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Abstract: Research on historic preservation zones (HPZs) has recently attracted increasing attention
from academia and industry. With eight Beijing typical HPZs selected, this study evaluates critical
vitality characteristics and identifies the key influencing factors via multi‑source data and machine
learning technology. The vitality characteristics were identified from three dimensions: physical
space vitality, cyberspace vitality, and sentiment degree. For influencing factors, 23 variables were
constructed from four aspects (morphological, functional, visual, and traffic) using Computer Vi‑
sion (CV), natural language processing (NLP) and Geographic Information System (GIS) techniques.
Then, three vitality dimensions were introduced as responsive variables to establish three Random
Forest Regression models. Lastly, each factor’s influence degree and direction on vitality were ex‑
plained based on the feature importance and correlation analysis. Through this study, we have thor‑
oughly examined the different influencing factors of vitality in HPZs and summarized the following
academic findings: (1) Density of road intersections, the number of shops, and road impedance are
the three of the most significant influencing factors that are negatively related to vitality. (2) Factors
that have the highest impact on the sentiment degree are road impedance and the number of public
infrastructures, which also negatively affect the population’s satisfaction. (3) The number of cater‑
ing and entertainment amenities are critical factors that positively affect cyberspace’s vitality. In this
study, all threemodels have adequately explained variables and generalization capability, which can
be applied to other larger HPZs in Beijing. In addition, the findings of this study can also potentially
provide insights for enhancing precinct vitality and the governance of HPZs in other cities.

Keywords: historical preservation zones (HPZs); vitality characteristics; multiple‑source data;
machine learning; natural language processing (NLP); computer vision (CV)

1. Introduction
1.1. Background

Historical preservation zones (HPZs) are typical historical relics of the ancient city
which consist of both tangible and intangible assets [1], with multi‑scale continuous char‑
acteristics of morphology, texture, and style [2–4]. As an essential means to promote the
sustainable development of historical blocks, revitalisation has always been considered
as the essential approach for protecting and renewing HPZs [5], and vitality is the key
to proxy the degree of such revitalisation. Recently, the concept of the dynamic protec‑
tion [6] of historical blocks has been widely recognized in China [7,8]. Local governments
have incorporated the construction of HPZs into the urban development plan, while the
protection perspective of HPZs has also shifted from preserving the tangible buildingmor‑
phology to the intangible culture and vitality [9]. Moderate commercial development and
block transformation are considered to be effective means for revitalisation and attracting
tourists [10].

However, in general, there are still a considerable number of HPZs witnessing the
coexistence of prosperity and declination, as well as uneven distribution of vitality [11].
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This phenomenon is reflected in the following aspects: (1) the disorderly expansion of the
city and the inexorable pressures of population growth may destroy the historical block
morphologies, posing a severe threat to the HPZs [12–14]; (2) the inappropriate protective
approaches may lead to problems such as function simplification, the ill‑designed layout
of infrastructure, and poor walkability, which undermines the overall attractiveness for
pedestrians [6,15,16]; (3) serious problems such as excessive commercialisation and spatial
homogeneity [5,13] may lead to the “sense of aesthetic visual fatigue” [17] and loss of orig‑
inal features and humanistic characteristics, resulting in less popularity among tourists;
(4) in contrast, in some specific areas, an excessive influx of tourists exceeds the service car‑
rying capacity [18], resulting in traffic congestion and environmental deterioration, and,
in turn, negatively influencing the popularity of HPZs [19]. In general, many HPZs are
now being challenged with the following question: “how do they deal with the unequal
spread of activity intensity?” How to protect historical and cultural heritagewhile improv‑
ing local vitality by addressing the abovementioned challenges is the key question to the
survival of HPZs.

Today, promoting the protection and revitalisation of historical preservation zones
(HPZs) has become a common concern for many communities [20,21]. Improving vitality
and identifying critical influencing factors are essential for renovatingHPZs. Therefore, we
have proposed the following research questions: Today, what are the new representation
forms and semantic connotations of vitality? What factors will affect the vitality of the
HPZs? How do these factors influence vitality? It is essential to investigate the critical
elements of the attractiveness in HPZs and propose an effective measurement to evaluate
local vitality. A discussion of these questions helps us to understand the current vitality
pattern and further contributes to the future reconstruction practice.

1.2. Literature Review
1.2.1. The Definition of Urban Vitality

The research on urban vitality has attracted extensive attention from scholars world‑
wide. The concept and definition of vitality have been extensively studied in the last fifty
years [1,22,23]. For example, Jacobs posited that the interaction between human activities,
especially pedestrian activities, constitutes the diversity of urban life, which is the primary
reflection of urban vitality [24]; Gehl believed that the vitality of urban public space lies
in the people and their activities [25]. According to Montgomery’s theory, urban vibrancy
was conceptualized as “the extent to which a place feels alive or lively” [26]. Based on the
theory of Jane Jacobs et al., Carlos Moreno proposed the concept of a “15‑Minute City”,
which envisions mixed‑used built environments which foster and promote social interac‑
tions and relationships [27]. Guo et al. noted that the major determinant of urban space
vitality has shifted to “spatial‑social interaction” [28]. In general, the basic concept of vital‑
ity can be considered as the number of people and the diversity of activities.

1.2.2. The Measurement of Urban Vitality
Previous studies on the measurement of vitality have mostly been based on onsite

observation, interviews, or captured video, which have been used to audit the number of
pedestrians [29,30]. The drawbacks of these studies are that they focus on a single block or
small areas of streets due to the prohibitively costly and labor‑intensive methods of data
collection [1].

Currently, the emerging multi‑source data, such as mobile signaling data [31,32], so‑
cial media check‑in data [33,34], location‑based service (LBS) data [35], Global Positioning
System (GPS) data [36,37], night‑time light data [38], and points of interest (POI) [39], pro‑
vides previously unavailable information for studies exploring vitality [40]. In the era of
big data, a vast amount of information, recording individual behaviors and trajectories, is
collected by smart devices [41], including spatial and temporal information, emotional in‑
formation, and semantic textual information, whichmakes it possible to conduct a detailed
measurement of vitality and investigate the interaction between human activities and ur‑
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ban environments [42]. Based on this, in recent years, quantitative urban morphology and
data studies have become more compelling techniques with which to assess urban vital‑
ity [22,39]. Wu and Ye used Baidu heat map data to discover the cyclical characteristics of
the population center in Shanghai, and they devised a method for urban vitality research
using real‑time crowd flow distribution data from Baidu heat maps [43]. Liu identified po‑
tentially dynamic areas in cities using points of interest (POI) data and presented amethod
for defining urban central area boundaries based on functional mixture [44]. Based on ur‑
ban big data and multiple modeling methodologies, Long suggested a method for urban
refinement model construction to help policy establishment [45]. Yue et al. measured ur‑
ban vitality in Shanghai using multivariate data and discovered clusters with high urban
vitality [46].

1.2.3. The Influencing Factors and Mechanism of Urban Vitality
The built environment factors are strongly associated with urban vitality [29]. A city

with higher urban vitality tends to attract more people and have higher development mo‑
mentum; therefore, it is essential to determine which built environment factors influence
urban vitality [47]. Investigating influence factors on vitality could provide a solid foun‑
dation for scientific urban planning.

Many studies have demonstrated that urban morphological elements have an influ‑
ence on vitality [24,36,48,49]. Jiayu et al., used machine learning models such as ridge
regression and a Light Gradient Boosting Machine (LightGBM) with multi‑source data to
explore whether urbanmorphological elements affect heritage vitality [9]. Mouratidis and
Wouter found that neighborhood proximity to the city center is associated with increased
urban vitality, while green space is associatedwith lower urban vitality [29]; Xin et al. used
the floor area ratio (FAR), open space rate, road density, and intersection density to discuss
the effect of the built environment on urban vitality [50].

Others regard land function as a primary impacting factor on urban vitality, high‑
lighting that mixed land function can make the blocks more diverse, so as to attract more
people and promote vitality [29]. For example, Huang et al. found that the change of em‑
ployment subcenters significantly affects the spatial distribution of urban vibrancy [51].
Some scholars found that mixed land use provides urban residents with more opportuni‑
ties and diverse experiences in daily life, work, and recreation, thereby cultivating urban
vibrancy [31,36].

As for traffic features, accessibility plays a vital role in the interaction between ur‑
ban residents and land functions [47]. In the application of Space Syntax, the influence of
sports and crowdactivities on space vitality is described [52]. The results of Song’s research
showed that traffic accessibility to waterfront open space negatively affected vitality [53].
Studies byMoreno Carlos et al. found that different mobility options in a “15‑Minute City”
contribute to a sustainable and inclusive city so as to promote urban vitality [27,54,55].

In addition, visual elements are also explored. For example, Lemin et al. evaluated
the space perception of the residents and assessed the street’s visual appeal as well as the
appeal of its commercial activities [37]; Yingxiang et al. found that visual accessibility has
a weak impact on waterfront space vitality [56]. Based on street view images, Liang et al.
used deep learning methods and semantic segregation to demonstrate the importance of
improving urban vitality [57].

1.2.4. Research Gap
We have identified the following five research gaps in the current literature:

(1) most of the research topics focus on central city areas [22,32,58–61] or urban open
spaces [30,56,62–65]; however, little research has been conducted on historical preserva‑
tion zones (HPZs); (2) some studies lack a consideration of the difference between physical
and cyberspace factors in the characterisation of vitality [9,32,36], which overlooks some in‑
tangible vitality forms; (3) many studies confuse the standard relationship between vitality
proxy and influencing factors by incorrectly regarding the results calculated by a weight‑
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ing index as vitality [38,61,66]; (4) for the mining of vitality influencing factors, to pursue
better variable interpretation, the nonlinear relationship between variables and vitality is
usually ignored [9,23,60], resulting in the bias of the built environment elements’ selection.

2. Materials
2.1. Study Area

Beijing, an ancient city withmore than 700 years of history, is rich in historical and cul‑
tural heritage, having been subjected to a great contradiction between development and
conservation [18]. Since 1990, the Beijing municipal government has successively desig‑
nated historic preservation zones (HPZs). So far, there are 33 HPZs located in the old city,
which are essential parts of the historic imperial city. Their functional nature has gradu‑
ally evolved with the change of dynasties, from the royal court, the government offices,
and factories providing logistics services to the residential blocks after the Qing dynasty.
Currently, these zones are mainly for residence and tourism, showing the style and image
of the ancient capital. This paper chose Shichahai, Dong Si, Xi Si, South Luogu Lane, Jing‑
shan, Wenjin Street, Donghuamen Street, and Guozijian for the case study. These eight
HPZs have their typical characteristics and are more popular with tourists. Many authors
have also selected these regions as their research object [67–71]. Their geographical loca‑
tions are shown in Figure 1.
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2.2. Framework
This study combines multi‑source data and machine learning technology to evaluate

the vitality characteristics of historical preservation zones (HPZs) and explore relevant in‑
fluencing factors. A gridwith a resolution of 100m (approaching theminimumbasic size of
the old city of Beijing [72]) was used to divide the 8 HPZs into 842 units and then construct
a buffer (radius = 250 m, the size selected contributed to the better performance of models
after multiple attempts) with the centroid of each unit to calculate each indicator. The vi‑
tality characteristics of HPZs are divided into three dimensions, which are “physical space
vitality”, “cyberspace vitality”, and “sentiment degree”. For the research conducted on the
influencing factors, a total of 23 indicators were constructed from the four dimensions of
block morphology, road traffic features, functional forms, and visual environment. Then,
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the three dimensions of vitalitywere used as responsive variables, respectively, to establish
regression research, using the Random Forest algorithm (a supervised machine learning
algorithm that is used widely in classification and regression problems) [73]. Lastly, the
influence degree of each factor on vitality was explained based on the feature’s importance
and correlation analysis. The workflow of this paper is shown in Figure 2.

Buildings 2022, 12, x FOR PEER REVIEW 6 of 21 
 

 
Figure 2. Workflow of this study. 

2.3. Data Source 
Multi-source data, including text data, social media data, Location-Based Service 

(LBS) data, POI data, street view data, building data, and road network data were selected 
to build the indicators. Table 1 lists the data sources and indicators’ descriptions in detail. 
According to machine learning terminology, “response” refers to variables that respond 
to the vitality characteristics of the historical preservation zones (HPZs), whereas “fea-
ture” refers to variables that may impact the response. 

  

Figure 2. Workflow of this study.

2.3. Data Source
Multi‑source data, including text data, socialmedia data, Location‑Based Service (LBS)

data, POI data, street view data, building data, and road network data were selected to
build the indicators. Table 1 lists the data sources and indicators’ descriptions in detail.
According to machine learning terminology, “response” refers to variables that respond
to the vitality characteristics of the historical preservation zones (HPZs), whereas “feature”
refers to variables that may impact the response.
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Table 1. Multi‑source data acquisition and indicator calculation framework.

Class Variable Symbol Data Source Description

Response

Physical space vitality PSV Baidu Fine‑grained raster heat maps depicting
timely crowd assembling.

Cyberspace vitality CSV Sina Weibo The Check_in number of Weibo posts can
represent the popularity of the HPZs.

Sentiment degree SENT Sina Weibo The content of Weibo texts containing the
sentiment of people.

Feature_
morphological
indicators

Average of
building height H_M Baidu It is acknowledged that urban

morphology influences the popularity of
HPZs in some way, based on Jacobs’
theory. Morphology related indicators

are calculated in the Geographic
Information System.

Standard deviation of
building height H_SD Baidu

Building density BD Baidu
Floor Area Ratio FAR Baidu

Feature_
functional
indicators

Number of hotels P_H Baidu

The distribution of functional facilities is
important in evaluating the current use
of HPZs, and they greatly affect the

vitality. Baidu POI data were collected to
build possible influencing factors.

Number of places
of entertainment P_E Baidu

Number of
tourist attractions P_A Baidu

Number of stores and
shopping malls P_S Baidu

Number of
infrastructures P_I Baidu

Number of catering P_C Baidu
Number of

education facilities P_EF Baidu

Feature_
traffic indicators

Walking accessibility ACC Baidu Road traffic features may be related to
regional vitality and

population satisfaction.
Street length SL Baidu

Intersection density ID Baidu

Feature_
visual indicators

Green Looking Ratio R_GL Baidu

The physical environment in the street
will affect people’s visual perception and
then affect vitality. These indicators were
calculated using the Deeplab v3+ deep

learning network to semantically
segregate Baidu street view images.

Sky View Ratio R_SV Baidu
Road Ratio R_R Baidu

Bicyclist Ratio R_BI Baidu
Building Ratio R_BU Baidu
Pavement Ratio R_P Baidu

Sign Ratio R_S Baidu
Car Ratio R_C Baidu

Pedestrian Ratio R_PE Baidu

3. Methods
This study uses a combination of multi‑source data and machine learning technology

to measure the vitality of historical preservation zones (HPZs) and explore the influenc‑
ing factors. Section 3.1 measures the vitality of HPZs, Section 3.2 constructs independent
variables, and Section 3.3 conducts regression analysis based on machine learning.

3.1. Calculation of the Vitality of HPZs (Response Variables)
For the characterisation of vitality, the current literature hasmostly applied the pedes‑

trian volume in the physical space as a proxy for vitality [9]. However, this ignores the
impact of social networking activities in contemporary society, as the vitality is not only
reflected in the physical space, but also in virtual cyberspace. The definition of vitality
in this study includes three dimensions—vitality in physical space, vitality in cyberspace,
and sentiment degree from people. Based on this, this study divides the vitality into three
parts, namely, Section 3.1.1, physical space vitality; Section 3.1.2, cyberspace vitality; and
Section 3.1.3, sentiment degree.
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3.1.1. Physical Space Vitality (PSV)
Pedestrian volume data, based on the counting of the number of pedestrians in the

physical space, is always used to calculate the physical space vitality [1]. However, the con‑
ventional method, such as onsite observation or instance detection using captured videos,
is time consuming and laborious [30], which also makes it difficult to cover a large scale in
the spatial dimension or to cover long time series in the time dimension.

BaiduMobile app services record people’s trajectories, offering an opportunity to rea‑
sonably and effectively observe the pedestrian flow density in the study area [74]. We col‑
lected heatmapdata on theweekend fromBaiduMaps (http://lbsyun.baidu.com/, accessed
on 19 June 2021), with a data sampling accuracy of 1 h, from 7:30 a.m. to 23:30 p.m. (19 June
2021). The raster data were imported into ArcGIS software and geo‑calibrated using maps
containing coordinates (WGS84 Universal Mercator Projection UTM Zone50). Due to lack‑
ing a precise legend, we used resampling technology (NEAREST) based on ArcGIS soft‑
ware to re‑level the grid data of heat maps. Figure 3 shows the visualisation results.
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3.1.2. Cyberspace Vitality (CSV)
Check‑in datawere suitable to represent cyberspace vitality, wheremany online social

platforms provide check‑in data such as Weibo, Flicker, Twitter, Facebook, etc. In China,
SinaWeibo is the largestmicrobloggingwebsitewithmore than 500millionmonthly active
users. Therefore, scholars often select check‑in (similar to Twitter # but contains more de‑
tailed geo‑location information) data from Sina Weibo to study the vitality characteristics
of Chinese cities [34,75,76].

Check‑in data from Sina Weibo can reflect two‑dimensional features: one is that the
user actually reaches the place for activities, and the other is that the user is willing to
share, which will bring corresponding network volume and attention heat after spreading
through the network. We applied Weibo check‑in data (https://www.beijingcitylab.com/
data‑released‑1/, accessed on 6 June 2022) as a proxy for cyberspace vitality. The data
were processed in ArcGIS software to regard the number of check‑ins in the buffer of each
sample point as the value of this indicator.

3.1.3. Sentiment Degree (SENT)
Natural language processing (NLP) technology, with the use of the Bidirectional En‑

coder Representations from Transformers (BERT) model (a transformer‑based machine
learning technique for NLP), was adopted to conduct the sentiment analysis on the texts.
BERT is optimal in 11 natural language processing (NLP) tasks, including text translation,
summary generation, text classification, etc., which uses the transformer framework in the
kernel algorithm to more efficiently capture longer distance dependencies [77].

Firstly, we used the “name” of these 8 HPZs as keywords to search and crawl the con‑
tents (inChinese) fromWeibo. Secondly, the textswere processed by the BERTpre‑training

http://lbsyun.baidu.com/
https://www.beijingcitylab.com/data-released-1/
https://www.beijingcitylab.com/data-released-1/
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model (https://github.com/729593736/Sentiment‑Analysis, accessed on 6 June 2022), with
the output value ranging from 0 (negative) to 1 (positive). Then, we set the baseline as
0.5 to distinguish sentiment inclination to calculate each block’s sentiment degree with the
proportion of positive samples. Table 2 shows some examples processed by NLP. Lastly,
according to the calculation results, we assigned values to the sample points in each of the
historical preservation zones (HPZs).

Table 2. Sample results of sentiment classification of microblog data (translated from Chinese).

HCAs Sample Data of Weibo Content (in Chinese, Translated by
Authors, Accessed on 19 June 2022) Output Value Sentiment Class

Shichahai

In the novel I like, the man and woman have a date in Shichahai,
so there is a lot of romantic imagination. Although I didn’t see
the uncle pulling the rickshaw in the story, the old man who

told the story on the roadside is also very interesting.

0.96 Positive sample

South Luogu Lane

Finally arrived in South Luogu Lane, Zhang’s Sichuan cuisine is
affordable and delicious, and the hall is packed; the first bite of
Wenyu cheese is amazing, but eating more will make you tired;

the boy in the bar sings very well.

0.98 Positive sample

Jingshan

Couldn’t find the way up the mountain. The people behind me
accidentally ironed three holes in my new clothes when

dropping his cigarette ashes. I was almost in tears, and I didn’t
get a single apology. I went to Jingshan to see the sunset. It was
a fine sunny day. But, in the afternoon, it suddenly began to rain.

I’m so tired.

0.05 Negative sample

Donghuamen Street

From Donghuamen to Beihai, the streets are full of motor
vehicles that occupy the road illegally, resulting in a main road

becoming a parking lot.There are many cars waiting for
passengers. These private cars do not follow the rules to make
money, causing congestion, so the road traffic in Beijing is

getting more and more chaotic! How can road managers turn
a blind eye to this?

0.29 Negative sample

Xi Si

Where is the oldest hutong in Beijing? Many people who live in
the east and west of the city will say “Brick Tower Hutong”.
When you walk into this old hutong on Xisi South Street, you

can clearly see the gates of each courtyard, and in each
courtyard, you can hear the chatter and greetings of neighbors,

attracting curious young people and foreign tourists.

0.81 Positive sample

3.2. Calculation of Influence Factors (Feature Variables)
We have constructed influence variables from four dimensions, which are morpho‑

logical indicators, functional indicators, visual indicators, and road traffic indicators. The
calculation method is shown in the following sections.

3.2.1. Calculation of Morphological Indicators
The impact of urban morphological factors on urban vitality has been demonstrated

by many classical theories, implying that urban morphological characteristics could af‑
fect the intensity and complexity of pedestrians’ activities. At present, many researchers
choose different morphological indicators to study the impact of these factors on vitality
and to verify the influence on the vitality of HPZs [9]. The morphological indicators fre‑
quently selected include the average of building height [22,23], standard deviation of build‑
ing height [22], building density [22,23,66], floor area ratio [78], etc. This study constructed
four morphological indicators to represent a possible impact on urban vitality based on ge‑
ographic data (buildings, roads, etc.) combined with ArcGIS software. Table 3 shows the
formulas for the morphological indicators.

https://github.com/729593736/Sentiment-Analysis


Buildings 2022, 12, 1978 9 of 20

Table 3. Information of four morphological indicators.

Morphological Indicators Acronyms Unit Equation

Average of building height H_M m H_M = 1
n ∑n

i=1 hi
Standard deviation of

building height H_SD m H_SD =
√

1
n ∑n

i=1(Hi − Have)
2

Building density BD % BD = (∑n
i=1 APi)/AT

Floor area ratio FAR FAR = ∑n
i=1 APi × Fi/AT

3.2.2. Calculating Functional Indicators
Functional density is one of the influential primary variables that activates the street

ground interface [29,79]. The quantity and quality of functional facilities reflect an area’s
development and are essential factors for gaining popularity. Among the data types of
various urban functions, POI data can reflect various residential activities (life, work, com‑
munication, etc.) [80], and recordings of the location of function points with high accuracy
have beenwidely used in scientific research on vitality [9,32]. For example, Zhang et al. [69]
selected the POI type of tourist attractions and commercial shops; tourist attractions, shop‑
ping, and catering services were used byHu et al. [74]; shopping, life services, and catering
were adopted by Lu et al. [16]. Therefore, after consulting many previous studies, we fi‑
nally selected seven types of POI after eliminating the types that were incompatible with
the functions of historical preservation zones (HPZs), as shown in Table 1. We used python
to create a crawler to obtain POI data from the Baidu open platform, including attractions,
catering, infrastructures, education, hotels, shopping, and entertainment. The number of
POI was counted by ArcGIS software as a feature variable.

3.2.3. Calculating Road Traffic Indicators
Many studies contend that the shape of the street section affects vitality. UsingArcGIS

software, the obtained road network data were firstly modified. Network topology was
processed in this study to generate intersection nodes based on network analysis tools.
Then, we calculated the two indicators of intersection density and average street length,
which are two important elements used to research vitality [22].

We also incorporated the index of accessibility, which is an important factor that re‑
flects the convenience of pedestrian travelling [9], but which has not been a directly observ‑
able variable inmany previous studies [53]. This study used a spatialminimum impedance
model to calculate walking accessibility. ArcGIS software was used to build the OD cost
matrix to conduct the calculation. The calculation formula is as follows:

Hi =
1

n − 1

n

∑
j=1(j ̸=i)

(
dij

)
, (1)

H =
1
n

n

∑
i=1

(Hi) (2)

where Hi is the impedance of network node i; H is the impedance of the sample point; dij
indicates the minimum impedance between nodes i, j; n is the number of nodes in the
network. The smaller the H is, the larger the accessibility value is.

3.2.4. Calculating Visual Indicators
The visual environmentwill affect the psychological perception of pedestrians [81–83].

The proportion of physical elements obtained from street view images can effectively eval‑
uate the built environment; therefore, it has been widely used in many studies to mea‑
sure urban vitality [1,84,85]. Deep learning technology conducts semantic segmentation
on street view images to classify each pixel in an image based on a convolutional neural
network (CNN). Currently, the research mode of combining street view image data and
deep learning technology has become an important paradigm of street visual environment
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auditing, creating interest in many research topics such as style, perception, and walkabil‑
ity [86–88].

First, sampling points were generated along the street axis, with a spacing of 50 m
(an appropriate size widely used in many studies [82,83,89]), to obtain relatively sufficient
street view images from the Baidu maps (https://lbsyun.baidu.com/, accessed on 20 June
2021). Secondly, Deeplab v3+, a pretrained network, is employed for semantic segmenta‑
tion based on MATLAB Deep Learning Toolbox and Computer Vision Toolbox. Thirdly,
we calculated the proportion of each visual element and counted the average proportion
of street view elements in the buffer of each research unit. We finally selected 9 types of
streetscape elements, including the Green Looking Ratio, Sky View Ratio, Road Ratio, etc.,
as the visual indicators (see Table 1 for details). Figure 4 shows an example of semantic
segmentation processing.
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nese term ”地图” means “map”).

3.3. Regression Analysis
3.3.1. Multivariate Statistical Correlation Analysis

Indicators for dimensionless processing are processed through Z‑score standardisa‑
tion tomeet the normal distribution (mean value of 0 andvariance of 1). Secondly, python’s
SciPy package is employed for the Pearson correlation test, and the correlation coefficients,
ranging from −1 to 1, could be used to measure the linear correlation between two vari‑
ables. The correlation degree and direction can be seen visually by the heatmap of the
correlation coefficient matrix.

3.3.2. Random Forest Modeling
TheRandomForest algorithm, one of the ensemblemachine learning algorithms, com‑

bines several randomized decision trees and aggregates their predictions through aver‑
ages [90]. First created by Ho [91] and later improved by Breiman [92], the Random Forest
algorithm uses an out‑of‑bag error to estimate the generalization error and measure vari‑

https://lbsyun.baidu.com/


Buildings 2022, 12, 1978 11 of 20

able importance through permutations [41]. This method can effectively analyze the non‑
linear correlation between quantitative indicators; moreover, it offers several advantages
such as not requiring the preprocessing of data, convenient and fast processing, and stable
results [93]. Meanwhile, the algorithm does not overfit data because of the law of large
numbers, making it unlikely to have poor accuracy on unseen data, and can generalize
well for training data [94], making it among the most popular and powerful supervised
machine learning algorithms [41,95,96].

Based on the above advantages, the Random Forest algorithm was used to construct
a regression model to reveal the impact of different influencing factors on the three kinds
of vitality, respectively (we also chose other algorithms to make comparisons in order to
explore the performance of the RandomForestmodel, seen inAppendixA). The 23 indexes
mentioned in Section 3.2were selected as independent variables, and three kinds of vitality
were selected as dependent variables, respectively. The 842 study units were divided into
a training set and a test set with a ratio of 8:2, where the former was used to train themodel
and the latter was used to verify stability and generalization ability. The implementation
processes of machine learning modeling are based on the Scikit‑learn Python library [97],
throughwhichwe calculated 3metrics (the coefficient of determination (R2), theRootMean
Square Error (RMSE), and the Mean Absolute Error (MAE)) on the test set to evaluate the
accuracy of a prediction model.

3.3.3. Feature Importance
The Gini impurity coefficient method of Random Forest is used for detecting feature

importance [98]. Each tree in the Random Forest splits according to a certain node. Ev‑
ery time the split of a node is made on a variable, the Gini impurity criterion for the two
descendent nodes is less than the parent node. The importance measure for a particular
variable is obtained as the average decrease in the Gini impurity index over all trees in the
forest [99], which is used as the standard to assess the importance of a feature [100]. By
importing the Scikit‑learnmachine learning package into python to use the RandomForest
algorithm, we can sort the importance of variables from high to low. Then, we created a
layout chart of the feature to explain its importance. The formula is as follows:

Gini(D) =
k

∑
k=1

Pk(1 − Pk) = 1 −
k

∑
k=1

Pk
2, (3)

where Gini(D) denotes Gini impurity index, D is the data set, k is the Random Forest
decision tree species, Pk is the probability that the sample belongs to k.

4. Results and Discussion
4.1. Results of Variable Correlation

As can be seen fromFigures 5 andA1, from the perspective of the data distribution, for
different response variables (three kinds of vitalities), the correlation degree and influence
direction of different influencing factors have their own characteristics, as follows:
• The physical space vitality (PSV) is negatively related to the density of road intersec‑

tions density (ID), the number of shopping and consumption places (P_S), the number
of catering places (P_C), and the sky view ratio (R_SV); however, it is positively re‑
lated to the proportion of buildings (R_BU) in the field of vision. In the historical
preservation zones (HPZs) with tourism as the main business form, pedestrians pre‑
fer the slow‑moving system of the ancient city to enjoy their journeys. The denser
the road intersections in the zones, the more complicated the road traffic, which is
not conducive to people’s staying and entertainment. The number of places for shop‑
ping and entertainment is usually themeans for commercial districts to attract people.
However, due to the restrictions of urban morphology and protection policies, there
are generally not many shopping and entertainment places within HPZs. Therefore,
they show the opposite trend to the physical space vitality, indicating the difference
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between HPZs and commercial districts. As for the visual environment, due to the
small street scale in the ancient city, the higher the sky view ratio, the higher the
width, and the lower the comfort scale. Relatively speaking, the higher the propor‑
tion of buildings, the more comfortable the surrounding feeling, which could attract
more pedestrian flow. Due to the limitations of the Baidu heat map data, we could
not identify the groups who are the real pedestrians, therefore the conclusion maybe
biased; however, from the perspective of volume of crowd, it also provides benefi‑
cial ideas;

• The sentiment degree of the crowd (SENT) has a negative correlationwith the number
of public infrastructures (P_I) and road impedance (ACC), by comparison, and a pos‑
itive correlation with the ratio of pavements (R_P) in the field of vision. The smaller
the impedance of the road means, the better the accessibility of the block, meaning
that it is more convenient for the pedestrian to reach. The reason the number of pub‑
lic infrastructures is negatively correlated with the sentiment degree of the crowd,
contrary to empirical experience, may be caused by the improper layout of public fa‑
cilities in historical preservation zones (HPZs) at present. The higher the proportion
of pavements in the field of vision means a better slow‑moving system which is more
friendly to pedestrians;

• The cyberspace vitality (CSV) is positively related to the number of entertainment
and leisure facilities (P_E), shopping and consumption places (P_S), and caterings
places (P_C), while it is negatively related to the average building height (H_M) and
floor area ratio (FAR). Among them, the correlation between cyberspace vitality and
the number of entertainment and shopping places shows the opposite direction com‑
pared to the physical space vitality. We can also deduce that the cyberspace vitality
is different from the physical vitality. This is because Sina Weibo is more focused on
the young generations; therefore, the historical preservation zones (HPZs) that attract
young people to “check‑in” are intended to havemore “youngster‑targeted” business
forms, which are closely related to the booming cyber‑star economy. The higher floor
area ratio and average building height indicate a more enclosed space, with which it
is relatively difficult to attract a crowd’s attention.

4.2. Results of Overall Model Performance
According to the regression results from Table 4, the Random Forest model estab‑

lished by the 23 indicators has a good fitting ability for the data distribution. R2 is the
major metric to evaluate the performance of models. A higher R2 value implies the higher
accuracy of a prediction model. Among them, the R2 of model_1 is 0.86, the R2 of model_2
is 0.85, and the R2 of model_ 3 is 0.76. The RMSE and MAE of each model is less than
0.5 and 0.4, respectively, where the lower RMSE and MAE value implies the higher accu‑
racy of a prediction model. Compared to the R2 scores achieved by Wu et al. (0.315 and
0.425) [36], Xiao et al. (0.735) [23], Hunag et al. (0.760) [22], Niu et al. (0.618–0.869) [65],
andWu et al. (0.446–0.875) [9], it can be seen that the threemodels established in this study
have a good performance in explaining the variables as well as good generalization. The
models can be applied to the large‑scale measurement of the three vitalities in the other
HPZs of Beijing to conveniently obtain more rapid and refined results.
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Table 4. Performance of 3 models (test set).

MODEL_NAME R2 RMSE MAE

1_physical space vitality (PSV) 0.86 0.37 0.28
2_sentiment degree (SENT) 0.85 0.43 0.21
3_cyber space vitality (CSV) 0.76 0.49 0.36

4.3. Analysis on Influencing Factors of Vitality Characteristics
It can be seen fromFigure 6 that, different from the results of the correlation analysis in

Section 4.1, the Random Forest algorithm can describe the nonlinear relationship between
multi‑variables and response variables. Therefore, the order of feature importance and the
correlation coefficient’s absolute value are not the same. Specifically:
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• In model_1, the density of the road intersections density (ID) has the most significant
impact on the physical space vitality, which may be because more dense intersections
mean heavier traffic. Combined with the analysis results in Section 4.1, it reveals that
the area with an excessive density of road intersections will have a certain obstacle to
attracting offline pedestrian flow. The number of shopping and consumption places
(P_S) and road impedance (ACC) are the other factors that have an impact. Combined
with the analysis results in 4.1, it is known that these two factors have a negative
impact on the vitality of physical space. However, the number of hotel facilities (P_H),
the number of public infrastructures (P_I), and the floor area ratio (FAR) have little
impact on the physical space vitality;

• According to the importance ranking of features, in model_2, road impedance (ACC)
and the number of public infrastructures (P_I) have the greatest impact on the crowd’s
sentiment. Combined with the results in Figure 5 of Section 4.1, these two factors
negatively affect the population’s sentiment. Secondly, the sky view ratio (R_SV), the
number of pedestrians (R_PE), the standard deviation of building height (H_SD), and
the average building height (H_M) also have a positive impact on crowd satisfaction.
Other factors, especially the number of hotels (P_H) and the number of educational
facilities (P_EF), are less critical in the model;

• According to the ranking of the feature importance of model_3, the factors that have
a greater impact on the vitality of cyberspace are the number of catering places (P_C)
and entertainment facilities (P_E), which have a positive effect on the vitality of cy‑
berspace. Factors such as road impedance (ACC), the number of attractions (P_A),
and green looking ratio (R_GL) are also important in the model. However, the num‑
ber of hotels (P_H), the road intersection density (ID), and the number of public in‑
frastructures (P_I) are of little importance.

The importance and direction of the influencing factors are different for different vital‑
ity types. In general, for the three models, the road impedance of each shows importance,
which means that areas with better road accessibility will bring more vitality in physical
space and cyberspace. The number of hotels is less important in the three models; there‑
fore, in the next step, this factor can be deleted to improve the model’s fitting ability and
generalization performance.

5. Conclusions
With the rising awareness of urban heritage protection agendas, scholars have been

payingmore attention to the vitality of historical preservation zones (HPZs) in recent years.
In this study, we selected 842 units from eight HPZs to evaluate the vitality characteristics
of HPZs and to explore the influencing factors via multi‑source data andmachine learning
technologies. The vitality characteristics of HPZs were identified from three dimensions:
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physical space vitality, cyberspace vitality, and sentiment degree. For the research on the
influencing factors, with the use of CV, NLP, and GIS techniques, a total of 23 variables
were constructed from the four dimensions (block morphology, transportation features,
functional forms, and visual environment). Then, using the Random Forest algorithm, the
three dimensions of vitality were used as responsive variables, respectively, to establish
three regression models. Lastly, each factor’s influence degree and direction on vitality
was explained based on the feature importance and correlation analysis.

(1) In terms of researchmethods andworkflow, this paper proposed a frameworkwhich
combines multi‑source data and machine learning technology and integrates with
other advanced digital analytical approaches such as CV, NLP, and GIS for the con‑
struction of vitality indexes. This could provide a new perspective for urban vitality
research and other quantitative research on relevant topics;

(2) As for the performance of models, all Random Forest models proposed in this re‑
search have a good fitting ability to the data distribution: the R2 of model 1(physical
space vitality) is 0.86, the R2 ofmodel 2(sentiment degree) is 0.85, and the R2 ofmodel
3 is 0.76 (cyberspace vitality), and the RMSE of each model is less than 0.5. All three
models established in this study have good performance in explaining variables and
generalization, which can be further applied to the large‑scale measurement in the
other HPZs of Beijing, suggesting more rapid and informative results;

(3) For the influencing factors of vitality, we have summarized the following findings:
• The density of road intersections has the most significant impact on physical

space vitality, which is negatively related to the vitality. The density of shop‑
ping and consumption places and road impedance are the other factors that neg‑
atively impact the vitality of a physical space;

• The factors that have the greatest impact on the sentiment of the crowd are road
impedance and the number of public infrastructures, which cause multiple neg‑
ative effects on the satisfaction of the population;

• The number of catering places and entertainment facilities are the most critical
factors that significantly affect a cyberspace’s vitality.

Admittedly, this study has certain limitations, wherein the current data’s accuracy
and timeliness are not very sufficient. Due to the limits of the data types, the conclusion
might slightly deviate from reality, as the Baidu heatmap data are used to proxy the vital‑
ity of physical space. In addition, the study samples are all located in Beijing, therefore
intercity research and subsequent comparisons exceed this paper’s scope and may require
additional investigation. However, the data accuracy can be improvedwith emerging tech‑
niques and a better data repository in future research; the proposed research framework
and the workflow of the Beijing case study can be applied in other cities/areas with minor
calibrations for further investigations.

In general, through the research of this article, we have thoroughly discussed the var‑
ious representations of urban vitality and explored the influencing factors of the different
urban vitalities of historical preservation zones (HPZs), providing a new perspective for
research in related fields. In addition, the conclusions of this paper can serve as a guide
for officials and urban designers and could potentially enhance the evidence‑based design
andmanagement process for developing more vital, sustainable, and historically sensitive
cities domestically and internationally.
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Appendix A

Table A1. Performance of models based on other algorithms.

Model Types Physical Space
Vitality (R2)

Sentiment
Degree (R2)

Cyber Space
Vitality (R2)

Random Forest 0.86 0.85 0.76
Fine regression Tree 0.61 0.64 0.39
Linear regression 0.58 0.59 0.54

Robust linear regression 0.68 0.50 0.53
Linear SVM 0.53 0.51 0.53

Gaussian SVM 0.56 0.09 0.15
Kernel Approximation regression 0.76 0.78 0.73

Boost tree 0.72 0.80 0.67
Bagged tree 0.78 0.76 0.69

Shallow neural network 0.70 0.83 0.66
2‑layer neural network 0.62 0.85 0.44

Because there are many algorithms, we cannot compare all machine learning algorithms in this article. However,
as can be seen from Table A1, compared with the above other 10 models, the Random Forest model performs best
in this task. Therefore, we determined that Random Forests are very suitable in this study.
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