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Abstract: Building energy simulation plays a significant role in buildings, with applications such
as building performance evaluation, retrofit decisions and the optimization of building operations.
However, the wide range of model inputs has limited much research into empirically customized case
studies due to the insufficient availability of data inputs or the lack of systematic feature selection of
key inputs. To address this gap, this study proposes the concept of minimum variable sets (MVSs) for
building energy-prediction models to improve the general applicability of building energy prediction
using forward simulation. An MVS, in this paper, refers to a variable set that contains the most
indispensable energy-related variables/features for annual building energy prediction. This study
developed MVSs for office buildings by applying feature engineering algorithms to a Building
Performance Database (BPD), which was established by integrating the design of experiments (DoE)
method with high-dimensional data-space metrics, as well as parallel simulation. Supervised feature
dimension reduction methods and multiple statistical criteria were adopted to choose different
numbers of indispensable variables from the primary 16 building variables. The hierarchical MVSs
that consist of the selected variables are characterized by the most influential features for building
energy prediction, with certain requirements for prediction accuracy. To further improve the feasibility
of MVSs, this study utilized two separate office buildings located in Shanghai and California as
validation cases and provided comparable prediction accuracies across different sizes of MVS. The
results showed that the MVS that has 12 variables has higher prediction accuracy than that which has
9 variables, followed by that which has 7 variables. Finally, the quantitatively hierarchical correlations
between different sizes of MVS with different prediction accuracies for annual building energy could
provide potential support for reasonable decision-making regarding building energy model variables,
especially when comprehensive consideration is needed of the limited cost and data availability, and
the acceptable accuracy of building energy.

Keywords: minimum variable sets (MVSs); feature reduction methods; building performance
database (BPD); high-dimensional space filling design; office building energy models

1. Introduction

Generally, building energy-prediction models are classified into two basic categories:
physical (or forward, white-box or classical) and data-driven (or inverse, statistical, black-
box or machine learning) models [1–4]. Benefiting from the capability of solving the physical-
description equations for the heat transfer of building and energy components [1,4], building
simulation tools have become a most fundamental technique for creating buildings with
energy-efficient design, energy-performance optimization and energy retrofit evaluation.

However, the issues of model reliability and universality have recently been broached
since forward simulation models have been adopted in building energy-performance anal-
ysis. In this area, we can summarize the current applications of forward simulation in
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two ways: traditional forward modeling with building information, and the improved
way of using a training-data-generation tool for data-driven models. Both of the above
applications require high-quality parameterized inputs to produce convincing models.
In traditional forward simulation, the physical modeling approach requires a physical
description of the building design (e.g., geometry, envelope, internal gains and opera-
tional schedule), energy system (e.g., the type, capacity and thermal performance of kernel
components) and local weather conditions as inputs to predict building energy use [5].
Excluding the assumptions that are made to reduce the complexity of the thermal mech-
anisms occurring in buildings, either inaccurate inputs or their uncertainties can result
in poor prediction performance [6], and lead to real difficulty in evaluating the accuracy
degree of the simulation models [1]. In the integrated application, various combinations
of specific model inputs are simulated as hypothetical building cases, of which both the
inputs and outputs are used as the training data for data-driven methods, such as regres-
sion models for building energy-consumption prediction [7], etc. Commonly, to ensure
the robustness of the achieved data-driven models, the set of hypothetical building cases
needs to cover a sufficient variety and diversity of building variables; however, there are
too many input variables to be designed for hypothetical cases, which usually causes a
large amount of simulation and time-consuming data-processing work. In this case, the
shortage of current integrated application research is due to the models’ weak universality
for other researchers due to the fact that the candidate variables to be designed are limited
to a small range of building energy influential factors, to avoid extremely massive simu-
lation [8–10]. As a consequence, concerns about the reliability or universality of building
simulation models greatly eliminates the supportive potential of simulation models for
building performance evaluation.

This study finds out the extent of the research gap. The discussion on the indispensable
variables of building energy prediction will be crucial in taking full advantage of building
simulation to encourage more efficient building energy-performance evaluation. If the wide
range of building energy-related variables is not reasonably narrowed or systematically
filtered in the above two kinds of application scenarios, either the interpretability or
universality of the developed models will be questioned, especially under the circumstance
of having limited data proof for the model inputs.

With the aim of supporting more persuasive and efficient building simulation, this
paper targets the objective of building variables for energy prediction and explores the
following two fundamental questions from the perspective of establishing more universal
and referential methodology:

Q1. Which building variables are the most indispensable for energy-prediction models?
Q2. How do we achieve accurate building energy prediction with limited variables?

Recently, several researchers with experience of data analysis have gradually paid
attention to the gap in feature selection for building energy-prediction models and have
started to explore the model features/variables using feature engineering methods for
machine learning. As summarized in Table 1, there are still some limitations in feature
decision and selection in these building energy model studies. Firstly, the feature selection
process is mostly designed for a specific building case with the aim of increasing the model
performance and predicting its accuracy. The commonly used route is to apply a feature
selection method to a pre-simulated [11] or measured [12] dataset of the target building, and
then, to choose a set of important building/system variables for the preselected modeling
method(s). In this case, the findings of the case studies resulted in the literature being
too specific for the robust generalization of the built data-driven model [13]. Secondly,
the primary features are determined by domain knowledge and data availability, which
may just partially cover the influential variables, such as weather data [14,15], HVAC
system [14], occupant behavior [16] or retrofit measures [13]. Moreover, different feature
selection methods are rarely explored or discussed with consideration of their applicability
and universality for the following model development.
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Feature selection is regarded as a key data-preprocessing step in common machine
learning. It has three main categories—the filter, wrapper and embedded/embedding meth-
ods [17–19]—that depend on how and when the utility of selected features is evaluated. Fil-
ter methods rely on analyzing the general characteristics of data and use suitable relevance
metrics to measure the importance of candidate features, such as minimal redundancy–
maximal relevance (MRMR) [19] and the principal component analysis (PCA) [20] method.
The features chosen using filter methods are independent of the following machine learn-
ing algorithm [11,12]. Wrapper methods require a predetermined learning algorithm and
use its performance on the provided features in the evaluation step to identify relevant
features [11], such as recursive feature elimination (RFE) [15]. The embedded methods try
to use the advantages of both wrappers and filters [21] and incorporate feature selection
as a part of the model-fitting/training process, such as the application of a tree-based
model algorithm [13,16]. Obviously, with the aim of establishing an accurate model, re-
cent building energy model studies including feature selection processes have preferred
to apply the wrapper and embedded methods, which result in higher learning perfor-
mance for a particular learning model. Meanwhile, from the perspective of generalized
applicability or statistical interpretability, the variables selected using the filter methods
are relatively more universal to reflect the complex relationship between building factors
and energy consumption, if there are sufficient data on building/system information and
energy performance.

Table 1. Summary of building energy model studies focused on feature selection and analysis.

Case Building
Objective Primary
Features/Building

Variables
Objective Building
Prediction Target

Feature Selection
Methods

Prediction Model
Methods

Database Source for
Prediction Model Reference

Office and campus
buildings, U.S./

Spain

Weather data, internal
load, HVAC operation
setpoint and time-lag

variables

Hourly
cooling/heating

energy
consumption

Filter methods,
wrapper methods

Multivariate
adaptive regression
splines/time-series

model

Simulated data on an
office building, and
practical data on a
campus building

[11,12],
2019

Educational
buildings, Italy

Retrofit intervention
feature regarding

building construction
and HVAC system

Weekly building
energy

consumption for
calculation of

retrofit savings
potential

Wrapper feature
selection, random

forest

Hierarchical and
k-medoids
clustering,

regression models

Energy Performance of
Buildings (EPBD)

platform by European
Parliament 2012

[13], 2019

Residential
buildings, U.S.

Building physics,
weather data and
occupant behavior

Annual home
energy

consumption

Random forest,
principal

component analysis
- 1000 Practical homes in

Pecan Street Project 2010 [16], 2018

Utility company
and office building,

China

Weather data, indoor
environment and HVAC

system
Short- and

medium-term load

Comparison of
different subsets of
primary variables

Gaussian kernel
regression model;

nonparametric-
based k-NN

model

Practical data on two
different locations

(utility company and
office building)

[14], 2020

Commercial
building, China

Weather data and
timestamp

Next-day energy
consumption and

peak power
demand

Recursive feature
elimination Ensemble model Practical data on a

commercial building [15], 2014

Office building,
Italy

Weather data, indoor
environmental quality
and HVAC equipment

operation

Short-term flowrate
and energy

consumption of
heating system

Greedy randomized
adaptive search

procedure (hybrid
filter–wrapper

method)

Autoregressive
models with

exogenous inputs

Practical data on an
office building [21], 2017

Generally speaking, the majority of building energy-prediction models with or without
a feature selection step pay more attention to model performance, such as accuracy and
practicability for the specific building(s), rather than the universality or generalization of
their resulting models (including both selected variables and algorithms). Meanwhile, a
convincing simulation/model for building energy-performance evaluation needs more
reliable fundamentals on the complex relationship between influential inputs/variables
and building energy consumption. To explore this gap, our study innovatively proposes
the concept of minimum variable sets (MVSs), which contain the most indispensable
variables for building energy prediction among full-scale building factors, along with their
importance ranking and prioritization in building energy consumption.
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This study has designed and developed an office BPD that only includes about
10,000 cases but can represent the high-dimensional space constituted by 16-D building
variables. Hierarchical MVSs are then obtained by applying feature selection methods to
this BPD. Furthermore, our research has determined the relationship between MVSs and
the model’s predictive accuracy if using MVSs as model inputs, in the application of the
resulting MVSs, to forward and data-driven models. Through the above research work,
this paper attempts to answer the two mentioned questions, Q1 and Q2, and also provide a
more universal and valuable reference for relevant research on input/variable selection in
building energy-prediction models.

Relative to some existing research on building feature analysis, which mainly target
the prediction accuracy of some specific data-driven models, this study makes the feature
selection conclusion (such as MVSs) more compatible with and flexible to different kinds of
building energy models, such as forward simulation. Based on the traditional application
of supervised feature analysis algorithms, the construction method of MVSs takes consider-
ation of hierarchical statistical criteria and feature rankings to increase its applicability for
more convincing building simulation under insufficient-data conditions.

In this paper, the research framework and the key methods for MVSs are introduced in
Section 2. Section 3 illustrates the application of the proposed methods for the development
of the BPD and MVSs, with a discussion on the comparative analysis and key findings of
hierarchical MVSs. Finally, the current study is concluded in Section 4.

2. Methods

Figure 1 illustrates the research framework of MVS study, including two main parts
divided by the two questions, Q1 and Q2. The first part proposes a DoE method, called
the hybrid space filling design, and the construction method of MVS. Using office building
type as a pilot, this paper applies the proposed methods and establish hierarchical MVSs
for the EUI prediction of office buildings to address question Q1. The second part validates
the prediction accuracy of the hierarchical MVS, and determines the relationships among
MVSs, the adopted feature selection criteria and the energy-prediction accuracy when
using MVSs as model inputs. From the angle of answering question Q2, the hierarchical
gradients of EUI prediction accuracy, achieved using different sizes of MVS, can provide
potential support for reasonable decision-making in building energy model variables that
are worthy of priority attention, especially when comprehensive consideration is needed
of the limited cost and data availability, and the acceptable accuracy of building energy
prediction, in most cases.

Within the research framework, the first part of the work on the Building Performance
Database has been elaborated upon in our published paper [22], which will be simply sum-
marized in this paper. This paper focuses on the construction, application, and validation
of MVSs. The following is structured according to key steps of the framework in Figure 1.
Section 2 provides the main research methods, including a simple introduction to the BPD,
established using the hybrid space filling design method in Section 2.1 and the construction
method of MVSs in Section 2.2. The application of the proposed methods, and the research
results are presented and analyzed in Section 3. Section 3.1 provide the implementation
results of the minimum variable sets construction method detailed in Section 2.2. The
applications of the BPD are discussed in Section 3.2. Finally, conclusions are drawn in
Section 4.

2.1. Introduction of Office BPD

As shown in Figure 1, the MVSs in this study are achieved by way of applying suitable
feature dimension reduction methods (PCA and MRMR) to a pre-simulated medium-scale
BPD, which is designed using a hybrid space filling design method, and then, simulated
using EnergyPlus in batches.
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Figure 1. Research framework of minimum variable sets (MVS) for building energy-prediction
models.

The BPD is obviously a crucial part that has great impacts on the universality and
flexibility of the achieved MVSs in this study. As the data basis for MVS construction, the
BPD, which is more representative of the complex relationship between building/system
factors and energy consumption, will make the achieved MVS more universal. It is re-
quired that the BPD covers the diversity of various energy-related building factors as
much as possible, which means the DoE method should be efficient to ensure the fun-
damental function of the pre-simulated BPD in this study. The development of a BPD
came from the idea of addressing the data-scarcity issue by way of big data in the area
of building energy-prediction models. BPD establishment in the current research can be
classified into three routes: direct massive simulation [23–25], the accumulated collection of
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measurements [26–29] or surveys [30–32]. Strictly speaking, the survey and measurement
methods could be the first choices among the three mentioned routes of BPD construction
to obtain practical building energy-performance data for the benchmark baseline definition
and predictive model development, such as the commercial building energy-consumption
survey (CBECS, 2018) [30], the residential energy-consumption survey (RECS, 2020) [33]
the aggregated BEDES dataset (LBNL,2015) [27]. It is obviously that the needed time cost
and platform resources for practical big data in the building sector are enormous for most
research studies. Moreover, the key challenges come from the large-scale availability of
building system characteristics data that are needed for broader applications but that are
poorly achieved, as well as the “noise” of empirical data that limits the ability to extract
decision-grade information [27]. Given this, many research studies take advantage of
the forward simulation model and parameterization calculational tool to establish some
targeted BPDs. A simulated BPD is commonly comprised of large-scale building cases,
and each of them is identified with multiple building variables and the simulated building
energy consumption. There are two types of pre-simulated BPD generation route. One way
utilizes supercomputers and high-performance computing clusters (e.g., the Hopper system
in [34]) to directly complete a huge amount of calculation without considering case-design
methods to downscale the BPD. The other way applies some DoE or sampling methods to
reduce the required number of cases, examining the whole design space, in which all the
possible combinations are distributed evenly within the test range. The commonly used
DoE methods for BPD establishment include orthogonal experiment design (OED) [35],
the Monte Carlo (MC) method [7–25], and Latin Hypercube Sampling (LHS) [36]. As an
important basis for building energy assessment and prediction, a useful BPD needs to cover
as many possibilities as possible to ensure good performance of the trained model. The
second way involves the selection of certain combinations of building factors to represent
the full factorial space so that the corresponding computational expense is acceptable.
Obviously, the second way is more efficient and practical, though it needs a statistically
reasonable case design to ensure the representational capability of the built BPD.

Based on the above consideration, we have proposed the hybrid space filling design
method for BPD establishment. This method of DoE combines the high-dimensional
clustering method with existing statistical sampling methods to design a medium-sized
BPD, summarized in Appendix A. Relative to some existing BPDs, the hybrid space filling
design method makes the BPD construction more computationally efficient without the
massive simulation cost of a supercomputer, and keeps the BPD more representative by
covering variations in high-dimensional building variables. With this method, this study
established an office BPD that only includes about 10,000 cases to represent the high-
dimensional space constituted by 16-D building variables and the corresponding outputs
(building energy consumption). The 16-D building variables are described in Table 2,
including 12 numerical and 4 non-numerical variables. The other paper [22] published by
the authors introduces the hybrid space filling design method and the BPD with details.

2.2. Construction Method of Minimum Variable Sets (MVSs)

Supposing that a BPD using the hybrid space filling design is enabled to represent
the complex relationship between high-dimensional variables and building energy con-
sumption, the remaining work for answering Q1 should take full advantage of the BPD
to explore the impacts of high-dimensional variables on building energy prediction and
seek their rankings. This study utilizes two kinds of feature reduction method—principal
component analysis (PCA) and max relevance–min redundancy filtration (MRMR)—on the
pre-simulated BPD. The original concept of minimum variable sets (MVSs) is proposed on
the basis of feature selection, which can statistically clarify the relationship between influen-
tial variables and building energy consumption and provide a quantitative comparison of
the influential variables. Figure 2 illustrates the construction method of minimum variable
sets, mainly including the application of both PCA and MRMR, and then, hierarchically,
the combination of their feature selection results.
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Table 2. The 16-D variables covered by the office BPD.

Numerical
Variable Description Range Non-Numerical

Variable Description Range

v1_sat Summer average temperature/◦C 16.0~31.0

v13_HVAC

All zones: CAV A0

v2_wat Winter average temperature/◦C −11.0~23.2 All zones: VAV A1

v3_tat Transition average
temperature/◦C 4.5~24.9 All zones: FCU + OA A2

v4_sarh Summer average relative
humidity 0.28~0.88 Core: VAV

Perimeter: FCU + OA A3

v5_bsc Building shape coefficient 0.10~0.50 All zones: VRV A4

v6_wwr Window/wall ratio 0.10~1.00

v14_plant

CentiChiller and boiler P0

v7_ohtc Overall heat transfer coefficient,
OHTC, w/m2 5.0~35.0 Screw chiller and boiler P1

v8_lpd Lighting power density, w/m2 10.0~20.0 Absorption chiller and boiler P2

v9_ppd People power density, m2/p 2.0~10.0 Ground-source heat pump P3

v10_epd Equipment power density, w/m2 10.0~20.0 Air-source heat pump P4

v11_sidt Summer indoor design
temperature/◦C 22.0~28.0 CentiChiller and heat pump P5

v12_widt Winter indoor design
temperature/◦C 15.0~22.0 v15_tspt Variable speed pumps Y/N

v16_schd Operation schedules High/Std/Low
usage
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PCA is the most commonly used feature dimension reduction method in the cate-
gory of feature extraction. Feature extraction usually maps the original high-dimensional
space to a new space with lower dimensions. For an m-dimensional (m-D) space with
n samples (xi, 1 < i < n), the mapping process of a data sample, xi, to the new lower-
dimensional space is achieved via Equation (1), in which W refers to the new coordinates
{w1, w2, . . . , wd}, and each dimension of the low-dimensional coordinates is the linear com-
bination of the original high-dimensional variables. The statistical principle of PCA requires
a mapping process to ensure that the low-dimensional space can preserve the variability
of the original high-dimensional space as much as possible. This requirement can keep
the low-dimensional space informative about the high-dimensional space. Therefore, the
performance of PCA is evaluated via the explanatory ability of the low-dimensional space
on the original variance of high-dimensional variables, which is quantified by the ratio of
the low-dimensional and high-dimensional variances. Based on the above, the mapping
direction (W) is determined by maximizing the low-dimensional variance of the mapped
samples, as shown in Equation (2). Through eigenvalue decomposition of the covariance
matrix of the original m-dimensional data, XXT , the PCA method utilizes the corresponding
d eigenvectors of the top d eigenvalues as the mapping matrix, which is called the loading
matrix. The loading matrix will be used as a d-dimensional linear transformation coefficient
to map the primary X into the space of the active principal components (PCs), as shown in
Equation (3).

xi
′ = WTxi, d < m,

W :


w1 = {a1, a2, . . . , am}
w2 = {b1, b2, . . . , bm}

. . .
wd = {q1, q2, . . . , qm}

 (1)

max
W

tr
(

WTXXTW
)

, s.t. WTW = I, XXT = ∑i xixi
T (2)

PC :


PC1 = w1X
PC2 = w2X

. . .
PCd = wdX

 (3)

In the PCA method, the dimensionality of the low-dimensional space, d, is a key
factor and it will impact the explanatory performance of the variance of the original high-
dimensional variables. A larger value of d means that more PCs are reserved and they can
explain a larger ratio of original variance. Generally speaking, a threshold of 75~95% for
the accumulative variance ratio is adequate [37]. In this study, we use gradient variance
as the statistically quantitative criteria for PCA to achieve different number of PCs, which
means different dimensionality of the low-dimensional space. In this way, the primary
variables that are included in the selected PCs can constitute different sizes of minimum
variable sets with a hierarchical number of indispensable building factors.

The other feature selection method we can see in Figure 2 is MRMR filtration, belonging
to the category of filter selection. MRMR aims to directly select a subset of variables that
have maximum relevance to the target variable (annual building energy consumption in
this study), and the minimum redundancy among themselves at the same time [38]. The
relevance between the building variables and the target variable (such as annual building
energy consumption) reflects the contribution of each variable to building energy prediction,
while the correlation between building variables reflects the similarities among them and
can be used to exclude the redundant features. In this study, we use the Pearson correlation
coefficient (PCC, see Equation (4)) algorithm to measure the statistical relativity of building
variables and energy consumption. In Equation (4), the correlation coefficient, ρ(ξ,η), is the
covariance of two variables, cov(ξ, η), divided by the product of their standard deviation,
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√
var(ξ) and

√
var(η). Within the range of −1~1, when the absolute ρ(ξ,η) is closer to 1,

the two variables are more relevant.

ρ(ξ,η) =
cov(ξ, η)√

var(ξ)×
√

var(η)
(4)

Similar to the settings for PCA application, different feature selection criteria are
applied for MRMR, with gradient-filtering limitations of relevance and redundancy to
obtain hierarchical MVSs. For example, this study will reserve the variables that have
relevance to EUI of more than 0.05 and exclude the variables that have relevance with
other variables of more than 0.5; these will be the VS_MRMR_Med set. Additionally, the
VS_MRMR_Min set will be constructed by increasing the relevance threshold of EUI from
0.05 to 0.1, in order to remove the variables that are less relevant to EUI.

As shown in Figure 2, relative to the conventional application of a common feature
analysis method with certain statistical criteria, the construction method of MVSs has
two aspects of improvement. Firstly, quantitatively stratified criteria are adopted to select
important variables in the application of feature reduction methods to the BPD. This
study formulates three levels of statistical criteria— strict, traditional and lenient—for
both the PCA and MRMR methods. PCA analysis usually ranks the variance explanatory
proportions of several PCs, and each of the PCs is a linear combination of the original m-D
variables. The PC ranking is then used to determine the number (d) of chosen PCs, with
a pre-set ratio of the original m-D spatial variance that needs to be reserved by the lower
d-D space. The MVS method uses the gradient levels of the pre-set ratio. For example, the
requirement for a variance explanatory proportion of 70% will reserve the top 7 PCs, and
one of 80% will reserve the top 9 PCs. Additionally, we utilize MRMR analysis to rank
the m-D variables, sorted by their relevance to the target variable. Based on the MRMR
ranking, different thresholds of PCC to EUI will choose different number of d-D variables.
For example, the requirement for a PCC of more than 0.1 will reserve more top relevant
variables than one of more than 0.05. Except for the relevance of each building factor to
EUI, the MRMR method analyzes the correlations among all building variables. In the
variable set chosen by the rank of their PCCs to EUI, if the PCC between any pair variables
is more than 0.5, we recognize them as redundant variables to each other and could just
choose one of them as an MVS. Secondly, the variable sets separately chosen using the PCA
and MRMR methods are in union at each level, with the aim of preserving the statistical
significance of the two methods.

Consequently, given the above quantitative criteria for feature selection, this study
proposes a construction method for MVSs with the following three hierarchical levels:

a. Strict requirements include an accumulated variance contribution of 80% for the PCA method,
and relevance of PCC to EUI of more than 0.05, with allowed redundancy among the cho-
sen variables for the MRMR method. Strict criteria will achieve the largest size of
MVS, VS_EUI_Max, and it is supposed to have the greatest capability for predicting
building EUI.

b. Traditional requirements include an accumulated variance contribution of 80% for the PCA
method, and relevance PCC to EUI of more than 0.05, without redundancy among the chosen
variables for the MRMR method. Traditional critera will achieve a medium size of
MVSs VS_EUI_Med, and it is supposed to have an acceptable capability for predicting
building EUI.

c. Lenient requirements include an accumulated variance contribution of 70% for the PCA
method, and relevance PCC to EUI of more than 0.1, without redundancy among the chosen
variables for the MRMR method. Lenient criterion will achieve the smallest size of
MVSs, VS_EUI_Min, and it is supposes to have an acceptable capability for predicting
building EUI, especially for circumstances with some limitations in building or system
information availability.
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In our view, multiple options of MVSs with hierarchical sizes of energy-related vari-
ables could be more feasible and universal for building energy modelling research. To be a
more quantitative and practical foundation for building energy model development, this
paper attempts to bridge hierarchical MVSs with their predictive accuracy for building
EUI. The way to achieve this is to separately use the selected variables, which belong to
different MVSs, as the input parameters of the building energy models, and then, compare
the predictive capabilities of the models with different numbers of input parameters. In
this way, the hierarchical MVSs could be accompanied by the comparative accuracy for
EUI prediction at each level, and they will be more supportive of the balance between
the limited availability of building information and the accuracy acceptance of building
energy prediction.

Obviously, the proposed method of MVS construction has ensured sufficient math-
ematical rationality and selected the most indispensable variables for building energy
prediction with rankings of relevance to building EUI; however, there are issues of model
integrity or model feasibility to be noted, especially for building forward simulation, if we
use the variables that belong to the MVSs as model input parameters. As a mainstream
method of building energy modeling, data-driven/inverse models can directly utilize the
hierarchical MVSs thanks to their flexible model structure, without consideration of physi-
cal rationality. In that case, the smaller size of MVSs means fewer requirements of training
data and fewer unknown parameters to be solved for a regression or an ANN model.
As for forward simulation, for example, an EnergyPlus model requires complete model
inputs to successfully run, due to the relatively fixed model structure and parameters. It
is highly possible that the building model could not successfully run if we only input the
parameters that belong to MVSs in the simulation model. Under the circumstances, this
study utilizes the relevance ranks of building variables in MVSs as a valuable reference for
simulation models.

Aiming to obtain quantitative reference for building energy-related variable selection
for energy models, this study compares the predictive accuracy of different models (M1, M2
and M3) through the application of varying MVSs in the forward simulation models. With
a well-calibrated model for an actual office building, M0 (as the baseline of comparative
analysis), M1, M2 and M3 refer to the adjusted simulation models of the office building that
separately apply hierarchical MVSs (VS_EUI_Max, VS_EUI_Med, and VS_EUI_Min) as
their model inputs. These models are detailed as follows:

(a) M0 is a calibrated model of an actual office building, complying with IPMVP (monthly errors
of EUI of less than 10%). M0 is regarded as the baseline model for the accuracy analysis
of M1, M2 and M3. The parameter values of the original m-D variables in the M0
model are regarded as the ground truth of the case building. The EUI calculated by
M0 is named EUIB.

(b) M1 is the 1st-version adjustment of M0, and the adjustment refers to the largest MVS1,
VS_EUI_Max. If VS_EUI_Max has a number of important variables of d1, and d1 is no
more than m, M1 keeps the values of the d1 parameters that belong to VS_EUI_Max
the same as M0 and sets the values of the other parameters (number of m-d1) that are
beyond the VS_EUI_Max default or the same as the ASHRAE guideline suggestions.
The EUI calculated by M1 is named EUI1.

(c) M2 is the 2nd-version adjustment of M0, and the adjustment refers to the medium size of
MVS2, VS_EUI_Med. If VS_EUI_Med has a number of important variables of d2,
and d2 is no more than d1, M2 keeps the values of the d2 parameters that belong to
VS_EUI_Med the same as M0 and sets the values of the other parameters (number of
m-d2) that are beyond the VS_EUI_Med default or the same as the ASHRAE guideline
suggestions. The EUI calculated by M2 is named EUI2.

(d) M3 is the 3rd-version adjustment of M0, and the adjustment refers to the smallest MVS3,
VS_EUI_Min. If VS_EUI_Min has a number of important variables of d3, and d3 is no
more than d2, M3 keeps the values of the d3 parameters that belong to VS_EUI_Min
the same as M0 and sets the values of the other parameters (number of m-d3) that are
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beyond the VS_EUI_Min default or the same as the ASHRAE guideline suggestions.
The EUI calculated by M3 is named EUI3.

Based on the above, the predictive capability of VS_EUI_Max, VS_EUI_Med and
VS_EUI_Min could be formulated by the prediction error of EUIi (i = 1, 2, 3), relative to the
baseline EUI0, as in Equation (5).

εi =

∣∣∣∣EUIi − EUI0

EUI0

∣∣∣∣, i = 1, 2, 3 (5)

For an office building, Mi (i = 1, 2, 3) represents the building energy models with
different fidelity degrees. The difference among Mi models is the number of model in-
put parameters that are matched with the actual building situation. Correspondingly, a
different εi illustrates an increase in model errors if the model fidelity decreases. Under
the circumstance that building energy-related information is limited or time-consuming to
acquire, the hierarchically quantitative relationship of MVSi, Mi and εi is able to support
the decision of building model development. If the model is required to have an error of
less than εi for EUI prediction, this paper would suggest that the variables in MVSi should
at least be matched with the actual building, like the model settings of Mi. This would
be applicable to guiding a building simulation on the fidelity requirements of important
energy-related variables from masses of model input parameters, as well defining the
boundaries of data acquisition, which is often time-consuming and without clear goals,
but necessary to building energy simulation. In this way, the proposed MVSs provide
quantitative support on building energy-related variable selection for building energy
model development.

3. Results and Discussion
3.1. MVS for Office EUI Prediction

This section follows the MVS construction method (Figure 2) and establishes hierar-
chical MVSs. In the BPD, each case is illustrated using 16-D building variables and the
corresponding building energy consumption, such as annual, sub-meter cooling/heating
and daily energy consumption in the format of energy use intensity (EUI). Theoretically
speaking, the method of minimum variable set construction is suitable for several statistics
of building energy consumption, including annual, sub-meter cooling/heating and daily
EUI, only if there is a representative dataset of high-dimensional building variables along
with the corresponding EUI results. For the sake of clarity and brevity, this paper takes the
MVSs for annual EUI as the applicant example in the results part.

Table 3 shows the hierarchical MVSs used for the annual EUI prediction of office
buildings. From the original 16-D building variables, the MVS with the largest size
chooses 13 variables as the necessary inputs for annual EUI prediction, called VS_EUI_Max.
VS_EUI_Max is the set of the union of important variables chosen by the PCA and MRMR
methods under strict statistical criteria, such as PCs that explain more than 80% of the
variance and variables that have relevance to EUI of more than 0.05. The top 3 of the chosen
12 variables are the HVAC air-side system type (v13_HVAC), the plant type of energy
system (v14_plant), and pump type (v15_trsp). They are followed by the variables related
to local weather (v1_sat, v2_wat and v3_tat), building shape (v5_bsc), operation schedules
(v16_schd), number of occupants (v9_ppd), window (v6_wwr), HVAC setpoint in summer
(v11_sidt) and internal lighting power (v8_lpd). When it comes to the MVS of medium size,
VS_EUI_Med, three variables (v14_plant, v15_trsp and v3_tat) are excluded from the above
VS_EUI_Max, due to their redundancy to the reserved ones. v14_plant and v15_trsp are
highly relevant to v13_HVAC, and the same situation occurs between v3_tat and v1_sat
and v2_wat. So, VS_EUI_Med has nine variables, which are regarded as indispensable
inputs for annual EUI prediction under the regular statistical criteria. Sequentially, the
MVS with the smallest size removes the bottom two variables (v11_sidt and v8_lpd) from
the VS_EUI_Med, and reserves the top seven important ones to form the VS_EUI_Min. It is
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noted that most of the variables selected using the two different methods (PCA and MRMR)
are coincident at each level when we compare the importance rankings of the building
variables for EUI prediction.

Table 3. Minimum variable sets for annual EUI prediction.

MVS VS_EUI_Max VS_EUI_Med VS_EUI_Min

Included variables

v13_HVAC
v14_plant
v15_trsp
v1_sat
v2_wat
v3_tat
v5_bsc

v16_schd
v9_ppd
v6_wwr
v11_sidt
v8_lpd

v13_HVAC
v1_sat
v2_wat
v5_bsc

v16_schd
v9_ppd
v6_wwr
v11_sidt
v8_lpd

v13_HVAC
v1_sat
v2_wat
v5_bsc

v16_schd
v9_ppd
v6_wwr

Variable number 12 9 7

εi o f Mi
i = 1 i = 2 i = 3

6~9% 8~11% 14~17%

At the three levels of MVSs, VS_EUI_Max with 12 variables is supposed to have the
highest predictive accuracy due to the fact that it has the largest coverage of building
energy-related information. The accuracy of VS_EUI_Med and VS_EUI_Min is supposed to
decline gradually. To quantitatively compare the predictive capabilities of MVSs of different
sizes, this section follows the application method of MVSs in forward simulation (detailed
in Section 2.2) by comparing the prediction errors (εi, i = 1, 2, 3) of models (Mi , i = 1, 2, 3)
for actual office building cases. Here, we utilized two EnergyPlus models of two actual
office buildings located in Shanghai and California separately, as their own M0, after both
of them were calibrated and met the verification requirements of IPMVP. The shapes of the
two office buildings are attached in Appendix A. The results of Mi and εi indicate that, for
the whole annual building EUI of the two cases, the prediction error ε1 of M1, which uses
VS_EUI_Max (12-D) as accurate model variables, is no more than 10%. The prediction error
ε2 of M2, which uses VS_EUI_Med (7-D), is no more than 15%. When it comes to the M3,
which uses VS_EUI_Min (7-D), the error ε3 increases to no more than 20%, as detailed in
Table 3. The results demonstrate that the trend of the predictive accuracy of hierarchical
MVSs quantitatively improves along with the increase in the included variables, and that
the accuracy magnitude level of VS_EUI_Med can basically satisfy the requirement of
annual EUI prediction. From the importance ranking of MVSs, we can conclude that, to
predict annual EUI as accurately as possible, the priority order of the building variables
that need to be matched to actual buildings is suggested to be HVAC system type, outdoor
weather, building shape, operation schedule, occupants, envelope, etc., if there is limited
data availability for all the building variables.

3.2. Application of the BPD

With the aim of providing a data basis for answering the two key questions in this
study, an office BPD was designed and pre-simulated, including 9750 office building cases
that have a variety of 16-D building energy-related features. Previous studies establishing
BPDs have usually developed data-driven models with the BPD as the training data and
regarded their models as an approximation of building simulation programs for their own
research objectives, such as retrofit evaluation, technical baseline, etc. [24,30,32,34]. In
addition to the application of the office BPD for MVS findings, this study also discusses
the extrapolative application of the BPD from the simulation models to the approximate
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data-driven model. Here, as mentioned in the discussion part, the BPD was used as the
training data for three Back-Propagation Artificial Neural Network models. The three BP
models separately apply the hierarchical MVSs, VS_EUI_Max (12-D), VS_EUI_Med(9-D),
and VS_EUI_Min(7-D), as their model variables, and the three models all aim to predict
annual building energy consumption. So, we called the three BP models BP_M1, BP_M2
and BP_M3, according to the naming of Mi in Section 3.2.

The BP ANN model is a commonly used data-driven algorithm for building energy
prediction. For the sake of clarity and brevity, this paper explains the modeling process
of BP_M1 as an example, and that the processes for BP_M2 and BP_M3 are similar. The
settings of the BP model are listed in Table 4 and it is noted that the partitions of the BPD
(9750 cases) for the training, validation and test are 90%, 5% and 5%. When the model
iteration ends, the modeling results in Figure 3 imply that the absolute errors of the BP
model show a normal distribution, and Figure 4 also shows good fit of the BP model to all
of the training, validation and test sets, with high R values of more than 0.95.

Table 4. Key settings of BP models.

Key Setting Description

Training function Levenberg–Marquardt BP algorithm

Hidden layer transfer/excitation functions Sigmoid function

Output layer transfer/excitation functions Linear function

Number of nodes in hidden layer 2n+ 1, in which n equals the number of model
variables, such as 12 for BP_M1 and 9 for BP_M2

Dataset partition
Random sampling, with 90% (8774 cases) as

training set, 5% (488 cases) as validation set, 5%
(488 cases) as test set

Model evaluation index to end the training Mean Square Error (MSE)
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Similar to the application of MVS from the perspective of forward simulation in
Section 3.2, this study compares the prediction accuracies of the three models with different
numbers of model input variables when they are used in actual office building cases.
Table 5 provides the model errors of annual EUI prediction for the two buildings cases,
and the results are analyzed based on several instances of BP modeling with the same
settings, considering the random sampling of the training, validation and test datasets.
Obviously, the comparative results of the BP model errors (εi) also reflect the quantitatively
increasing trend of the predictive accuracy of hierarchical MVSs, along with the increase
in the included variables in the BP models. With the same BPD as the modeling dataset,
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the BP model with a larger number of input variables has higher fitting R and smaller
εi o f BP_Mi.
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Table 5. Predictive error comparison of BP ANN models for actual offices.

Model Results of BP_Mi i = 1 i = 2 i = 3

Model variable numbers, equal to MVSi 12 9 7

Fitting R of BP_Mi to training/test set 0.95~0.98 0.82~0.87 0.82~0.85

εi o f BP_Mi for office 1 in Shanghai 1~11% 9~15% 13~24%

Median εi o f BP_Mi for office 1 in Shanghai 5.8% 8.9% 15.0%

εi o f BP_Mi for office 2 in California 5~11% 19~25% 20~32%

Median εi o f BP_Mi for office 2 in California 8.6% 20.9% 23.1%

Model results of
Mi

6~9% 8~11% 14~17%

If we further compare the model accuracy of BP_Mi with that of Mi, built in Section 3.2
for the same two actual offices. The errors of BP_Mi increase more prominently when
the model variables are reduced from 12-D to 9- or 7-D than those of forward models Mi.
Using 12-D MVS1 as the model variables, the errors of BP_M1 and M1 are similar, and
both of them are less than 10%. When the input variables of the BP models are reduced,
the magnitude of model errors is obviously different for the two offices. For office 1
located in Shanghai, the effect of variable reduction in the BP models on predictive errors
is close to that in the simulation models, due to the median εi o f BP_Mi being within the
range of εi o f Mi when i equals 2 or 3. Meanwhile, for office 2 located in California, the
median εi o f BP_Mi is obviously beyond the upper limit of εi o f Mi when i equals to 2 or
3. It seems that the predictive capability of the BP models is not stationary, and the BP
models have worse predictive accuracy if the model variables are reduced, because the
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εi o f the forward models Mi are smaller than the εi o f BP_Mi, especially when using 9- or
7-D MVS as the model variables. This is reasonable because the forward models Mi still
have the impacts of the default settings of the excluded variables when the model variables
are reduced from 12-D to 9- or 7-D, as described in Section 3.2, while the excluded variables
are completely absent for the BP models.

4. Conclusions

Given that current building energy models lack reasonable feature selection in the
area of forward simulation, this study aims to answer two fundamental questions about
the indispensable variables for building energy prediction, to support more persuasive and
efficient building simulation, especially with the limitation of data availability. With this
goal, this study proposes a two-step framework of minimum variable sets (MVS), including
BPD establishment first, and then, the development and estimation of hierarchical MVSs.

This study set out to gain a better understanding of the complex relationship between
high-dimensional variables with building energy consumption. The rigorous design of
the BPD basically ensures its representative capability, which is crucial for contributing
some universal findings in the following MVS study. This paper first proposed the hybrid
space filling design method for BPD establishment, and introduced high-dimensional space
clustering to the commonly used random sampling method. With the efficient DoE plan,
we establish an office BPD with 9750 office cases using parallel simulation. Each case is
characterized by specific 16-D building variables, including basic building information,
weather conditions, the building envelope, the internal load and the HVAC system, as well
as the simulated energy consumption.

On the basis of the representative BPD, this study originally comes up with the concept
of MVSs, which contain the most indispensable variables for building energy prediction
with certain accuracy. The findings reported here shed new light on the quantitative rela-
tionships among the minimum variable set, the feature selection criteria and the model
prediction accuracy. The strict feature selection criteria will achieve the largest size of
MVS, and relatively, it has the highest accuracy of building EUI prediction. For exam-
ple, VS_EUI_Max with 12-D variables is capable of contributing to the building energy
model with a less than 10% error of annual EUI prediction. For the MVS with 9-D or 7-D
variables, the model errors present an increase trend, along with a reduced number of
indispensable variables.

These findings could provide a theoretical basis and data support for the appropriate
trade-off of limited basic data and high requisition of office building energy prediction in
practical applications. From the importance ranking of building variables in MVSs, we can
conclude that, to predict annual EUI as accurately as possible, the priority order of building
variables that need to be matched to actual buildings is suggested to be HVAC system type,
outdoor weather, building shape, operation schedule, occupants, envelope, etc., if there is
limited data availability for all the building variables.

This research offers a framework for the exploration of more convincing and efficient
building simulation through a better understanding of the relationship between high-
dimensional variables and building energy consumption. The key strengths of this study
were the rigorous design of the BPD and the MVS concept, and their application method for
building energy models. With regard to the research methods, some limitations need to be
acknowledged. During the DoE of the BPD, two variables were simplified: building shape
and usage schedules. For the building shape variable, the office building cases in the BPD
only covered two common types of building shape: the square type and rectangle type.
For building usage schedules, there were three scenarios to represent different operation
situations, without consideration of the uncertainty of occupant behavior, to reduce the
complexity of the DoE process. At the same time, with the limitation of the cost-consuming
data collection of actual building cases, this study only checked the application of MVSs to
two actual office buildings. With this study as a valuable framework trial, future work will
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cover more detailed model parameters for short-term prediction and utilize more practical
building cases, and will extrapolate the methodology to other building types, as well.
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