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Abstract: Although the use of fiber-reinforced plastic (FRP) rebars instead of mild steel can effectively
avoid rebar corrosion, the bonding performance gets weakened. To accurately estimate the bond
strength of FRP bars, this paper proposes a particle swarm optimization-based extreme learning
machine model based on 222 samples. The model used six variables including the bar position (P), bar
surface condition (SC), bar diameter (D), concrete compressive strength (fc), the ratio of the bar depth
to the bar diameter (L/D), and the ratio of the concrete protective layer thickness to the bar diameter
(C/D) as input features, and the relative importance of the input parameters was quantified using
a sensitivity analysis. The results showed that the proposed model can effectively and accurately
estimate the bond strength of the FRP bar with R2 = 0.945 compared with the R2 = 0.926 of the original
ELM model, which shows that the model can be used as an auxiliary tool for the bond performance
analysis of FRP bars. The results of the sensitivity analysis indicate that the parameter L/D is of the
greatest importance to the output bond strength.

Keywords: FRP; bond strength; ELM; hybrid model; parameter importance analysis

1. Introduction

A reinforced concrete structure is an organic combination of steel and concrete mate-
rials that is widely used in buildings, roads, bridges, and marine engineering. It has the
excellent compressive properties of concrete and embedding steel bars in the concrete can
well compensate for the tensile properties of the concrete structure. However, corrosion is a
significant issue that impairs the functionality of structures made of reinforced concrete [1].
This is because corrosion of the reinforcement may lead to serious degradation of the perfor-
mance of the structure [2]. For this reason, to solve the great harm brought by reinforcement
corrosion to civil engineering structures, many scholars have conducted a lot of research
on the theory of and prevention technologies for reinforcement corrosion. The search for
non-conductive steel bars that can replace steel bars, such as fiber-reinforced polymer (FRP)
bars, has been consistently identified as a good way to get at the root of the corrosion
problem [3]. Due to its corrosion resistance, light weight, high strength-to-weight ratio,
cost-effectiveness, ease of installation, fatigue resistance, and minimal creep deformation,
the FRP bar has emerged as the most appealing alternative to the usual reinforcement
inserted in reinforced concrete structures [4,5].

In FRP-reinforced concrete structures, the bond performance between the two is the
key factor to determining whether they can perform mechanically and bear the external
load together. Similar to ordinary reinforced concrete, the bonding action between an
FRP reinforcement and concrete consists of three main components—namely, the chemical
bonding force, friction force, and mechanical bite force [6,7]. The interfacial damage
of ordinary steel-mixed structures mainly occurs in concrete, specifically in the form of
concrete shear damage between ribs, while the interfacial bond strength of FRP-reinforced
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concrete mainly depends on the interlaminar shear strength of the FRP reinforcement.
Throughout numerous small-scale experiments, the interfacial connection has been shown
to degrade drastically under adverse environmental conditions. There are many factors
affecting the interfacial bond strength of FRP bars and concrete, such as the FRP bar
type, diameter, surface form, and concrete strength [8]. Despite the increasing interest
in FRP reinforcement as a reliable and viable alternative to corrosion-resistant steel, its
bonding to concrete is poor. Therefore, it is crucial to accurately estimate and anticipate the
bond strength of FRP reinforcement when building solid concrete structures. The primary
elements influencing the bond performance of FRP bars have been the subject of several
investigations over the years, mostly by direct pullout testing or beam tests [9–11]. For
example, Alves et al. [12] investigated the bond strength of glass fiber-reinforced polymer
(GFRP) reinforcement bars of different diameters and the results showed that the bond
strength was weaker for larger diameter GFRP bars. There are also some research results
showing that some key parameters such as a concrete protective layer, the bar surface
condition, bar diameter, buried length, location of reinforcement, and the compressive
strength of the concrete have different degrees of influence on the bond strength [13].
Researchers have created empirical models for calculating the bond strength of FRP bars
based on experimental data, and certain studies have been created and included in pertinent
design codes based on theoretical analyses and experimental validation [14]. However,
most of these models utilize a limited set of experimental data, which makes the models
accurate within these data spaces but lacking sufficient generalization to other parameter
settings. Additionally, the effectiveness of the model is decreased by the need for several
assumptions during the theoretical derivation of these constrained empirical models to
represent the complicated nonlinear relationship between bond strength and important
parameters [15]. Therefore, it is essential to investigate a reliable and effective technique for
calculating the bond strength of FRP bars [16].

Data-driven methods based on machine learning algorithms have arisen as an al-
ternative method to creating prediction models using integrated experimental data and
information as a result of the advancement of computer science and the growth of rele-
vant experimental datasets. Some intelligent algorithms such as artificial neural networks
(ANN), support vector machines (SVM), multiple linear regression (MLR), random forests
(RF), integrated learning (gradient augmented regression trees), etc., have been used for
the prediction of FRP bond strength [17–20]. Su et al. [21] selected three machine learning
algorithms—MLR, ANN, and SVM—to predict the interfacial bond strength between FRP
and concrete, and the results demonstrated that the machine learning models could pre-
dict the strength accurately and effectively, with the SVM achieving the best performance
among the three models. Koroglu et al. proposed a regression- and ANN-based model
to estimate the bond strength of FRP bars in concrete [22]. The findings indicated that
the ANN model performed better than both the Canadian Standards Association (CSA)
and American Concrete Institute (ACI) models in estimating the binding strength of FRP
bars in concrete. Hamed et al. [23] developed a multi-gene genetic programming (MGGP)
model based on 223 records to predict the bond strength between concrete and FRP, and
the model predicted the strength better than the ACI model. Sherin et al. [24] utilized ANN
to predict the bond strength between self-compacting geopolymer concrete reinforced with
basalt FRP bars, achieving more accurate prediction results than existing theoretical and
analytical models. To compare the performance of different optimization algorithms in
bond strength prediction, three optimizers were used for ANN model optimization by
Mohammad et al. [25]. The RUNge Kutta optimizer (RUN)-based hybrid RUN-ANN model
achieved the largest prediction correlation with R2 = 92%, and its prediction performance
outperformed the mechanics-based method. To study the bond strength at high temper-
atures, Muhammad et al. [26] introduced the gene-expression programming model and
established a traceable mathematical formula based on the trained model for easy use.
Zhou et al. [27] established an ANN model using the back-propagation neural network
(BPNN) method on a large dataset with 969 data observations, and its prediction accu-
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racy was higher than other methods in the literature. Similarly, an explicit equation was
established based on the trained ANN model.

Prediction methods based on machine learning models have been successfully applied
in the concrete strength estimation [28–30] and bond strength estimation of FRP reinforce-
ment [31,32]. However, most of these methods are primitive models and the improvement
of model prediction performance is limited by the selection of hyper-parameters, which
can be solved using optimization algorithms. Considering the excellent performance of
the extreme learning machine (ELM) model in regression analyses [33] and the fact that
this method is rarely reported in bond strength prediction studies, this paper attempts to
develop a hybrid model for the accurate prediction of bond strength using the ELM model
as the original model and compares the prediction performance of the developed hybrid
model with that of the original model.

2. Methodology
2.1. Extreme Learning Machine Network

The extreme learning machine was proposed by Huang et al. [34] based on the study
of single-hidden layer feedforward neural networks. The connection weights between the
input layer and the hidden layer and the threshold values of the neurons in the hidden
layer are generated at random by the algorithm, and they do not need to be changed during
the training process to reach a specific optimal solution [35]. Let the connection weights w
be between the implicit layers of the input layer and the connection weights β be between
the implicit layer and the output layer. Let the input matrix X and the output matrix Y of
the training set have Q samples, where the output T of the network is:

T =



l
∑

i=1
βi1g(wixj + bi)

l
∑

i=1
βi2g(wixj + bi)

...
l

∑
i=1

βimg(wixj + bi)


, j = 1, 2, . . . , Q (1)

Formula (1) can be expressed as:

Hβ = T′ (2)

where T′ is the transpose of the matrix T, H is the output matrix of the hidden layer of the
neural network, and β is the connection weights between the hidden layer and the output
layer, which can be obtained by solving the least squares solution of Equation (3) as follows:

min
β ‖Hβ− T′‖ (3)

The solution can be expressed as:

∧
β = H†T′ (4)

where H† is the generalized inverse of the implied layer output matrix H. The network
structure and characteristics of the ELM model determine the short training time of the
network itself. The input layer weights and thresholds however, which are produced
at random, set a cap on the model’s performance. Given the fast convergence and high
accuracy of the particle swarm algorithm [36,37], this paper employed the particle swarm
optimization (PSO) algorithm to optimize the input layer weights and thresholds of the
network structure to improve the ELM model prediction accuracy.
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2.2. PSO-ELM Prediction Model

The PSO-ELM prediction model put forward in this research uses the PSO algorithm
to optimize the extreme learning machine’s input layer weights and thresholds before using
its preferred input layer weights and thresholds to predict the bond strength. Figure 1
depicts the flow chart for the specific PSO-ELM training procedure.
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Figure 1. The process of the Elm model optimized by the PSO algorithm.

The specific steps of the optimization algorithm are:

(1) ELM randomly generates the weights w and threshold b of the input layer and
determines the implied layer weights β from this set of weights and thresholds.

(2) The particle population randomly generates n particles, and each particle in this
population represents a vector of dimension D. The dimension of this particle is
determined by the input parameters of the ELM model, and the initial value of
the acceleration factor and the maximum number of iterations is set, and the end
condition of the experiment is to meet the accuracy requirement or to reach the
maximum number of iterations [38].

(3) Selection of inertia weights: In order to make the algorithm achieve better global
search and local search capabilities, linear decreasing inertia weights are used.

w(k) = wstart − (wstart − wend)·k/Tmax (5)

where k is the current iteration generation, Tmax is the maximum iteration generation,
wstart is the initial inertia weight, and wend is the inertia weight at the maximum
number of iterations.
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(4) Determine the fitness function: In this paper, the fitness function is defined as the root
mean square error, and its formula is:

F =

√√√√ 1
N

N

∑
i=1

(Yi −Yi)

2

(6)

where Yi is the true value of the bond strength, Yi is the predicted value of the bond
strength, N is the number of training samples, and F is the fitness value as a function
of value. Then, the velocity and position of the particles are updated [39]:

Vi =

{
Vmax, Vi > Vmax
Vmin, Vi < Vmin

, Xi =

{
Xmax, Xi > Xmax
Xmin, Xi < Xmin

(7)

where Vi is the particle motion velocity, Vmax is the maximum particle velocity, Vmin
is the minimum particle velocity, Xi is the particle position, Xmax is the maximum
particle position, and Xmin is the minimum particle position.

(5) Solve the global fitness f (xi): Continue contrasting each particle’s current fitness
f (xi) with its previous optimal fitness f (Pbest) and use the end condition to calculate
its magnitude.

(6) Substitute the optimal solutions w and b into the ELM model.
(7) Train the PSO-ELM model with the training data. Then, retest whether the mean

square error meets the accuracy requirement with the test sample; if it meets the
requirement, end the training—if not, return to step (2).

3. Dataset Collection and Model Building
3.1. Input and Output Variables

For machine learning models, the manually defined feature parameters and the size of
the dataset are the key factors that affect the model prediction performance. Referring to
and synthesizing the selection of feature parameters in Refs. [8,23], six parameters including
the bar position (P), bar surface condition (SC), bar diameter (D), concrete compressive
strength (fc), the ratio of the bar depth to the bar diameter (L/D), and the ratio of the
concrete protective layer thickness to the bar diameter (C/D) were selected as the input
variables. When training the model, a rich and representative dataset is very important. For
this purpose, a total of 222 records collected from previous studies, which are available in
the literature [13], were used as the model datasets. The normal distribution curves of these
variables are shown in Figure 2. For the rebar location P, the numbers 1 and 2 represent the
top and bottom positions of the FRP rebar in the beam, respectively. The three numbers
in the rebar surface condition indicate three types of indicated conditions. The statistical
characteristics of these parameters and the Pearson correlation coefficient between the
variable and the output are listed in Table 1. From Table 1, it can be seen that there is very
little linear correlation between any of the input parameters and the output bond strength,
with the highest correlation coefficient between any two variables not exceeding 0.8. This
paper’s main objective, therefore, becomes examining the intricate nonlinear relationship
between the input and the output.

3.2. Evaluation Metrics

The correlation coefficient R2 and four error metrics—root mean squared error (RMSE),
mean absolute percentage error (MAPE), mean absolute error (MAE), and mean squared
error (MSE)—were introduced to statistically analyze the prediction results to allow for
an intuitive comparison of the performance of the models. The definitions of these evalu-
ation metrics can be found in the literature [40–43]. For the correlation coefficient, an R2

closer to one indicates a stronger correlation between the predicted results and the actual
results—and the smaller the error-index is, the better the prediction effect is.
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Table 1. Statistics of the parameters for the input and output.

Parameter P SC D fc C/D L/D Strength

Unit - - mm MPa - - MPa
Count 222 222 222 222 222 222 222
Type Input Input Input Input Input Input Output
Max 2 3 28.58 55.06 9.34 97.24 21
Min 1 1 6.35 23.43 1.68 3.56 0.76

Median 2 2 15.75 40.2 3 20.16 5.3
Mean 1.87 1.72 14.68 40.03 3.59 29.75 6.80

Standard deviation 0.34 0.75 4.87 6.72 1.82 22.28 4.15
Correlation coefficient 0.03 −0.04 −0.21 −0.54 0.36 −0.65 1

3.3. Model Building

For the single regression objective of bond strength, since the input variables were the
six feature parameters, there were six input layer neurons and one output layer neuron in
the ELM model. The number of the hidden layer neurons was selected using the trial-and-
error method. After the trials, the model prediction reached its best performance when the
hidden layer neurons numbered 35. The model structure is shown in Figure 3. Due to the
limited number of data sets, this paper used 10-cross-fold validation for training. Referring
to the classification method of the dataset in [44], a total of 222 samples were randomly
divided into the training set and test set, where 80% of the dataset (178 samples) was
used for training and the remaining 20% (44 samples) were used to test the generalization
ability of the model. For comparison purposes, the data set will be fixed after random
classification. In other words, the training and test sets for the original and optimized
models were the same.

3.4. Comparison of Model Results

The sample prediction results before and after model optimization are shown in
Figure 4. Overall, the optimized PSO-ELM model obtained results closer to the true bond
strength than the ELM model. A linear fit was carried out for these data, and Figure 5
displays the correlation between the expected and actual values for each sample. In terms
of correlation coefficients R2, the correlation coefficients between the predicted and actual
strengths of the PSO-ELM model all exceeded 0.94; the correlation coefficients were higher
than those of the ELM model, with R2 = 0.931 for the training phase and R2 = 0.926 for the
test phase.
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Figure 6 also displays the proportion between the two models’ actual bond strengths
and their projected values. The mean value of 1.014 for the PSO-ELM model is closer to
one than the mean value of 1.022 for the ELM model. The PSO algorithm’s optimization
improved the model’s capability for making predictions. When assessing the effectiveness
of a prediction, the relative error is frequently more important than the absolute mistake.
The relative prediction error of the models for the training and test phases is shown in
Figure 7 and Table 2. The mean value of the relative error for the PSO-ELM model was
lower for both the training and testing stages. Table 3 lists the five evaluation metrics
introduced in this paper. Compared to the error statistics MSE, RMSE, and MAE of 1.549,
1.244, and 0.883 with the pre-optimization model for the test set, the optimized model
achieved the smaller MSE, RMSE, and MAE of 1.170, 1.082, and 0.777, respectively. For
the training set, the average relative error was reduced from 14.714% to 11.655%, and the
average relative error was reduced from 15.590% to 13.953% for the test set, which further
indicates that the PSO-ELM model’s predictability was indeed improved after optimization.
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Table 3. Comparison of evaluation metrics for the prediction results of the two models. 
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determine the relative impact of various input factors on the target. Figure 8 illustrates the 
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is clear that the parameter L/D had an 88 percent relative importance to the output find-
ings, and that this importance had a detrimental impact on bond strength while the rela-
tive importance of the other five parameters to the results was low. 
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Table 2. Model prediction results and relative errors of the test set.

Test Set Experimental Value ELM Model Relative Error (%) PSO-ELM Model Relative Error (%)

1 5.26 5.80 10.32 5.63 7.02
2 11.5 12.60 9.56 10.02 12.90
3 4.29 4.74 10.53 4.52 5.27
4 4.6 3.72 19.15 4.60 0.06
5 5.1 6.40 25.48 5.96 16.81
6 3.3 3.12 5.50 3.02 8.42
7 2.2 2.51 13.86 3.35 52.11
8 16 14.53 9.21 15.31 4.29
9 4.61 4.21 8.61 4.78 3.68
10 3.3 2.52 23.52 3.18 3.71
11 7.58 7.03 7.22 6.15 18.85
12 4.84 5.38 11.14 4.90 1.34
13 8.9 8.26 7.17 11.19 25.68
14 5.62 6.53 16.21 6.42 14.26
15 6.02 5.80 3.71 5.82 3.39
16 19.14 16.72 12.64 17.82 6.88
17 3.74 4.40 17.67 5.64 50.90
18 13.39 12.03 10.13 11.42 14.70
19 21 16.72 20.38 17.82 15.13
20 4.83 5.38 11.45 4.78 1.00
21 5.4 6.07 12.42 5.06 6.32
22 3.7 2.24 39.36 2.69 27.35
23 4.4 2.62 40.38 3.11 29.33
24 3.6 3.89 8.15 4.64 28.80
25 3.6 6.88 91.19 3.59 0.17
26 6.46 6.48 0.26 6.28 2.85
27 3.6 3.51 2.59 3.77 4.86
28 5.28 5.38 1.95 4.78 9.43
29 2.56 3.26 27.39 2.12 17.18
30 0.97 1.09 12.58 1.54 59.21
31 7.35 6.27 14.72 5.87 20.08
32 3.28 2.82 13.99 2.45 25.19
33 4.98 5.48 10.02 5.18 4.00
34 1.65 1.09 33.82 1.54 6.40
35 6.99 6.90 1.23 6.09 12.87
36 7.54 6.91 8.42 6.91 8.37
37 7.36 7.81 6.06 7.54 2.40
38 6.91 5.10 26.16 4.66 32.59
39 4.64 4.46 3.87 4.90 5.55
40 4.71 4.74 0.70 4.34 7.77
41 6 4.96 17.31 5.47 8.88
42 5 4.46 10.79 4.90 2.05
43 3.6 2.90 19.51 3.52 2.23
44 9.2 6.47 29.66 7.03 23.62

Table 3. Comparison of evaluation metrics for the prediction results of the two models.

Model Phase R2 MSE RMSE MAE MAPE (%)

ELM
Training 0.931 1.176 1.084 0.788 14.714

Test 0.926 1.549 1.244 0.883 15.590

PSO-ELM
Training 0.948 0.890 0.943 0.658 11.655

Test 0.945 1.170 1.082 0.777 13.953

4. Sensitivity Analysis of Input Variables

Sensitivity analysis is a tool that helps to measure the contribution and impact of
input parameters on output outcomes [45]. Sensitivity analysis was used in this study to
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determine the relative impact of various input factors on the target. Figure 8 illustrates the
relative influence of the six parameters discussed in this research on the output results. It is
clear that the parameter L/D had an 88 percent relative importance to the output findings,
and that this importance had a detrimental impact on bond strength while the relative
importance of the other five parameters to the results was low.
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5. Conclusions

To achieve bond strength prediction of an FRP bar, a hybrid-optimized PSO-ELM
model was proposed in this paper. The following is a summary of the key findings.

(1) With a stronger correlation coefficient and reduced prediction error, the proposed opti-
mization model PSO-ELM can accurately capture the nonlinear relationship between
the numerous input factors and the output bond strength.

(2) Regarding the criteria for model evaluation, the PSO-ELM achieved a better prediction
performance with a smaller MSE, RMSE, and MAE of 1.170, 1.082, and 0.777 compared
to the MSE, RMSE, and MAE of 1.549, 1.244, and 0.883 for the pre-optimization ELM
model. The mean value of the relative prediction error was reduced from 15.590% in
the original ELM model to 13.953% in the PSO-ELM model.

(3) Among the six input parameters mentioned in this paper, the parameter bar-embedment
length to the bar-diameter ratio (L/D) was the dominant influencing factor, with a
relative importance of 88% to the output results; this variable was negative for the bond
strength of the FRP bar.
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