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Abstract: Spatially variable ground motions are crucial for the seismic analysis and design of extended
and multi-support structures. In this study, a new random nonstationary spatially variable ground
motion model based on the propagation process of seismic waves is proposed. In particular, the
amplitude and phase transfer functions of seismic waves at the local site are studied herein. The
probability density function of the corresponding parameters is given. Two simple examples are
used to show the generation of random ground motions. Compared with traditional methods, our
proposed model not only has a clear physical background but also shows good practicability. The
model should be for those researchers who want to use nonstationary spatially variable ground
motions to study the seismic response of lifeline systems or building portfolios.

Keywords: spatially variable ground motions; seismic field; random earthquakes; semi-physical
model; wave-passage effect

1. Introduction

Earthquakes are an external factor in the failure of engineering structures. In the early
stage of earthquake engineering, just like the literature [1] pointed out, the earthquake
motion was a wave-motion, but it was not a simple harmonic; however, recording and
analyzing this wave has always been difficult. In 1933, the United States obtained the first
batch of strong earthquake acceleration records in the Long Beach earthquake [2], and the
study of ground motions entered a new stage.

When performing random seismic response analysis on a structure, especially when
using Monte Carlo simulation methods, several random ground motion samples are often
required. At present, only limited ground motion samples obtained from actual measure-
ments at specific sites are insufficient. The problem of producing accelerations, called
simulated ground motions, artificial ground motions, or synthetic ground motions, has
been raised. These ground motions are not arbitrary, but the characteristics of the generated
ground motions must conform to the characteristics of the specific site. The ground motions
themselves need description parameters from the time and frequency domains, or domains
of other signal processing technologies [3], which include peak values, duration time, and
main frequency. Meanwhile, the engineering site also needs its own description parameters,
such as site categories, soil shear wave velocities, epicenter distances, or some parameters
of the seismic sources, corresponding to the site. The study of establishing a ground motion
model is essential to establish the mapping relationship between the parameters of the
ground motions and the parameters of the engineering site; thus, after the parameters of
the latter are provided, the acceleration time history that meets the characteristics of the
former can be obtained.
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In 1947, Housner proposed the use of a random process to describe ground motions [3,4].
Since then, various researchers have proposed various ground motion simulation methods.
Generally, it can be divided into three categories [5]. The first category is “source-based”
methods, or physical-based methods, which are based on the physical process of the for-
mation and propagation of seismic waves. For example, a previous study [6] proposed
the establishment of a random amplitude spectrum with a seismic source, propagation
path, and local site and combined the random phase spectrum to simulate random ground
motions; furthermore, based on this model and combined with the ground motion database
PEER NGA, Boore and Atkinson statistically analyzed the peak ground motion accelera-
tion, peak ground velocity, and other characteristics of seismic waves and provided the
prediction formula [7]. Subsequently, Boore et al. were committed to the improvement
in the model and the study of model parameters [8–11]. When the seismic source is a
finite fault, Motazedian and Atkinson abstracted the finite fault as a series of sub-faults,
used a point-source model to simulate these sub-faults, and reflected the spectrum change
of ground motions by introducing the concept of “dynamic corner frequency” [12]. The
second category is the “site-based” methods, which are mainly based on the frequency
spectrum characteristics or response spectrum characteristics of ground motions at the site
to construct a random ground motion time history [13,14]. These methods include filtered
white noise random processes, filtered Poisson processes, auto-regressive moving average
model, spectral representation method, random wave theory, among others [15]. For ex-
ample, Rezaeian and Kiureghian suggested a white-noise-based modulation model [16].
Vlachos et al. proposed a multimodal analytical nonstationary spectral model [15]. Liu et al.
proposed a random function method for random ground motion simulation, based on the
spectral representation method to reduce the problem of excessive random variables in the
traditional spectral representation method [17]. The third type is a hybrid method based
on the “source-based” model and the “site-based” model, and it can also be called the
“semi-physical” model. This type of method not only contains certain physical parameters
that can effectively reflect the physical process of earthquake propagation but also has a
good reflection of the characteristics of the local site. It uses real ground motion samples
in an actual ground motion database to establish a random ground motion model. Some
classical semi-physical models or physical models can also refer to [5].

In addition to the simulation of ground motion at a specific point, the spatially variable
ground motions within a specific engineering site have also aroused strong interest, owing
to the need for seismic response analysis of lifeline engineering structures. This is a
problem that we study herein. Seismic ground motions exhibit obvious differences in
terms of amplitude and phase at different points in a given site. This is owing to the
wave passage effect, site effect, and the effect of “pure incoherence” [18]. The change in
seismic motion is the spatial variation of seismic ground motions (SVSGM). Past results
have demonstrated that the SVSGM is important for the seismic analysis and design of
extended structures [19,20] and multi-supported structures [21–23]. In some cases, the
SVSGM is detrimental to the seismic design of structures [24]. Therefore, many different
seismic analysis methods have been suggested to study the effect of SVSGM on structures,
such as the relative motion method, large-mass method [25], displacement method [26],
and multiple-support response spectrum method [27]. Meanwhile, many permanent or
temporary acceleration arrays have been globally deployed to record the spatially variable
ground motions. The most famous is the SMART-1 array (strong-motion array in Taiwan).
It was the first large digital array of strong motions, specially designed for engineering and
seismological studies of earthquakes [28] and has operated from 1980 to 1991. Furthermore,
some other arrays, such as the SMART-2 array in Taiwan [29] and the Chiba Experiment
Station in Tokyo, Japan [30], are also of significance.

However, using real spatially variable ground motions to realize seismic response
analysis of lifeline engineering is not a good option. First, the structures were generally
not distributed according to the acceleration arrays. In addition, for the stochastic seismic
analysis of complex nonlinear structures, especially in the Monte Carlo simulation method,
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many seismic samples are required. Therefore, many random spatially variable ground
motion models have been suggested to simulate the differential ground motions and are
widely used in engineering practice. Generally, these models generate time histories based
on a power spectral density function with a coherency function. A uniformly modulated
function in the time domain is always introduced to include the temporal non-stationarities.
Finally, the modulated time histories were iteratively modified to ensure that the samples
were compatible with the prescribed response spectra [31]. In 1989, Hao et al. [32] suggested
the Hao–Oliveira–Penzien (HOP) method that assumes that the acceleration is a stationary
stochastic process and the different points in the random field have the same power spectral
density function. The main idea is to obtain the relation between the amplitude or phase
at a certain frequency and the value of the Cholesky decomposition of the cross-spectral
density matrix. Subsequently, it needs to obtain the accelerations at different points via the
trigonometric series method or the inverse Fourier transform method. However, while the
time history is ergodic throughout the simulations, the time histories at the subsequent
locations are not ergodic [33]. Therefore, Deodatis [34] used a location-dependent frequency
discretization method to ensure that the simulated motions at all points are ergodic over
the longest period. In addition, Shrikhande and Gupta [35] improved the HOP method
using the power spectral density function of equivalent stationary ground motion and the
duration spectrum corresponding to the recorded motion under consideration to make
the simulated time histories consistent with the design spectrum with regard to its mean.
Although these methods provide valuable information for the seismic response analysis of
lifelines, as indicated by Zerva and Zervas, owing to the influence of earthquakes and site
conditions, as well as the difference in the numerical processing of data and the selection
of function forms, many coherency models have been suggested. However, selecting a
suitable method for the site with the structure at hand remains a problem [33].

Another method for modeling a random field is the conditional simulation algorithm.
The multivariate linear prediction method is suggested by Vanmarcke et al. by improving
the conventional kriging method [36,37]. This method assumes that some acceleration
histories at some points in the random field are already known and can be divided into
many segments. Then, for every segment, optimal linear unbiased estimation at other points
satisfying the coherency function can be obtained. In the next step, these estimations can
be pieced together using a linear interpolation algorithm. Finally, the traveling wave effect
should be post-processed to account for wave propagation phase delays [37]. However,
owing to its complexity and the difficulty of estimating the spatial correlation of the field,
this method is not widely used for engineering purposes [38].

Essentially, these power spectrum models and coherency function models are built
based on the hypothesis that earthquakes are a stationary ergodic random process. Mean-
while, these models are obtained from the direct statistics of the measured data; as such, they
do not have a clear physical background. Therefore, some physical-based or semi-physical
models have been proposed [31]. Konakli and Kiureghian proposed a model to simulate
arrays of spatially varying ground motions, incorporating the effects of incoherence, wave
passage, and differential site response [39]. Dinh et al. studied the stochastic seismic
wavelet-based evolutionary response of multi-span structures, including wave-passage
and site response effects [40]. Camacho et al. clarified the impact of spatial variability on
the seismic behavior of long, irregular reinforced concrete bridges [41]. In addition, Wang
and Li [42] suggested a semi-physical random function model of ground motions based
on the propagation of seismic waves. In this model, the earthquake source, propagation
path, and local site were modeled. Furthermore, Wang and Li [43] considered seismic wave
propagation at a local site and built a random semi-physical model of the ground motion
field at a local site. However, the field model cannot reflect the frequency dispersion effect
of the ground motions at a local site. Therefore, to overcome this drawback, the propagation
equations of seismic waves at the local site are modified herein, such that both the traveling
wave effect and the frequency dispersion phenomenon can be reflected in the new model.



Buildings 2022, 12, 1727 4 of 25

The remainder of this paper is organized as follows. Section 2 introduces a semi-
physical random function model of ground motions. Section 3 modifies the propagation
equations of seismic waves in the frequency domain at a local site. The random parameters
of the model were obtained from the data measured by the SMART-1 array. In addition, the
basic steps for generating seismic samples in a local field are summarized. A sample field
was used as an example to show the modeled accelerations. Finally, Section 4 concludes
the paper.

2. Semi-Physical Random Function Model of Ground Motions

The physical mechanisms of seismic wave propagation can be simplified, as shown in
Figure 1 [42]. The seismic waves occur at a fault source, propagate along a one-dimensional
path, and reach the surface of the bedrock. Finally, seismic waves travel from the bedrock
to the surface of the local site. Herein, the local site is not a single point but a region, in
which the spatially distributed structures of interest are located, such as water distribution
networks or long-span bridges. The ground motions can be expressed as follows:

aR(t) = −
1

2π

+∞∫
−∞

AR
(
ξ, ω

)
· cos

[
ωt + ΦR

(
ξ, ω

)]
dω, (1)

where aR (t) denotes the acceleration, t is time, AR
(
ξ, ω

)
is the Fourier amplitude spectrum

of accelerations, ΦR
(
ξ, ω

)
is the Fourier phase spectrum of the accelerations, ξ and is a

random vector. Here, the symbol “¯” on the character indicates that the character is a
random vector.
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The Fourier amplitude and phase spectrum of the acceleration are combined by
the Fourier amplitude and phase spectrum of three parts, namely the seismic source,
propagation path, and local site, as follows [6,42]:

AR
(
ξ, ω

)
= Hso(ω) · Hpa(ω) · Hsi(ω), (2)

ΦR
(
ξ, ω

)
= Φso(ω) + Φpa(ω) + Φsi(ω), (3)

where Hso (ω), Hpa (ω), His (ω) are the Fourier amplitude of the seismic source, propagation
path, and local site, respectively. The subscripts “so, pa, si” mean the seismic source,
propagation path, and local site, respectively. Meanwhile, Φso (ω), Φpa (ω), Φsi (ω) are the
Fourier phase of the seismic source, propagation path, and local site, respectively.

The seismic source was modeled using the Brune source model [44]. This model
assumes that the fault plane is a round plane, the fault dislocations are evenly distributed
on the fault plane, and the fault occurs instantaneously. The shear wave generated by the
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source dislocation propagated in the direction perpendicular to the fault plane, as shown
in Figure 2. The near-field displacement induced by fault rupture should be:

u(x, t) =

{
0 t < 0

σ
µ · βτ

(
1− e−

t−x/β
τ

)
t ≥ x/β′

(4)

where σ is the effective shear stress, β is the shear wave velocity, and µ and τ denote the
shear modulus and the Brune source parameter, describing the decay process of the fault
rupture, respectively. Let x→0 and transform Equation (4) into the frequency domain,
we obtain:

Uso(ω) =
∫ +∞

−∞
uso(t)dt =

∫ +∞

−∞
u(t)|

x→0
dt =

{
0 t < 0

− σβ
µ

(
1

ω2+τ−2 +
1/τω

ω2+τ−2 j
)

t ≥ 0
, (5)

where uso and Uso (ω) are the motions of the seismic source in the time and frequency
domains, respectively.
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The source amplitude spectrum Hso(ω) and the phase spectrum Φso(ω) should be

Hso(ω) =
A0

ω

√
ω2 +

(
1
τ

)2
, (6)

Φso(ω) = arctan
(

1
τω

)
, (7)

where A0 = σβ/µ and τ are the two random parameters of the seismic source, which can be
obtained based on many acceleration records in different types of sites. An example has
been shown in the literature [5].

The medium from the seismic source to the local site was simplified to a one-dimensional
uniform linear elastic medium, and the damping effect and the dispersion effect were con-
sidered. At this time, the amplitude spectrum Hpa(ω) and phase spectrum Φpa(ω) for the
propagation path are simplified as follows [42]:

Hpa(ω) = exp(−KRω), (8)

Φpa(ω) = −R · d · ln
[
(a + 0.5)ω + b +

1
4c

sin(2ω)

]
, (9)

where K indicates the mean damping effect of the medium and can take a value of
10−5 s/km, R is the epicentral distance, and a, b, c, and d are four empirical parameters.
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The constants a, b, c, and d in the model are also identified from the recorded acceleration
time histories. The detailed process of the identification can be found in the literature [5].

As the influence of the propagation path on the phase spectrum is complicated, after
many attempts, Song revised Equation (9) based on the principle that the phase difference
distribution between the simulated ground motion and the real earthquake should be as
consistent as possible. The modified phase spectrum is as follows [45]:

Hpa(ω) = −R · ln[aω + 1000b + 0.1323 sin(3.78ω) + c cos(dω)]. (10)

The local site can be simulated by an equivalent single-degree-of-freedom (SDOF)
system, as shown in Figure 3. The input of the system is the seismic wave imposed on the
bedrock surface and the displacement of the bedrock is uR. The relative displacement of
the system with respect to the bedrock is u, then the absolute displacement of the system
uR0 can be obtained by:

uR0(t) = u(t) + uR(t). (11)
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The kinematic equation of the system is

..
u(t) + 2ξgωg

.
u(t) + ω2

gu(t) = − ..
uR(t), (12)

Equation (12) is easily found in Dynamics of Structures, such as the book written by
Chopra [46]. Substituting Equation (12) Into Equation (11) will lead to the motion equation
of the system in the time domain as follows:

..
uR0(t) + 2ξgωg

.
uR0(t) + ω2

guR0(t) = 2ξgωg
.
uR(t) + ω2

guR(t), (13)

where uR0 is the output ground motion at a local site. ξg is the equivalent damping
ratio of the local site. ωg is the equivalent predominant circular frequency of a local site.
Subsequently, according to Equation (13), we can obtain the motion equation of the SDOF
system in the frequency domain as follows:

UR0(ω)
[
−ω2 − 2ξgωωg j + ω2

g

]
= UR(ω)

[
−2ξgωωg j + ω2

g

]
, (14)

where UR0 (ω) and U0 (ω) are the Fourier transforms of uR0 and uR, respectively, and j is an
imaginary unit. Subsequently, we can obtain

UR0(ω) =
−2ξgωωg j + ω2

g

−ω2 − 2ξgωωg j + ω2
g

UR(ω). (15)

Therefore, in the frequency domain, we can obtain the transfer function from UR0 (ω) to U0
(ω) as follows:

Asi(ω) =
ω2

g − 2ξgωωg j
ω2

g −ω2 − 2ξgωωg j
= Hsi · ejΦsi , (16)

where ξg and ωg are the characteristic parameters of the local site.
Therefore, the amplitude spectrum Hsi(ω) should be equal to:
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Hsi(ω) =

∣∣∣∣ ω2
g−2ξgωωg j

ω2
g−ω2−2ξgωωg j

∣∣∣∣ = ∣∣∣∣ 1−2ξgω/ωg j

1−(ω/ωg)
2−2ξgω/ωg j

∣∣∣∣
=

|1−2ξgω/ωg j|∣∣∣1−(ω/ωg)
2−2ξgω/ωg j

∣∣∣ =
√

1+4ξ2
g(ω/ωg)

2√[
1−(ω/ωg)

2]2
+4ξ2

g(ω/ωg)
2

=

√
1+4ξ2

g(ω/ωg)
2[

1−(ω/ωg)
2]2

+4ξ2
g(ω/ωg)

2

. (17)

The phase spectrum of seismic waves in the local site should be

Φsi(ω) = −‖
ω2

g − 2ξgωωg j
ω2

g −ω2 − 2ξgωωg j
‖, (18)

where the symbol “‖‖” indicates phase angle calculation. Generally, this is a very small
number and represents the phase change from bedrock to the surface. This value is usually
ignored by researchers due to its small impact [47].

Lastly, Equations (2) and (3) can be embodied as:

AR
(
ξ, ω

)
=

A0

ω

√
ω2 +

(
1
τ

)2
· exp(−KRω) ·

√√√√√ 1 + 4ξ2
g
(
ω/ωg

)2[
1−

(
ω/ωg

)2
]2

+ 4ξ2
g
(
ω/ωg

)2
, (19)

ΦR
(
ξ, ω

)
= arctan

(
1

τω

)
− R · ln[aω + 1000b + 0.1323 sin(3.78ω) + c cos(dω)]. (20)

When the vector ξ =
(

A0, τ, ξg, ωg
)T is a random vector, the ground motion model in

Equation (1) becomes a random ground motion model.
The predominant frequency (ωg) and damping ratio (ξg) are obtained according to

real seismic acceleration records in different types of sites. An example can be found in the
literature [5]. For different types of sites, the histogram and the probability density function
of ωg are shown in Figure 4 as an example (herein, PDF is the abbreviation of probability
density distribution).

In engineering practice, the predominant frequency can also be obtained according
to the test of the shear wave velocity (Vs30 in ALA seismic guidelines [48] and Vs20 in
Chinese seismic codes [49]). However, the relationship between them is not constant for
different sites. Many researchers pay attention to the relationship between the predominant
frequency and shear wave velocity, e.g., [50,51].

After we obtain the Fourier amplitude and phase spectrum in Equations (2) and (3),
the simulated accelerations in the time domain can be obtained by the inverse discrete
Fourier transform method [52] or the method of narrowband wave groups [53].
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3. Random Nonstationary Spatially Variable Ground Motion Model
3.1. Model Introduction

Figure 5 is a plan view to show the seismic wave propagation in the local site. The
propagation of seismic waves is very complex. Seismic waves can propagate in three dimen-
sions. To simplify this problem and generate stochastic ground motions for engineering
practice, many researchers have reduced it to a one-dimensional propagation problem [5].
The propagation direction is defined in a simplified way as the direction of the seismic
source toward the local site.
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Point O is the center point of the local site. Point M is any point at the local site. We
assume that the seismic waves travel from point O to point M. Therefore, in the frequency
domain, we have:

HM(ω, rl) = HO(ω) · Hpr(ω, rl), (21)

ΦM(ω, rl) = ΦO(ω) + Φpr(ω, rl), (22)

where HM (ω,r1) and HO (ω,r1) denote the amplitude spectra of seismic waves at points
M and O, respectively; ΦM (ω,r1) and ΦO (ω,r1) are the phase spectra of seismic waves at
points M and O, respectively, and r1 is the distance between the two points in the direction of
seismic wave propagation. Hpr (ω,r1) and Φpr (ω,r1) are the propagation laws of amplitude
and phase at the local site, respectively, which can be expressed as follows [43]:

Hpr(ω, rl) = exp
(
−α0ωrl

2

)
, (23)

Φpr(ω, rl) = −
ωrl
cg

, (24)

where α0 is the attenuation parameter of the local site, and cg is the apparent seismic wave
velocity. α0 and cg are random variables.
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However, after careful evaluation, the two shortcomings of that model are: α0 is not
self-consistent in this model. According to this assumption, α0 is a constant at different
frequencies in this model. However, according to Equations (21) and (23),

α0 = − 2
ωrl

ln
[

HM(ω, rl)

HO(ω)

]
. (25)

Obviously, the parameter α0 should change with frequency, so it is not a constant.
(2) The model only considers the traveling wave effect but neglects the dispersion

effect of earthquakes. Herein, the dispersion effect refers to the phenomenon wherein
waves with different frequencies propagate at different speeds.

In fact, seismic waves not only have obvious traveling wave effects but also present
prominent dispersion effects even at a relatively uniform site. To verify these two phenom-
ena, the accelerations tested by the SMART-1 array were selected as an example. The layout
and number of different stations in the array are shown in Figure 6. The distance between
stations C00 and I06 in the east–west direction is approximately 45.5 m. The accelerations
tested by these two stations in Event 5 in the east–west direction are shown in Figure 7a.
Figure 7a shows that, in the real earthquake field, the traveling wave effect is obvious. A
comparison of the frequency spectra is shown in Figure 7b. Accordingly, the difference
between the two frequency spectra is also obvious. Therefore, the dispersion effect is also
prominent, although the distance between these two stations in the east–west direction is
only 45.5 m.
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However, because the apparent seismic wave velocity cg in this model is constant, the
simulated acceleration in the frequency at different points does not change much. Herein,
the model was used to produce samples for the site shown in Figure 8. Point PO was
at the center of the site. Point PA represents a point along the direction of seismic wave
propagation. It is 45.5 m away from point PO. The simulated accelerations and their Fourier
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spectra are shown in Figure 9. Obviously, in the simulated field, the traveling wave effect is
obvious, according to Figure 9a, whereas in Figure 9b, the dispersion effect is neglected.
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3.2. Model Modification

To solve the above-mentioned two problems, the amplitude and phase spectra were
improved.

3.2.1. Modification of the Amplitude Spectrum

Equation (23) is used to describe the change law of the Fourier amplitude spectrum:
However, parameter α should change with frequency as follows:

α= Fα(ω), (26)

where Fα is a function that needs to be determined.
Herein, the accelerations in Figure 7 are taken as an example to study the function

Fα. The accelerations and their Fourier amplitude spectra are shown in Figure 7. For the
convenience of modeling, only records from 0 to 16 s were removed. Subsequently, based
on Equation (25), parameter α can be obtained as follows:

α = − 2
ωr0

ln

[
HPI06

(ω, r0)

HPC00
(ω)

]
, (27)

where HPI06
(ω, r0) and HPC00

(ω) are the amplitude spectra of the seismic waves at stations
C00 and I06, respectively. r0 is the distance between the two stations in the east–west
direction and takes a value of 0.0455 km. Figure 10 shows that the parameter changes
severely, especially at low frequencies. Therefore, the following function is used to describe
the parameters:

Fα(ω) =

{
p1e−

ωp2
2π + p3 ω ≤ 30π

p1e−15p2 + p3 ω > 30π
(28)

where ω (rad) is the circular frequency. p1, p2, and p3 are the three parameters. For the
function in Figure 10, the three corresponding numbers of p1, p2, p3 are 19.6300, 9.4480, and
−0.0695. The coefficient of correlation is 0.9142. Since the amplitude of the acceleration in
the frequency domain is very small after 15 Hz (Figure 7), only the acceleration in the range
of 0–15 Hz is utilized for the parameter identification in this paper. Due to the scarcity of
data from strong motion arrays, only the data of event 5 obtained by SMART-1 are used.
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3.2.2. Modification Law of the Phase Spectrum

To describe the dispersion effect of seismic waves, we assumed that the seismic velocity
changes with frequency as follows:

cg= Fcg(ω), (29)

where Fcg is a function that must be determined. This hypothesis regards soil as a dispersive
medium. This is in accordance with the fact that the soil is essentially a type of viscoelastic
medium with damping [54].

To obtain the function Fcg, the method suggested by Loh was utilized [55]. The main
steps are as follows:

At frequency ω0, the accelerations at the two stations should be filtered by a nar-
rowband filter. The filter is a Butterworth bandpass filter with a bandwidth of π rad/s.
Subsequently, two narrowband accelerations can be obtained as follows:

a∗1 =
∣∣∣F−1[F(a1) · Γ(ω0)]

∣∣∣, (30)

a∗2 =
∣∣∣F−1[F(a2) · Γ(ω0)]

∣∣∣, (31)

where a1 and a2 are the initial acceleration while a∗1 and a∗2 are the filtered acceleration at
the frequency ω0, respectively; F and F−1 are the Fourier transform and the inverse Fourier
transform, respectively; Γ(ω0) is a narrowband filter, and its mid-frequency is ω0; the
symbol “|·|” indicates capturing the Fourier transform module. In addition, for avoiding
the phase delay of accelerations during filtering, a zero-phase digital filtering method is
recommended [56].

The cross-correlation of a∗1 and a∗2 can be expressed as

Ra(τ) =
∫ +∞

−∞
a∗1(t)a∗2(t + τ)dt, (32)

where Ra(τ) is the cross-correlation between a∗1 and a∗2 . Generally, when Ra(τ) reaches its
maximum, the value τ = τ0 is the delay time between the two signals a∗1 and a∗2 . However,
at the local site, the propagation direction should be considered. Therefore, the delay time
should be determined, according to the following rules:

(1) When the seismic waves propagate from a∗1 to a∗2 , the delay time should be

τd = τ1, (33)

where τ1 is the delay time obtained according to the cross-correlation when the seismic
waves propagate from a∗1 to a∗2 . Now, τ1 should satisfy the following conditions:{

τ1 > 0
R(τ1) = Rpeak1

, (34)

where Rpeak1 is the first peak value of Ra (τ) when τ is positive.
(2) When the seismic waves propagate from a∗2 to a∗1 , the delay time should be

τd = τ2, (35)
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where τ2 is the delay time obtained according to the cross-correlation when the seismic
waves propagate from a∗2 to a∗1 . At this time, τ2 should satisfy the following conditions:{

τ2 < 0
R(τ2) = Rpeak2

, (36)

where Rpeak2 is the first peak value of Ra (τ) when τ is negative.
(3) The seismic velocity at frequency ω0 can be obtained by

vs(ω0) =
rl
τd

. (37)

Moreover, the seismic velocity should satisfy the closure property [57]. As shown in
Figure 11, three stations, S1, S2, and S3, are arranged in a field. The distances between the
two stations along the wave propagation direction were d12, d23, and d13. For a plane wave
at a specific frequency, the closure property can be expressed as follows:

t13 = t12 + t23, (38)

t12 =
d12

vse
, (39)

t23 =
d23

vse
, (40)

t13 =
d13

vse
, (41)

where vse is the velocity of the plane wave.
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Figure 11. Closure property for a plane wave.

The accelerations at stations C00 and I06 in Event 5 were studied as an example to
obtain the seismic wave velocities at different frequencies, based on the methods suggested
above.

(1) When the frequency ω0 is 0.8 Hz, the filtered accelerations are shown in Figure 12a.
Subsequently, the cross-correlation between them can be obtained, as shown in Figure 12b.
Accordingly, the first extreme point is Q1 when τ is positive. Therefore, the delay time
should be 0.64 s. Then, the seismic wave velocity should be:

vs(ω0) =
rl
τd

=
0.0455
0.64

= 0.0711 km/s (42)
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(2) When the frequency ω0 is 2 Hz, based on the same process, as shown above, the
filtered accelerations and cross-correlation are shown in Figure 13. At this moment, the
delay time should be 0.2 s. Consequently, the seismic wave velocity should be 0.2275 km/s.
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The seismic wave velocities should be examined. When the frequency ω0 is 2 Hz, the
accelerations at stations I06, C00, and I12 in the east–west direction can be used to verify
each other. The filtered accelerations and the corresponding cross-correlation at stations
C00 and I12, I06 and I12 are shown in Figures 14 and 15, respectively.
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(b) cross-correlation of the filtered accelerations.

According to Figures 14 and 15, the delay time from station C00 to station I12 is 0.18 s,
and the delay time from station I06 to station I12 is 0.37 s. Therefore, we obtain

τI06-C00 = 0.2s (43)

τC00-I12 = 0.18s (44)

τI06-I12 = 0.37s (45)

where τI06-C00, τC00-I12, and τI06-I12 denote the delay times of seismic waves from stations
I06, C00, and I06 to stations C00, I12, and I12, respectively.
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Meanwhile, based on Equation (38), the delay time from station I06 to station I12
should be

τ′I06-I12 = τI06-C00 + τC00-I12= 0.38s (46)

The relative error between τI06-I12 and τ′I06-I12 is 2.63%; therefore, it can be assumed
that the seismic velocity meets the closure property successfully.

(1) According to the procedure shown in (1) and (2), we can obtain the seismic wave
velocities at different frequencies from station I06 to station C00 in the east–west direction,
as shown in Figure 16. Consequently, an obvious linearly increasing trend can be observed
in Figure 16. Therefore, the function Fcg in Figure 16 can be represented by a linear function
as follows:

Fcg(ω) = q1
ω

2π
+ q2 (47)

where q1 and q2 are the two parameters to be determined. For the function in Figure 16, the
parameters q1 and q2 are 0.07273 and 0.09343, respectively. Figure 16 is used to illustrate how
the parameters q1 and q2 are obtained for a set of ground motions in two sites. The results
in Figure 16 are illustrated with ground motion records in I06 and C00. For other ground
motion records, the treatment is similar. Thus, we can obtain many sets of parameters q1
and q2 to determine the distribution information. For the convenience of data processing,
we uniformly intercepted the information of seismic waves from 0 to 15 Hz for analysis.
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(2) Figures 10–16 are used as examples to illustrate how parameters p1, p2, p3, q1, q2
can be obtained from a group of ground motion records (I06-C00). For other groups of
ground motion records, such as (I12-C00), the process to obtain these five parameters is
similar. The ground motion records are the test records from the SMART-1 array in the
PEER database. The parameters may be correlated with each other. However, for simplicity
of processing, those parameters are supposed to be independent when the number of
ground motion records is very large. Because these five parameters are derived from the
amplitude and phase spectra of seismic wave propagation in the local site, they do not
consider the characteristics of the seismic sources and propagation paths, but only the
propagation of seismic waves within the local site.

3.2.3. Revised Model

Based on the amendment of the amplitude and phase transfer functions in the fre-
quency domain mentioned above, the new model in the frequency domain can be expressed
as follows:

Hpr(ω, rl) = exp

−
(

p1e−p2
ω
2π + p3

)
ωrl

2

 (48)

Φpr(ω, rl) = −
ωrl

q1
ω
2π + q2

(49)

Herein, p1, p2, p3, and q1, q2 denote parameters related to the local site. Obviously, when
these parameters are random, the model becomes a random ground motion model.

3.3. Model Parameters

To build a random seismic field, the parameters p1, p2, p3, q1, and q2 in Equations (48) and (49)
need to be statistically modeled. Herein, the accelerations obtained by SMART-1 in the east–west
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and south–north directions were analyzed. For a specific pair of acceleration records in the same
site, such as I06 and C00, the parameters are constant. However, for different pairs of acceleration
records in the same site, these five variables are random. We obtain five groups of parameter
values by analyzing many pairs of acceleration records. They are supposed to be independent in
many samples. Thus, a stochastic ground model can be established.

For a pair of specific stations, there is a certain correlation between parameters p1–p3
or q1–q2. When we identify those parameters, we always obtain them group by group.
However, we ignore the correlation between parameters when there are many samples
because it is difficult to describe the correlation between such parameters. At the same time,
ignoring this correlation is very convenient for the sample generation of random variables.
This method is also a common method for many artificial earthquake models. For example,
in many models, the phase angle is assumed to be an independent random variable [53],
or in the lagged coherency of spatially variable ground motion models, the phase angle
difference between two stations fits some random distribution [33]. We were not able to
study the probability distribution of these five parameters in the model in other types of
sites due to the paucity of sample data.

3.3.1. Parameters of the Amplitude Spectrum

For the parameters in Equation (28), according to the method in Section 3.2.1, the
parameters p1, p2, and p3 for the accelerations in the east–west and south–north directions
can be obtained. The distribution patterns of these parameters are studied. The parameter
q1 satisfies the exponential distribution as follows:

f (x) =
{

λe−λx x ≥ 0
0 x ≥ 0

(50)

Parameters q2 and q3 satisfy the normal distribution as follows:

f (x) =
1√
2πσ

e−
(x−µ)2

2σ2 (51)

Herein, parameters λ, µ, and σ are parameters in the probability density function and
are summarized in Table 1, where λ is the rate parameter of the exponential distribution
function, and µ and σ are the mean and standard deviation of the normal distribution,
respectively. The distribution fittings of these parameters are shown in Figure 17. All
distribution fittings were tested by the KS test, and the confidence levels were all 95%.

Table 1. Probability distribution of parameters in the amplitude and phase transfer functions.

Parameter Distribution Type λ µ σ

p1 Exponential 11.5559 - -
p2 Normal - 9.7904 2.0028
p3 Normal - 0.0128 0.0276
q1 Exponential 1.1832 - -
q2 Exponential 1.8947 - -

λ is the rate parameter of the exponential distribution, and µ and σ denote the mean and standard deviation of
the normal distribution, respectively.

3.3.2. Parameters of the Phase Spectrum

For the parameters in Equation (47), according to the method in Section 3.2.2, the
parameters can be obtained based on the accelerations in the east–west and south–north
directions. The distribution fittings of the two parameters are shown in Figure 18. Herein,
an exponential function is used to fit the probability density distribution. The probability
distribution information for these two parameters is summarized in Table 1. In addition, all
distributions were tested using the KS test, and the confidence levels were as high as 95%.
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Figure 17. Distribution fitting of parameters (a) p1 and (b) p2 and (c) p3 in the amplitude
transfer function.
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3.4. Generation of Spatially Variable Ground Motions

Finally, the new spatially variable ground motion model is expressed as follows:

aRS(rl, t) = − 1
2π

∫ +∞

−∞
ARS

(
ξS, ω

)
· cos

[
ωt + ΦRS

(
ξS, ω

)]
dω (52)

ARS
(
ξS, ω

)
= A0

ω

√
ω2+( 1

τ )
2 · exp(−KRω)·√

1+4ξ2
g(ω/ωg)

2[
1−(ω/ωg)

2]2
+4ξ2

g(ω/ωg)
2
· exp

[
−
(

p1e−p2
ω
2π +p3

)
ωrl

2

]
(53)

ΦRS
(
ξS, ω

)
= arctan

(
1

τω

)
−

R · ln[aω + 1000b + 0.1323 sin(3.78ω) + c cos(dω)]− ωrl
q1

ω
2π +q2

(54)

where aRS (rl,t) is the acceleration at any point in the modeling field, ξS =
[
ξ, p1, p2, p3, q1, q2

]T

=
[
A0, τ, ξg, ωg, p1, p2, p3, q1, q2

]T and is a random vector. For completeness and conve-
nience, the probability distribution types and corresponding distribution information of
the four parameters ξ= [A0, τ, ξg, ωg] are listed in Table 2. The ground motion model pro-
posed in this paper is modeled in the frequency domain by considering the seismic source,
propagation path, and local site separately. The randomness of the parameters in the source
and propagation path has been presented in the literature [5,42,58], and this paper only
focuses on the randomness of the seismic wave propagation in the local site. For a specific
acceleration record, the parameters are correlated. However, for many acceleration records,
the parameters are assumed to be independent to facilitate engineering applications.

Table 2. Probability distribution of random parameters.

Parameters Distribution Function Parameters of the PDF
Clustered Groups

Group 1 Group 2 Group 3

A0 (g·s/rad) Lognormal
µ −1.4872 −1.1090 −0.7155

σ 0.8639 0.7906 0.6944

τ (s/rad) Lognormal
µ −2.7141 −2.2853 −1.4397

σ 1.4257 1.9570 1.8048

Parameters Distribution function Parameters of the PDF
Site types

I II III IV

ζg (rad) Gamma
α 3.1557 3.9979 3.8113 3.3281

1/β 0.1223 0.0938 0.0985 0.0924

ωg (rad) Lognormal
µ 2.2107 2.3998 2.2417 2.0178

σ 1.3111 0.9986 0.8233 0.5058

Note: Sites I, II, III, and IV are four types of sites in Chinese seismic codes. Correspondingly, in ALA seismic
guidelines [48], sites are divided into six types, including types I–VI. In this paper, the site is divided according to
the Chinese seismic codes [49].

The model parameters were fitted to acceleration samples from a single event recorded
by the SMART-1 array. The probability distribution of those model parameters is, therefore,
specific to that event and that region. However, it is a reasonable assumption to apply these
parameters to the simulation of seismic waves in the same types of sites, according to the
American and Chinese seismic guidelines. For other types of sites, it should be noted that
the values of these parameters are not applicable and more ground motion samples from
more events and different kinds of sites may be required to obtain appropriate parameters.

To produce a random local field, the following algorithm steps should be taken:
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(1) Determine the peak ground acceleration (PGA) and the number of samples needed.
For example, for an ordinary residential house located in Beijing, the PGA is usually
required to be 0.2 g, according to the seismic codes. The number of samples needs to be
determined, according to the reliability assessment method.

(2) Build a coordinate system at the local site and determine the coordinates of the
different simulated points. For simplicity, the origin of the coordinate can be assumed to be
the incident point of the seismic waves, traveling from the bedrock to the surface of the site.

(3) Determine the probability distribution information of the nine random parame-
ters, according to Tables 1 and 2. Subsequently, sample points are generated based on
different sampling methods, such as the multiplicative congruential method or the mixed
congruential method.

(4) The simulated accelerations in the frequency domain at different points in the site
can be obtained based on the coordinates of different points in the local site and the selected
sample points.

(5) The inverse discrete Fourier transform method [43] or the method of narrowband
wave groups [44] can be utilized to obtain accelerations in the time domain. The amplitude
of the acceleration at the origin of the coordinate should be modulated according to the
amplitude of the designed acceleration. Subsequently, the amplitude of the accelerations
at other locations in the local site should be modulated according to the same ratio. The
modulation of the acceleration amplitude is based on the peak value of the design accel-
eration. For example, if the peak value of the design acceleration is 0.2 g while the peak
value of the simulated acceleration is 100 m/s2, then the simulated acceleration needs to be
divided by 100 m/s2 and multiplied by 0.2 g to get the design acceleration. In the frequency
domain, the Fourier amplitude and phase spectrum depend on the source, path, and/or
site characteristics.

The above process is also shown schematically in Figure 19.
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We have compared the simulated acceleration C00 and I06 with the tested acceleration C00
and I06, as shown in Figure 20. The corresponding parameters of the numerical model of C00
is as follows: A0 = 0.1512 (g·s/rad), τ = 0.2084 (s/rad), ζg = 0.2776 rad, ωg = 19.2637 rad,
a = 3262.0044, b = 355.9342 rad/s, c = 3804.2735 s/rad, d = 8272.1111 rad/m. The simulated
acceleration I06 is obtained, according to the site model introduced in Equations (48) and (49).
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Figure 20. Comparison between measured and simulated acceleration: (a) Tested acceleration C00
and I06. (b) Simulated acceleration C00 and I06.

Accordingly, it can be found that the simulated acceleration curves have some simi-
larities with the measured acceleration curves, especially the envelope of the acceleration
curves. For station C00, the peak value of the measured acceleration occurs at 3.85 s (−0.1 g)
while the peak value of the simulated acceleration occurs at 3.59 s (−0.1 g). For station
I06, the peak value of the measured acceleration occurs at 4.85 s (−0.09252 g) while the
peak value of the simulated acceleration occurs at 4.42 s (−0.08134 g). Therefore, for the
measured acceleration, the time between the appearance of peak values (C00-I06) is 1 s
while for the simulated acceleration, the time between the appearance of peak values
(C00-I06) is 0.93 s. Both the measured and simulated acceleration exhibits a relatively
significant wave passage effect. In addition, the Pearson correlation coefficient between
the two measured acceleration curves is 0.0410 while the Pearson correlation coefficient
between the two simulated acceleration curves is −0.0692. Thus, both the measured and
simulated acceleration curves exhibit a significant dispersion phenomenon.

3.5. Examples of Spatially Variable Ground Motions
3.5.1. Example 1

To illustrate the model, the site shown in Figure 8 is used as an example. Herein, we
suppose that this site is a type-II site, according to the Chinese seismic design code, with a
shear wave velocity of 250 m/s [49]. In this example, a coordinate system is built, as shown
in Figure 8. The origin of the coordinate is point PO. The distance between the points
PA and PO was 1000 m. The site is a type-II site; therefore, the probability distribution
information of the nine random parameters can be obtained according to Tables 1 and 2,
respectively. A total of 5000 sample points can be obtained to simulate 5000 different
seismic field samples. Herein, Figure 21 is used as an example to show the sample points
and the corresponding probability density distribution of the points for parameter p1.

Subsequently, the accelerations at different points in the field can be determined,
according to Equations (52)–(54). The accelerations and the corresponding displacements
at point PO and point PA in the first three samples are shown in Figures 22–24, respectively.
Accordingly, the simulated accelerations and the corresponding displacements at points PO
and PA not only have an obvious traveling effect but also exhibit a prominent dispersion
effect. However, for different samples, the obviousness of the two effects is different. For
example, in sample 2, the dispersion effect is very weak; therefore, the seismic waves
mainly show the traveling effect, whereas, in samples 1 and 3, the traveling and dispersion
effects are both obvious.
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Figure 21. (a) Sample points and (b) probability density distribution of the points for parameter p1.
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Figure 22. Accelerations and displacements in sample 1: (a) simulated accelerations and (b) its
corresponding displacements.
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Figure 23. Accelerations and displacements in sample 2: (a) simulated accelerations and (b) its
corresponding displacements.
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as 1000 m. For the simulation, p1, p2, and p3, which affect the attenuation parameter, are
sampled as 8.47, 10.52, and 0.01, respectively; q1 and q2, which affect the apparent wave
velocity, were sampled as 0.98 and 1.50, respectively. (In Example 2, it is supposed that
this site meets one group of parameters identified from a specific group of stations. This is
because the relative distance between stations is fixed, and the parameter values between
different groups of stations are different and cannot be used to generate a continuous
seismic wave field.) The distance interval of the time history samples is 4 m along the
direction of wave propagation. The time interval of time history samples equals 0.02 s
along the time axis. The generated random field of ground motion is shown in Figure 24,
where the dispersion effect in the ground motion field is reproduced. It should be noted
that Figure 25 represents the spatially variable ground motions in three-dimensional space,
which reflects the change of ground motions with time and space. If we make a slice
perpendicular to the time axis, the graph is the variation of the acceleration over a certain
range (1000 m). Similarly, if we make a slice perpendicular to the space axis, the graph is
the variation of the acceleration over a certain time (22.50 s).
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A top view of the generated field is shown in Figure 25. Wave passage and dispersion
effects can be observed. Figure 26 shows the evolution of the amplitude of the ground
motion field with distance. The attenuation effect is not obvious, owing to the short
propagation distance and the interference of the dispersion effect, but a slight attenuating
trend can be observed.
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Figure 26. Evolution of the shape of ground motion field with distance.

It should be noted that ground motion prediction equation curves, e.g., ASK14 [59],
mainly focus on the attenuation of earthquakes in a relatively large area. When those
models are built, the seismic records tested by a seismic array in a local area are not used.
Therefore, those models can hardly reflect the change law of seismic waves in a local site.
The model presented in this paper is to describe the spatial variability of ground motions in
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a local site. Works with the same objective are [60,61]. This paper focuses on the variability
of ground motions in a local site based on SMART-1 array data. In addition, it should be
noted that the stations in SMART-1 can only test the ground motions at some special points
in the local site while it cannot obtain continuous ground motions in the spatial dimension,
as shown in Figures 25–28.
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The suggested model has the following advantages. (1) The new model has a very clear
physical background based on the propagation law of seismic waves. (2) The new model
avoids the Cholesky decomposition of the cross-spectral density matrix or the iterative
loop in the conditional simulation. The Fourier amplitude spectrum and phase spectrum
at every simulated point in the local site can be directly obtained. Therefore, it is very
convenient for engineering applications.

4. Conclusions

A new random nonstationary spatially variable ground motion model for engineering
applications was proposed herein. The model is built according to the propagation law
of seismic waves, which are supposed to travel from the hypocenter to the local site. The
following conclusions were drawn:

(1) Accelerations tested by the SMART-1 array show that even for relatively short
distances in the local site, the seismic waves demonstrate significant dispersion. Therefore,
a suitable model should not only reflect the traveling wave effect of seismic waves but also
exhibit the dispersion effect.

(2) The new model establishes expressions in the frequency domain for the seismic
source, propagation path, and local site. It has a clear physical background and is extremely
easy to understand. Meanwhile, the new model avoids the Cholesky decomposition of
the cross-spectral density matrix or the iterative loop in the conditional simulation. The
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Fourier amplitude spectrum and phase spectrum at every simulated point in the local site
can be directly obtained. Therefore, it is very convenient for engineering applications.

(3) The numerical case shows that the accelerations in different samples have different
characteristics, even for the same site, owing to randomness. In some samples, the traveling
wave effect was more pronounced than the dispersion effect, whereas in other samples,
the latter is more obvious than the former. The example also shows the practicality of the
new model.

In addition, seismic waves in free terrain or built-up areas seem to be different, which
may also be an interesting topic. In this paper, we only focus on the generation of ground
motions without considering the impact of buildings [62]. Therefore, we first generate
seismic waves according to the equations proposed in the paper and then apply them to
building structures, such as bridges, pipelines, and building portfolios.
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