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Abstract: This study reports an experimental investigation on the impact behavior of elliptical
concrete-filled steel tubular (CFT) columns subjected to lateral loading. A total of five CFT columns,
including one circular cross-section and four elliptical cross-sections, were tested using a horizontal-
impact-testing system. The influences of the impact velocity, the impact times, and the cross-section
geometry on the dynamic response of the elliptical CFT columns were analyzed. The experimental
results have shown that the specimens withstood the global displacements without the buckling
of the steel tubes. The strain rates of the steel tubes in this paper were small. The impact velocity
had significant influences on the impact load-time histories and energy absorption. Meanwhile, the
impact times had little influence on the impact force and displacement at the same impact velocity.
Circular CFT columns have the highest ductility and impact-energy-absorption capacity. Based
on the finite element analysis software ABAQUS, the finite element models of the elliptical CFT
columns under impact loads were established. The simulation results were in good agreement with
the experimental results. Finally, the mechanical mechanism of the elliptical CFT columns under
lateral impact was analyzed by the finite element model.

Keywords: elliptical CFT; lateral impact load; dynamic response; energy absorption; finite element
analysis

1. Introduction

Over the past few decades, due to the development of transportation infrastructure
and the increase of traffic, more attention has been drawn to the evaluation of bridge
structures or buildings against lateral impact loads such as collisions or terrorist bomb-
ings [1]. Generally, these collisions generate a high force applied over a very short period
of time, which may cause catastrophic consequences on human life and infrastructure
systems [2]. Conventional structures are usually not designed to resist impact loads, and
the magnitudes of impact loads are significantly higher than the design loads; therefore,
conventional structures are more susceptible to damage from impact scenarios. It is worth
noting that understanding the impact response of structural members can provide the
solution to ensure the safety of structures.

Concrete-filled steel tubular (CFT) columns are widely used in construction due to
their improved capacity and ductility. To date, the performances of standard cross-section
shaped (circular, square, or rectangular) CFT columns have been investigated by various
researchers [3–7]; however, the elliptical shape has been recently introduced to structural
engineering due to their aesthetic appearance and structural efficiency. Interestingly,
few researchers have conducted the experiment on the elliptical CFT columns. It was
confirmed that an equivalent rectangular CFT column could be reasonably proposed
to derive the capacity of an elliptical CFT column [8]. Yang et al. [9] gave the design
recommendations for concrete-filled elliptical hollow sections based on the experimental
investigation. More recently, Mahgub et al. [10] carried out an experimental study on
the axial compressive behavior of self-compacting concrete. Cai et al. [11] found that
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the compressive resistance predictions of elliptical CFT stub columns from the current
international design specifications were overall conservative. Recently, Ipek et al. [12]
presented an investigation on the axial compressive performance of elliptical concrete-filled
double-skin steel tubular columns. Additionally, the local buckling of CFT columns was
studied based on the refined model [13] or the elastic behavior [14]. Unfortunately, there is
a paucity of literature on the investigation of the behaviors of the elliptical CFT columns
under lateral impact loads.

Apart from studies on the static behaviors of columns, the knowledge of dynamic
behaviors under lateral impact loads is still relatively rare. The vertical drop hammer im-
pact system was commonly adopted to assess the impact load on the horizontally installed
specimens [15]. Remennikov et al. [16] found that the square CFT column had high-impact
resistance and energy absorption capacity by conducting the instrumented drop hammer
tests. Wang et al. [17] reported that the axial-load level had significant effects on the
lateral deflections and the impact force of circular CFT members subjected to the lateral
impact loads. Yousuf et al. [18] investigated the behavior of hollow and concrete-filled
mild and stainless steel columns with the axial load from the transverse impact loading by
an instrumented drop-weight impact facility. Yang et al. [19] presented the experimental
and numerical results of square recycled aggregate CFT members under lateral impact
loading. Thus, the majority of the available experimental tests were performed on hori-
zontal elements featuring beam characteristics using drop-weight impact facilities. Due to
the gravity influence, the drop-weight impact facilities cannot adequately reproduce the
rebound conditions.

The pioneer experimental tests were carried out by Popp, who applied a full-scale
truck collision on the reinforced-concrete columns. They proposed that the rise time to
the peak load was in the order of magnitude of 10−1 s, which very differed from static
conditions [20]. Chen et al. [20] reported the impact responses and damage characteristics
of full-scale RC piers in actual truck collision tests. Although using full-scale vehicle impact
tests can provide the actual impact process, they are not commonly adopted due to the
tests being expensive and time-consuming. Some researchers developed novel facilities
to feature the columns real characteristics under lateral impact loads in the laboratory.
Aghdamy et al. [21] adopted an innovative instrumented horizontal-impact-testing system
to apply lateral impact loads on the axially-loaded concrete-filled double-skin tube columns.
In this approach, the column was located in the horizontal direction while the impact
direction was vertical on the column. Other tests were performed on the circular reinforced-
concrete piers [22] or precast segmental columns [23] by the pendulum impact test system
in which an impactor can swing to impact. Recently, Feng [24] reported an experimental
test using an impact test bench to understand the continuous lateral impact resistance of
cantilever square CFST columns. Demartino et al. [25] used a horizontal collision facility, in
which a test truck was used to reproduce the impact, to apply the lateral impact loading
on the vertical circular RC columns. Ye et al. [26] presented an experimental study on
15 square RC columns under horizontal impact loading. Some researchers have studied
structural members under repeated impact loads [27,28]; therefore, it is necessary to study
the responses and failure modes of elliptical CFT columns subjected to the impact loading.

The object of this study was to present an experimental investigation on the dynamic
response of elliptical CFT columns under lateral impact loading by a developed innovative
horizontal-impact-testing system. Five elliptical CFT columns with different impact ve-
locities, impact times, and cross-section geometries were investigated. The testing results,
including test observations, impact load-time history, displacement time history, energy
absorption, strain, and strain rates were presented and discussed. Finally, the mechanical
mechanism of the elliptical CFT column was studied by using the finite element analysis
software ABAQUS.
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2. Experimental Program
2.1. Test Specimens

In total, five elliptical CFT column specimens, including one circular CFT column,
were designed and constructed. The two cross-sections of specimens are shown in Figure 1.
The circular specimen used the commercially available 180 × 180 × 6 mm steel hollow
section, while the elliptical specimens used 180 × 120 × 6 mm elliptical steel hollow
sections by welding two semi-oval sections together. All the specimens had the same
height of 2.2 m. Herein, the specimen IDs were specified depending on their section
sizes, the impact directions, and velocities (increased or unchanged), respectively. E and
C denote the elliptical section and circular section, respectively. The second number of
120 or 180 represents the impacted axis of the specimen. The letter U represents that the
column was impacted with the unchanged impact velocity, and the letter I indicates that
the specimen was impacted with different impact velocities. All the tested specimens are
summarized in Table 1.

Each specimen consisted of a reinforced-concrete foundation with dimensions of
900 mm × 900 mm × 500 mm, which was stiffened by enough reinforcement to avoid any
displacement under the impact load. Four holes (diameter 100 mm) were designed for
the installation to reproduce the fixed boundary conditions by prestressing the bolts. The
test parameters were the cross-section geometries and the impact velocities, including the
increase of velocities and the constant velocity.

Commercial concrete was used to cast all the specimens at the same time. Six standard
cube samples were cast and tested at the impact testing time to obtain the compressive
strength of concrete. The average compressive strength (f c) of concrete was 29.62 MPa. The
standard tension tests for the steel tubes were conducted and the measured mechanical
properties are listed in Table 1.

Table 1. Parameters of the tested specimens.

Specimens D/B/t/L
mm

f c/
mPa

f y/
mPa

f u/
mPa

N/
kN

Impact
Direction

E-120-I 180/120/6/2200 29.62 331.6 480.9 184 along the minor axis
E-120-U 180/120/6/2200 29.62 331.6 480.9 184 along the minor axis
E-180-I 180/120/6/2200 29.62 331.6 480.9 184 along the major axis
E-180-U 180/120/6/2200 29.62 331.6 480.9 184 along the major axis
C-180-I 180/180/6/2200 29.62 331.6 480.9 251 along the major axis

Denotation: f y is the yield strength of the steel tube; f u is the ultimate strength of the steel tube; N is the applied
axial load.
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Figure 1. Cross-sections of two typical specimens. (a) Circular; (b) Elliptical.
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2.2. The Horizontal-Impact-Testing System

The horizontal-impact-testing system, as shown in Figure 2, is adopted to reproduce
the collision onto the vertical columns or piers. It is comprised of a test truck, an axial
pre-loading frame, guide rails, and a drop-weight system. The frame, which can sustain
an axial load of 400 kN, is firmly fixed to the stable ground via high-strength bolts. The
hydraulic jack can apply the axial load while simultaneously allowing it to move freely
through a combination of the rollers stacked to the frame. The test truck consists of an
instrumented hammer at the head which is designed to be stiff. Four specially designed
steel hollow cylinders are designed to connect the hammer and the truck. The truck moving
on the horizontal guide rails can be propelled towards the test specimens by the drop
weight. Additional steel plates can be inserted to increase the weight of the impact truck
that has an initial value of 1200 kg, and can be increased to the maximum value of 3000 kg.
The impact velocity can be changed with the location of the drop weight with varying
heights in the range of 0 to 18 m.

The test truck is propelled by the drop-weight system. The drop weight can move on
the slipway in the vertical direction. The steel wire connects the test truck and the drop
weight. One end of the steel wire is fixed to the drop weight, and the other end features
a loop to fit the separation with the test truck when the stopper location is reached. At
the stopper location, the test truck is close to the specimen with a space of about 150 mm.
Thus, the impact collision can be applied after the drop weight is released and the constant
velocity can be achieved.
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Figure 2. Impact test setup. (a) Sketch of the facility; (b) The instrumented hammer with test truck;
(c) Test truck on the rails; (d) Specimen inside the frame; (e) Drop weight.

2.3. Data Measuring Instrumentation

To measure the impact velocity of the test truck, a laser velocity sensor was employed
at the stopper location. The impact force was measured by the strain gauges on the four
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steel hollow cylinders connected to the truck and the instrumented hammer, which proved
to be effective [26]. Four linear variable displacement transducers (LVDTs) were installed at
the bottom, h/4, h/2, and the top of the column to monitor the movements during the tests.
Here, h is the height of the column. The load at the top of the column was measured by the
transducers inside the hydraulic jack. Meanwhile, the axial load can be maintained during
the test. The location distribution of the LVDTs is shown in Figure 3a. On the other hand,
nine longitudinal strain gauges were attached to the steel tubes to measure the longitudinal
strain distributions of the columns at three cross-sections (A to C from the column bottom
end). The layout of the strain gauges is shown in Figure 3b.
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Figure 3. Location distributions of (a) LVDTs and (b) Strain gauges.

2.4. Test Setup

The horizontal-impact-testing system was utilized in the current test. All the specimens
described above were tested under a constant axial load and impact loads. The elliptical
CFT columns should be aligned for the installation at the tested location. The target
velocities were calibrated by a tested column before the test to determine the height of
the drop weight. The axial load was applied first and remained constant after reaching a
certain level. Then the drop weight was positioned at the determined height. Meanwhile,
the test truck was pulled to a certain distance from the specimen to ensure the steel wire
was under tension. Once the drop weight was suddenly released, the test truck accelerated
until the stopper position aimed towards the vertical impact position on the specimen. The
test-truck collision on the specimen occurred. The impact velocity was detected using a
laser velocity senor, which triggered all the sensors. The test was terminated until the axial
load could not be maintained.

3. Experimental Results and Discussion
3.1. Test Observations

All the tested specimens showed the global deformations under the impact loading, no
matter the differences of the cross-section geometries or the impact velocities. No noticeable
outward buckling on the steel tubes was found during the test. This illustrates that the
elliptical CFT columns have excellent impact performance. The deformation of the columns
increased with progressively increasing impact velocities. Meanwhile, the specimens
experienced the increased lateral deformations with the increasing impact numbers under
the same impact velocity. Figure 4 shows the deformed columns at the final failure under
the last impact.
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3.2. Impact Load-Time History

The impact load is an essential factor in studying the impact-resistance capability
of an elliptical CFT column. To better understand the impact load, the measured impact
load-time histories for all the specimens are displayed in Figure 5. Herein, the impact 01
represents the first impact, impact 02 represents the second impact, and so on.

The shapes of the impact load-time histories recorded for all the specimens are similar.
As depicted in Figure 5, impact load-time histories can be divided into three phases for all
the specimens, including the sharp first peak-force phase, the vibration and plateau phase,
the unloading phase, and the rebounded second impact.

In the first phase, it is evident that the impact force increased sharply to the initial
peak force within about 0.2 ms as the specimen was accelerated by the test truck. It can be
found that the specimens under the same impact velocity had almost the same stiffness;
however, the stiffness quickly increased with the increasing impact velocity. Meanwhile,
the first impact force was mainly governed by the impact velocity, and the first peak impact
force exhibited a significant increase with high-impact velocity. A peak value of 137.53 kN
was measured on the column E-120-I at the impact velocity of 2.31 m/s, while higher peak
loads of 166.9 kN, 198.4 kN, and 209.9 kN were obtained at the velocities of 2.71 m/s,
3.12 m/s, and 3.42 m/s, respectively. Column E-180-I had approximately the same reaction;
however, specimen E-180-I had a higher peak value than that of E-120-I. This is due to the
more significant impact sectional modulus of specimen E-180-I, along the major axis. For
the specimen C-180-I, the peak value would reach to 407.3 kN at the impact velocity of
3.88 m/s, while the peak value of 209.5 kN was obtained at the impact velocity of 1.80 m/s.

Under the same impact velocity, the peak impact load increased and then decreased
due to the increased impact occurrences. Additionally, the curves are almost the same
during the first phase of the specimens. For specimen E-180-U, the peak load for the impact
01 was 168.1 kN. A higher peak load of 174.9 kN was obtained for the impact of 02 for the
confinement of the steel tube, while a lower peak load of 161.7 kN for the impact of 03 had
resulted in the damage of the concrete and steel tube. The same phenomenon was observed
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for specimen E-120-U. The peak load values for the impact 01, impact 03, and impact 05
were 93.7 kN, 103.2 kN, and 91.1 kN, respectively, for the specimen E-120-U.

In the second phase, there was a gap between the first and second peak forces, implying
that the specimen had a higher velocity than the test truck after the impact. Then a second
peak force was obtained as the specimen and the test truck acquired a common velocity.
Comparing with the first peak force, the second peak force was lower, except with specimen
E-120-U. This seems to imply that the specimen had damage after the first impact force.
Then, the impact force dropped and vibrated with an individual value. It can be observed
that E-180-I had lower individual values than E-120-I. Similar results can be observed for
the specimens E-120-U and E-180-U. It can be concluded that the increase in the stiffness
induced by the cross-section leads to a moderate increase in the plateau value.

Finally, the impact force comes to the unloading phase. The test truck and the specimen
being separated from each other caused the impact force to reduce to zero; however, the
rebounded specimens may have a higher velocity than the test truck, so the second impact
occurred. This phenomenon can be observed at a high-impact velocity. Additionally, the
loading duration for the second impact became slightly longer with the increased velocity.
Compared with the first impact, the peak impact force of the second impact was lower. For
specimen E-120-I, at the impact velocity of 2.31 m/s, the second impact force increased up
to 40.3 kN.
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Figure 5. Impact load-time histories for all the specimens. (a) E-120-I; (b) E-120-U; (c) E-180-I;
(d) E-180-U; (e) C-180-I.

Figure 6 shows the effect of the impact velocity on the peak impact force. It can be
found that the peak impact load increased with the increased impact velocities. This can be
explained by the fact that higher peak impact load was obtained due to higher moment
capacity of the specimen in the impact direction. As observed from Figure 6, the peak
impact loads had negligible changes for the specimen under the same impact velocity.
Specimen E-120-I exhibited a lower peak impact load than the other specimens, due to the
fact that specimen E-120-I had a smaller impact sectional modulus along the minor axis.
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Figure 6. Effect of the impact velocity on the peak impact force.

3.3. Displacement Time Histories

For all the tested specimens, the displacement time histories at the mid-height and
top points of the column are presented in Figures 7 and 8, respectively. Meanwhile, the
maximum deformation and residual deformation at the mid-height are given in Table 2. It
can be found that the elliptical CFT columns have better ductilities under impact loads with
higher displacements. The shapes of displacements at the top of the column are similar
to those at the mid-height. The displacement at the top of the column was almost two
times the mid-height displacement, but with a delay. This delay may be caused by the
time required for the stress waves to travel from the impact point towards the top of the
column. As shown in Figures 7 and 8, the maximum displacement of the column increased
significantly with the impact velocities increasing from 1.88 m/s to 3.88 m/s; however, the
same impact velocity did not change the column’s displacement, which demonstrated that
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the column was still in the elastic stage, especially for column E-180-U. The free-vibration
period, approximately 40 ms, was obtained for column E-180-U. At the same impact velocity
of about 2.3 m/s, the maximum displacement at the impact point of column E-120-I was
34 mm, while the corresponding values for columns E-180-I and C-180-I were 113 mm and
23 mm, respectively.
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Figure 7. Mid-height displacement time histories of the columns. (a) E-120-I; (b) E-120-U; (c) E-180-I;
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Figure 8. Column top displacement time histories. (a) E-120-I; (b) E-120-U; (c) E-180-I; (d) E-180-U;
(e) C-180-I.

Table 2. Summary of the key results of the experimental CFT columns.

Specimens
Impact

Velocity
m/s

PIF
/kN

Time
/ms

It/
kN·ms

Maximum
Deformation

/mm

Residual
Deformation

/mm

Energy
Dissipation

/J

E-120-I
2.31 141.2 6.5 437 34.08 16.59 2131
2.71 166.9 7.1 488 41.42 18.60 3075
3.12 198.4 7.3 531 48.94 23.74 4011
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Table 2. Cont.

Specimens
Impact

Velocity
m/s

PIF
/kN

Time
/ms

It/
kN·ms

Maximum
Deformation

/mm

Residual
Deformation

/mm

Energy
Dissipation

/J

E-120-U

1.20 103.3 12.2 419 19.64 4.99 1035
1.20 107.4 12.1 449 22.01 6.73 1223
1.20 104.0 12.6 421 22.03 9.23 1222
1.20 104.7 13.5 423 21.78 9.34 1239
1.20 101.5 10.6 412 21.60 10.02 1223

E-180-I

1.31 137.5 9.3 649 22.44 15.27 1795
1.77 175.5 10.5 748 39.73 22.91 3282
2.04 226.0 11.6 869 46.88 26.00 4536
2.34 240.4 16.3 1212 54.28 29.92 5528

E-180-U
2.08 168.1 13.1 752 36.98 22.46 3120
2.08 174.9 10.9 755 37.57 19.19 3192
2.08 161.7 11.8 774 38.84 22.63 3082

C-180-I

1.8 209.5 9.3 875 17.49 0.32 1878
2.36 272.5 9.3 965 23.58 6.05 3044
2.8 339.8 9.9 1058 30.51 18.61 4754
3.19 357.8 8.3 1008 39.90 26.73 6273
3.5 373.8 9.3 1082 48.54 23.68 7597
3.88 407.3 15.3 1464 55.57 28.72 9198

Denotation: PIF (peak impact force); It (impulses).

3.4. Strain and Strain Rates

The typical load-longitudinal strain curves of the elliptical steel tubes are illustrated
in Figure 9. It can be seen that the stain curves showed similar trends when reaching the
maximum values, followed by the descending branches in half-sine waveform. The strain
gauge 3(A) positioned on the bottom face in the tension region of specimen E-120-I showed
the maximum values, which were approximately double the values of the strain gauge 6(B).
At the first three impacts, the elastic strain on the steel tube was obtained until impact 04.
It can also be noticed from Figure 9b that the strains developed quickly at impact 04 and
impact 05, as the steel tube entered the plastic state.

Compared to the static load, the strain rate is considered under impact load. The
compressive strain-rate curves are showed in Figure 9c and were calculated using the
compressive strain–time relationships. The maximum strain rates were calculated, varying
from −0.11 to −0.21 s−1 under different impacts onto the compression region of specimen
E-120-U. Thus, the strain rates in this test were small as the impact velocities were low.
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Figure 9. Typical strain and strain rates of the steel tube. (a) Strain curves in the tension region of
the specimen E-120-I. (b) Strain curves in the compression region of the specimen E-120-U. (c) Strain
rates of in the compression region of the specimen E-120-U.

3.5. Energy Absorption

The energy absorption, which can be estimated by the enclosed area under the impact
mid-height load-displacement curve (as shown in Figure 10), is another critical factor to
evaluate the impact resistances of the columns, shown in Table 2. The impact impulse,
derived from the enclosed area of the impact force time history, is also presented in Table 2.
The elliptical CFT columns with the increased impact velocity exhibited an improvement
in energy absorption. At the same impact velocity, the columns dissipated almost the same
energy. It also indicated that the damage to the elliptical CFT columns was rarely small. As
shown in Figure 11, more energy was dissipated with the applied impulses. The second
and third impact energy absorptions for column E-120-I were 44.3% and 88.2% higher
than that of the first impact, respectively. Under the same impact velocity of 2.3 m/s, the
corresponding impact energy absorptions of columns C-180-I and E-180-I were 3044.1 J
and 5528.3 J, respectively. Additionally, the residual displacements were 6.05 mm and
29.92 mm, respectively. Therefore, it can be concluded that the CFT column C-180-I had
lower damage under lateral impacts. For E-120-U, the dissipated energy was almost 1200 J,
with an impulse of about 2125 kN·ms. This indicates that the specimen still had the capacity
to resist more dissipated energy after the five relatively low-velocity impacts, even after
the noticeable residual displacement increased. The CFT column E-180-U had very similar
dissipated energy with the column E-120-U.
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4. Finite Element Modeling
4.1. Finite Element Model

To simulate the dynamic responses of elliptical CFT columns under lateral impact
loading, a detailed finite element analysis model was developed using ABAQUS/Explicit
software. The stress–strain relation of the steel tube was assumed to be linearly-elastic and
perfectly-plastic, satisfying von Mises’ plasticity theory. The damaged plasticity model of
concrete (CDP) provided by the software model library was used to describe the behavior
of the core concrete. The effect of the strain-rate on concrete was considered [17].

In the model, the steel tube and core concrete were simulated by eight-node reduced-
integration three-dimensional brick elements (C3D8R), respectively; moreover, the test
truck was simplified to be a rigid block with the same weight as the same impacted surface.
The hard contact behavior in the normal direction of the concrete-steel tube surfaces was
assumed with no penetration allowed and the tangent contact was simulated through the
Coulomb friction model with a friction coefficient of 0.6. The steel tube and core concrete
were tied together with the foundation, which was fixed with all degrees of freedom
restricted. The axial load was applied at first; then, the test velocity was defined for the
rigid block to apply the lateral impact loading.

4.2. Verifications of the FEA Model

The FEA model was verified by the experimental results. No local buckling was ob-
served from the FEA model, which was similar with the experiment ones. Figures 12 and 13
present the comparisons of impact load-time histories and impact displacement-time histo-
ries between the tested results and the predicted ones of the specimens E-180-I and E-180-U,
respectively. It can be found that a generally good agreement was obtained for the second
phase of the impact load-time history and the impact displacement-time history between
both results. The difference may be that the axial load cannot slide freely in the test, or
signal interference and material variability in the experiment were differences between
the measured results and the predicted results [29]. Thus, the FEA model can be used to
predict the elliptical CFT columns under lateral loading.
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Figure 12. Impact load-time histories for the specimens (a) E-180-I and (b) E-180-U.
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Figure 13. Impact displacement time histories for the specimens (a) E-180-I and (b) E-180-U.

4.3. Strain Mechanism Analysis

Figures 14 and 15 demonstrate the strains of the steel tube and core concrete of
specimen E-180-U at the impact velocity of 2.08 m/s in the first impact. It can be found that
the strain generally went through four stress states:

(1) Local response: In this state, when the test truck made contact with the specimen,
the stress rapidly increased at the impact location. Also, slight damage of steel tube
and core concrete was obtained at the impact location. The stress wave, produced
by the impact, spread to the two ends of the column. At the same time, the impact
force rapidly increased from zero to the peak value and the deformation was almost
zero. This shows that the impact force was basically balanced by the inertial force. At
the same location, the strain on the concrete was larger than that on the steel tube.
This indicates that the slip occurred between the steel tube and the concrete. Thus,
the deformation coordination condition was not satisfied;

(2) Overall response: After the peak load, the specimen showed its overall response.
The strain gradually increased at the bottom of the column. In this stage, the stress
wave travelled through the whole specimen. The strain of the specimen dramatically
increased; meanwhile, the damage extended at the impact location;

(3) Stable response: In this stage, the impact force generally remained stable; however, the
kinetic energy of test truck was converted into internal energy of the specimen, and
the deformation increased. Thus, the strains of steel tube and core concrete developed
further. The plastic region at the bottom of specimen continued to expand;

(4) Descending response: In this stage, the impact force decreased to zero. This indicates
that the test truck separated with the specimen and they reversed their velocity
direction. Then, the specimen reached the maximum displacement. At last, the
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deflection of the specimen stayed at the residual deformation with the vibration. The
plastic region of the concrete was larger than that of the steel tube.
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5. Conclusions

This paper has presented the investigation on the dynamic behavior of the elliptical
CFT columns subjected to lateral impact loading. From the test results, the test observations,
impact load-time histories, displacement time histories, energy dissipation and finite
element model for the specimens were explored. The main conclusions can be drawn
as follows:
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(1) Under the lateral impact load, the elliptical CFT columns had good impact perfor-
mance. The columns had global deformations with noticeable outward buckling of
the steel tubes;

(2) The impact load-time histories can be divided into three phases. The first impact force
was mainly governed by the impact velocity within about 0.2 ms. Under the same
impact velocity, the first peak impact load increased and then decreased due to the
increased times of impact. A second peak force was obtained at the same velocity
acquired by the specimen and test truck. The test truck and the specimen separated
following the unloading phase;

(3) The elliptical CFT columns have good ductility under an impact load with higher
displacements. The displacement at the column top was almost twice the value at the
mid-height but with a delay;

(4) The strains and strain rates descended in half-sine waveforms after reaching the maxi-
mum values. The strain rates in this study were small as the impact velocities were
small. The elliptical CFT columns dissipated almost the same energy under the same
impact velocity, and more energy was dissipated with the increased impact velocity;

(5) The dynamic responses of elliptical CFT columns under lateral impact loading can
be simulated by establishing the finite element model. The mechanical mechanism
of the strains can be divided into four stages. The stress wave travelled through
the whole specimen at the overall response, while the strain was obtained at the
impact location during the local response. The strains developed more extensively
during the stable responses. Also, the vibrations of the specimens occurred during
the descending responses.
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