can be within 0.1mm, smartphones can be
used to monitor the displacement time history of wind turbine structures in the whole field.
Table 4 shows the peak values of each measuring point in the two monitoring methods.
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Table 4. Response peak value obtained by two monitoring methods.

Measuring Points Accelerometer
(mm/s2) Smartphone (mm) Measuring Points Accelerometers

(mm/s2) Smartphone (mm)

P0 5.6341 × 10−4 20.6585 P5 8.3780
P1 18.1829 P6 6.8293
P2 2.3902 × 10−4 15.0244 P7 1.6911 × 10−4 5.4341
P3 12.0122 P8 4.2276
P4 6.5732 × 10−5 10.1504 P9 1.0098 × 10−4 3.4472

From the response monitored by the accelerometers shown in Figure 24, the overall
structural responses are in accordance with the law of “from big to small”. According to
the data obtained from P4 measuring point in Table 4, the response of the acceleration
sensor at P4 is relatively small. The reason for this is that P4 is located at the top of the
tower, and the blade-waving amplitude is relatively large. Therefore, it is reasonable to
state that P4 had the smallest acceleration response. Figure 25 shows that the displacement
time history monitored by smartphone is relatively stable. It can be seen from Table 4
that smartphones can be used in combination with visual technology for multi-point
monitoring. The displacement time histories of each monitoring point are obtained through
smartphones, and then the structural modal shapes of wind turbines were calculated by
a stochastic subspace identification (SSI) method. The position of the sensor is important
when calculating the modal shape [41]. In this paper, five accelerometers and visual sensors
are compared, and the final modal shape of the wind turbine structure is shown in Figure 26.

Buildings 2022, 12, x FOR PEER REVIEW 25 of 27 
 

If higher order modal shapes are desired, lenses with higher frame rates should be con-
sidered. As the vibration of wind turbine structure in the flap-wise direction only needs 
the first two steps to be sufficient, the dynamic characteristics of wind turbine structure 
can be monitored through smartphones combined with visual technology. 

 
Figure 26. Structural modal shape of wind turbine. 

5. Conclusions 
In this study, a target-free dynamic characteristic monitoring method for wind tur-

bine structures using a portable smartphone and optical flow method was proposed. 
Firstly, the characteristics of smartphones in the monitoring environment were studied to 
verify the robustness of the proposed algorithm. After that, smartphones in different 
shooting states were used to monitor the displacement, and high pass filtering combined 
with adaptive scaling factor was used to process the displacement drift of common 
smartphone shooting states. Then, the displacement monitoring of smartphone assem-
bling telephoto lens was studied. Finally, the following conclusions can be drawn from 
the wind turbine structure test verification and result analysis: 
(1) The proposed method based on optical flow method for monitoring the target-free 

dynamic characteristics of wind turbine structures can better identify targets by sim-
ulating simple and complex background projects. In addition, the use of smartphones 
combined with visual algorithms can simultaneously monitor the spatial displace-
ment of the entire blade through ROI clipping. 

(2) The method of high pass filtering combined with adaptive scaling factor was adopted 
to effectively eliminate the displacement drift caused by the two shooting states of 
standing and slightly walking. The error analysis shows that the final error is less 
than 2 mm, which can meet the requirements of structural dynamic characteristics 
monitoring. The smartphone is equipped with a telephoto lens to monitor the dis-
placement of the structure, which effectively expands the method of smartphone to 
monitor the dynamic characteristics of the structure. 

(3) The proposed method for monitoring the dynamic characteristics of wind turbine 
structures performs well in cooperation with smartphones. Combined with the shak-
ing table test, the results show that using smartphones to monitor the dynamic char-
acteristics of fan structures has higher accuracy in time and frequency domains. 

Figure 26. Structural modal shape of wind turbine.

It can be seen from Figure 26 that the vibration modes calculated by vision and
accelerometers are basically the same. Since there are many measuring points monitored by
smartphones combined with vision technology, the vibration modes obtained are smoother.
However, the frame rate of the smartphone is 60 fps, and the natural frequency below 30 fps
can be monitored at most. Therefore, only the first two modes are obtained. If higher order
modal shapes are desired, lenses with higher frame rates should be considered. As the
vibration of wind turbine structure in the flap-wise direction only needs the first two steps
to be sufficient, the dynamic characteristics of wind turbine structure can be monitored
through smartphones combined with visual technology.
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5. Conclusions

In this study, a target-free dynamic characteristic monitoring method for wind turbine
structures using a portable smartphone and optical flow method was proposed. Firstly, the
characteristics of smartphones in the monitoring environment were studied to verify the
robustness of the proposed algorithm. After that, smartphones in different shooting states
were used to monitor the displacement, and high pass filtering combined with adaptive
scaling factor was used to process the displacement drift of common smartphone shooting
states. Then, the displacement monitoring of smartphone assembling telephoto lens was
studied. Finally, the following conclusions can be drawn from the wind turbine structure
test verification and result analysis:

(1) The proposed method based on optical flow method for monitoring the target-free
dynamic characteristics of wind turbine structures can better identify targets by simu-
lating simple and complex background projects. In addition, the use of smartphones
combined with visual algorithms can simultaneously monitor the spatial displacement
of the entire blade through ROI clipping.

(2) The method of high pass filtering combined with adaptive scaling factor was adopted
to effectively eliminate the displacement drift caused by the two shooting states of
standing and slightly walking. The error analysis shows that the final error is less
than 2 mm, which can meet the requirements of structural dynamic characteristics
monitoring. The smartphone is equipped with a telephoto lens to monitor the dis-
placement of the structure, which effectively expands the method of smartphone to
monitor the dynamic characteristics of the structure.

(3) The proposed method for monitoring the dynamic characteristics of wind turbine
structures performs well in cooperation with smartphones. Combined with the
shaking table test, the results show that using smartphones to monitor the dynamic
characteristics of fan structures has higher accuracy in time and frequency domains.
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