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Abstract: This article presents an optimized prediction model of building dynamic HVAC system
load, which simplifies the input parameters of the model while meeting the accuracy requirements of
the prediction results. The model was established using the open-source Modelica-based building
library, and the linear aggregation method was used to establish the model. A reduced-order model
was developed, and the accuracy of the simplified and reduced-order models was verified. A control
strategy was constructed using the indoor mean radiant temperature (MRT) aggregated from a
simplified prediction model of HVAC system load as the target feedback parameter, and its feasibility
was verified experimentally. It was found that the MRT adopted by the new control strategy can
reflect the changes in outdoor air temperature and load in a timely manner; moreover, using this as a
control parameter can significantly reduce the influence of load changes to maintain a stable indoor
temperature. The control system is further simplified by the predictive model, which improves the
engineering practicability by maintaining the control accuracy.

Keywords: radiant air-conditioning; indoor temperature; model predictive control; simplified model;
experimental verification

1. Introduction

In recent years, building energy consumption has increased. In China, building energy
consumption accounts for approximately 30% of total social energy consumption [1]. The
heating, ventilation, and air conditioning (HVAC) system is an important component in a
building, and its energy consumption accounts for approximately 40–50% of a building’s
total energy consumption [2,3]. Traditional HVAC systems and monitoring systems cannot
make real-time adjustments of optimal control parameters to meet the needs dynamic
indoor thermal environmental parameters, resulting in increased operating energy con-
sumption of the air-conditioning system [4]. Nonuniform and unsteady environmental
parameters also affect the stability of the indoor thermal environment, and are closely
related to hidden dangers and the control of indoor safety production [5]. In addition,
HVAC systems consist of many types of equipment, including chillers, cooling towers, and
water pumps. The system structure is complex and has complex characteristics, such as
nonlinearity, lag, and time variation. There is a coupled relationship between the chilled
water circuit and the cooling water circuit, which makes the traditional control method
difficult to design and debug; hence, the control effect is poor.

Many studies have shown that intelligent control methods with self-adaptive, self-
learning, and self-coordination capabilities, can globally control complex HVAC systems
and improve the performance and energy-saving effects of air-conditioning systems.
Among them, model predictive control (MPC) is regarded as an effective method for
achieving optimal control strategies based on the coupling and constraint conditions, as
well as the dynamic characteristics of the building. This method can reduce the energy
consumption of the system while ensuring a higher comfort level for personnel [6–10]. In
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order to realize real-time prediction of indoor environment distribution, computational
fluid dynamics (CFD) can be used to meet the basic needs of indoor environment param-
eter prediction [11]. However, this method is generally limited by the number of grids
and by computational cost, which makes it difficult for the prediction results to meet
real-time requirements. Georges et al. [12] verified the validity of the transient region
model for indoor thermal environmental prediction in combination with experimental
studies; the results showed that air thermal stratification and transient wall temperature
were both reliably predicted. Liu et al. [13] developed a fast fluid mechanics solver based
on OpenFOAM, and verified the prediction performance of the solver for indoor airflow
distribution. The results showed that the fast fluid mechanics method was able to predict
the indoor transient airflow approximately 20 times faster than the traditional CFD method.
However, the important effects of turbulence were ignored; hence, the prediction model
still had significant error. Ren et al. [14,15] combined the dimensionality reduction linear
model and indoor environment contribution rate prediction method to significantly im-
prove the temperature field prediction efficiency; the prediction error was less than 10%.
Ma et al. [16] developed a hierarchical MPC for a central chiller plant, which improved
the efficiency by 19% compared to using a conventional controller in an experimental
test. Široký et al. [17] developed an MPC model with weather prediction capabilities for
radiant heating systems. MPC was used in a university building and achieved 15–28%
in energy savings compared with a conventional heating curve strategy. Chen et al. [18]
proposed an occupant-feedback-based MPC to optimize indoor thermal comfort, using a
dynamic thermal sensation model. The MPC consumed 25% less energy than the common
MPC, while maintaining thermal comfort in their chamber experiments. Yang et al. [8,19]
developed a physics-based and machine-learning-based MPC system for system control
in lecture theaters and offices. The MPC system achieved a 20–58% reduction in cooling
energy consumption, with a significant improvement in indoor thermal comfort compared
to reactive feedback control. Ascione et al. [20] developed an MPC to optimize indoor
thermal comfort based on a genetic algorithm, which significantly reduced the duration
of thermal discomfort. Castilla et al. [21] developed a nonlinear MPC for a bioclimatic
building to optimize the thermal comfort of occupants. The nonlinear MPC was shown to
be capable of maintaining indoor thermal comfort in the presence of disturbances.

Currently, there are three main methods for HVAC load prediction: (1) The air-
conditioning load indicators of different types of buildings are used to estimate the air-
conditioning loads. This is the most commonly used method in engineering applications.
However, the prediction results of this method are usually larger than the actual de-
mand, and cannot reflect the spatiotemporal characteristics of regional air-conditioning
loads [22,23]. (2) Establishing a statistical model for load prediction of HVAC systems is
also a common method [24]. However, the physical meaning of the dynamic prediction
method of building load based on statistics is not obvious. At the same time, a large amount
of data needs to be investigated, and the audit department generally tracks total energy
consumption; therefore, it is difficult to obtain hourly air-conditioning data. Thus, it is
difficult to reflect the dynamic characteristics of the air-conditioning load. (3) Another
widely used method involves establishing a standard building model to simulate the
hourly dynamic changes in various building loads throughout the year, and then predict
the regional building load [25]. However, only a small part of the load characteristics of
buildings and HVAC systems can be analyzed, and their dynamic characteristics cannot be
reflected. Therefore, it is important to find an optimized prediction method that can not
only ensure prediction accuracy, but also reduce the workload and computing time.

This paper proposes an optimization study based on a dynamic air-conditioning
predictive model control. By establishing an equivalent envelope structure, heat gain
calculation linearization, and preprocessing, the air-conditioning load prediction model
of a single building based on the state-space method was simplified, and a linear time-
invariant load simplification prediction model, that included only radiation temperature as
an input parameter, was established. This prediction model can be applied to a simplified
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prediction of the dynamic air-conditioning load of various building types [26,27]. The
time series of the random use behavior of building air conditioners was coupled with a
simplified prediction model of the air conditioner load in individual buildings, and the
dynamic load of air conditioners in different types of individual buildings was predicted.
By coupling different types of building dynamic air-conditioning load parameters, the
dynamic characteristics of the building’s overall air-conditioning system were obtained, and
the temperature-related parameters and equations were aggregated as feedback parameters
of the control system and verified experimentally.

2. Experimental Setup

The research object in this study was an office with a radiant air conditioning system
and an independent fresh air system. The reason this office was chosen is because the
response time required by the radiant air conditioner was longer, owing to the thermal
inertia of the indoor thermal environment; hence, the advantages and disadvantages of the
different control schemes could be compared.

Figure 1 shows the office floor plan. The office area was approximately 108 m2,
and the ceiling height was 3 m. The east wall was an external wall with 60% window
coverage, while the other three walls were all internal walls that were adjacent to corridors,
warehouses, and other non-air-conditioned rooms. No insulation measures were applied
to the floor. Table 1 lists the thermal performance parameters of the envelope structure.
The radiant panel area accounted for 40% of the total ceiling area. The radiant unit used is
shown in Figure 2, and the size of the panel was 440 mm × 2850 mm. The radiant plate
was a metal plate, and the coil was a three-layer metal tube covered with polyethylene.
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Figure 1. Laboratory floor plan.

Figure 3 shows the layout of the measuring points in the six-sided office, and OMEGA’s
T-type thermocouples are used for temperature measurement. A total of 25 temperature
measuring points with a height of 1.1 m were used to test the horizontal temperature
distribution. A temperature test rod was arranged in the center of the office to test the
vertical temperature distribution. From 0 m, one measuring point was arranged every
0.5 m, for a total of 7 measuring points. There were also some other measuring points for
testing the surface temperature of walls and other enclosures.
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Table 1. Thermal parameters of the building envelope.

Building Envelope Structure Thickness/m Thermal Conductivity/
(W/m2·K)

Interior wall Bricks, cement mortars 0.600 1.106
Exterior wall Bricks, cement mortars 0.550 1.281
Partition wall Gypsum board, extruded polystyrene foam 0.050 1.025
Exterior window Normal glass, aluminum alloy frame 0.006 6.400

Ground floor Damp-proof course layer, thermal insulating layer,
fine aggregate concrete layer, cement screed layer 0.300 1.515

Floor slab
Fine aggregate concrete, reinforced concrete slab,
thermal insulation mortar, anti-cracking gypsum +
mesh + flexible putty

0.200 2.136
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Figure 4 shows a schematic of the radiant air-conditioning system. The system in-
cluded a radiant air conditioning system that handled the indoor sensible heat load, and
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a fresh air system that handled the indoor latent heat load. The cold and heat sources
adopted a series system of a commonly used air source heat pump unit and well water,
with a temperature that was maintained at 16 ◦C all year round as the cold water source;
the cooling capacity of the unit was 20 kW. During cooling, the cold water source was
preferentially used to cool the chilled water, and then sent to the coil of the radiation unit
for cooling. When the cooling capacity was insufficient, the heat pump was switched on
to supplement the cooling capacity. The water supply pump of the radiant panels was
equipped with a flow controller, and the maximum flow rate was 35 L/min. The fresh air
system consisted of a fresh air unit, total heat exchanger, and return fan. In the total heat
exchanger, the indoor return air and fresh air were fully heat exchanged. On the one hand,
the humidity of the fresh air could be adjusted; on the other hand, the fresh air could be
precooled or preheated to reduce the energy consumption of the system. The return fan ran
during the start-up phase of the system, and stopped after the indoor thermal environment
became stable. At that time, fresh air entered the room from the tuyere on the enclosure
structure, in order to keep the indoor air clean and the air pressure stable.
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Figure 4. Schematic diagram of radiant air conditioning system.

3. Establishment and Verification of Simplified Load Prediction Model for
HVAC System
3.1. Mathematical Model

The mathematical model of the HVAC system load prediction included the load caused
by the heat gain of the non-transparent building envelope, the load caused by the heat
gain of the transparent building envelope, and the load caused by the infiltration heat
gain. The convective heat gain was directly converted into the instantaneous load of the
air conditioner, and the radiant heat gain was absorbed by the indoor wall, and gradually
released to become the instantaneous cooling load. The air conditioning load calculation
adopted the state–space method. The relevant assumptions made for the model were as
follows: the solar heat gain entering the room through the glass was completely absorbed
by the floor slab; the long-wave radiation heat gain varied with the change in the outer
surface temperature of the envelope; the short-wave transmittance of the glass varied with
the incident angle of the sun; and the thermal conductivity and convective heat transfer
coefficient of the envelope were constant.

The current model presented hereafter was defined with typical assumptions used
in common simulation tools. The model used one-dimensional component models of
walls and windows. In this model, corresponding meshes, wall layers, and insulation
position were specified. The components accounted for conductive heat transfers between
inner computation nodes, convective heat transfers with the ambient air, and radiant heat
transfers for the short-and long-wave radiation. As commonly used, the conductive and
convective heat transfer coefficients were assumed to be constant, but the long-wave heat
transfer coefficient was variable as a function of temperatures of concerned bodies. The
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window model included the solar transmittance calculation using variable transmittance
rates as a function of the solar incident angle. In addition, the model considered heat loss
through ventilation using a constant air change rate.

A model based on the shape characteristics of the laboratory was developed. For a
laboratory with n different orientations (including walls and roofs in all directions), the
corresponding model had to define 3n parameters related to the solar radiation. That
is, each orientation included the amount of direct solar radiation per unit area Φdir, the
amount of scattered radiation per unit area of the sky Φdi f , and the cosine value of the
incident angle of the sun cos i. The input parameters of the model included hourly outdoor
air temperature Ta, hourly effective sky temperature Tsky, and hourly air conditioning load
P. The equation of state of the mathematical model can be expressed as follows:{

C
.
T = A(T)T + B(T, t)U

Y = JT + DU
(1)

where C represents the material specific heat capacity and material density of each temper-
ature node, which is a constant parameter, and matrices A and B include the heat transfer
coefficients of the walls, windows, and other envelope structures. They also include pa-
rameters that vary with the temperature as a function of the nodal temperature. These
were used to calculate the long-wave radiation heat gain matrices. B also includes time-
varying parameters, such as the solar short-wave transmittance of the glass;

.
T represents

the derivative with respect to time; T represents the temperature of each node (including
walls, windows, floors, etc.); U represents the input parameters of the model (including
outdoor air temperature, effective sky temperature, direct solar heat gain, sky scattered
heat gain, and other external disturbances); Y represents the output parameter, which is
the indoor air temperature in this model; and matrices J and D are constant and related to
thermal parameters such as the thermal conductivity of the material [28].

3.2. Simplified Model (SM)

Since the order-reduction method used in the model can only be used for linear time-
invariant systems, matrices A, B, C, D, and J in Equation (1) must be transformed into a
constant time-invariant system [28]. The equation for calculating the long-wave radiation
heat gain is as follows:

Φrad = εFskyσ
(

Tsky + Ts

)(
Tsky − Ts

)(
T2

sky + T2
s

)
(2)

where ε represents the absorption rate of the outer wall, Fsky represents the angular coeffi-
cient of the wall-to-sky, σ represents the Stephen Boltzmann constant, and Ts represents
the surface temperature of the outer wall. The nonlinear long-wave radiation heat gain
calculation was linearly simplified, and the commonly used annual average effective sky
temperature Tsky and annual average external wall surface temperature Ts were used

instead, so that Y = σ
(

Tsky + Ts

)(
T2

sky + T2
s

)
was constant, which transformed matrices

A(T) and B(T,t) into A and B(t).
When calculating the solar heat gain through the glass, the relationship between

the solar shortwave transmittance τ and the angle of incidence of the sun relative to the
normal to the glass was also nonlinear. In order to simplify the model, the heat gain from
solar shortwave radiation per unit area was extracted and calculated separately in the
preprocessing stage, and the solar heat gain through the glass was calculated separately
using the transmittance that changes with the incident angle of the sun. The calculation
equation is as follows:

Φtrans(t) =
∑i Swin_i

(
Φdir_iτi(t) + Φdi f _iτo

)
∑i Swin_i

(3)
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where Φtrans(t) represents the weighted arithmetic mean of the insolation heat gain through
all glass (W/m2), τi(t) represents the time-varying direct radiation transmittance, τo repre-
sents the constant scattered radiation transmittance, Swin_i represents the area facing each
window facing i (m2), and Φdir_i and Φdi f _i represent the direct and scattered radiation
intensities (W/m2), respectively. Φtrans(t) was used as the input parameter for the model.
In the model calculation, this parameter was multiplied by the total area of the window
glass to obtain the total solar heat gain through the glass. It was assumed that the heat gain
was absorbed by the floor slab. Through the above process, the model was transformed
into a linear time-invariant system.

An equivalent envelope model was used to simplify the model further. By averaging
the radiation intensities received by the walls and windows facing different directions in the
model, the average radiation intensity of the wall Φabs_wall and average radiation intensity
of the window Φabs_win were obtained as input parameters for the simplified model. After
this simplification, only one equivalent single wall and window could be used to simulate
various complex architectural forms in the detailed model, significantly simplifying the
input parameters for the model. The research behind describing complex and changeable
architectural forms and simplifying models was included in the preprocessing process.
Thus, the feedback parameters of the complex actual control process of the HVAC system
were aggregated into equivalent single wall and window parameters.

OpenModelica is an open-source Modelica-based modeling and simulation environ-
ment that is intended for industrial and academic applications [28]. It has the characteristics
of parameterization, modularization, and graphics in Modelica language, so that system
modules can be established independently, and quickly assembled. In this study, we used
the building heat transfer module in the Buildings Library model library, and established
a weather data reading module and building preprocessing module to build a simplified
model for air conditioning system load forecasting. On this basis, a reduced-order model
was established to improve model performance and calculation speed. We used this plat-
form to establish a simplified numerical model, and to model the four main components
of the wall, window, floor, and air. Figure 5 shows the wall as an example of a numerical
model of the air-conditioning load caused by the heat gain of the wall. The heat gain on
the outer surface of the wall includes long-wave radiation, solar radiation, convective heat
exchange between the wall, atmosphere, and surrounding environment. These factors
transfer outdoor heat to the inner surface of the wall through heat conduction; part of the
heat is transferred to the indoor air in the form of convection, forming an instantaneous
load, and the other part of the heat is in the form of long-wave radiation, assuming that it
is completely absorbed by the floor.
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We used basic building components under the OpenModelica platform to create wall,
window, air, and floor modules. The air module considered the interior space of the
entire building as a whole, separated from the outside world by walls and windows, and
considered the heat storage capacity of the indoor air. Simultaneously, a ventilation rate
parameter was introduced to consider the effects of air infiltration and natural ventilation.
Finally, by assembling the modules, a simplified numerical model was obtained, as shown
in Figure 6.

Figure 6. Numerical simplified model.

3.3. Reduced-Order Model (RM)

Based on the simplified model, a reduced-order model was established using the
reduced-order method [29]. The order-reduction method uses mathematical means to
transform the original model from high-order to low-order, from complex to simple, and to
ensure that the simplified model output can approximate the mathematical processing of the
original model output. If a high-order process can be approximated by a low-order model,
using the low-order approximation model to design the control system can significantly
simplify the calculation process and improve calculation speed [30]. In this study, the linear
aggregation method was used for order reduction in a simplified model [31]. Aggregation
combines the state variables of a system and uses a smaller set of state variables to describe
the system model [32]. In a reduced-order model, making a reasonable choice of the
reduced order is crucial to model simplification. In this study, MATLAB programming was
used to realize the linear aggregation method.

Obtaining a reduced-order model from a numerically reduced model requires the
following steps, as shown in Figure 7.

The real-time load obtained by the real-time indoor air temperature was realized using
a proportional-integral-derivative (PID) controller. This process comprised three parts:
measurement, comparison, and execution. The actual value of the controlled variable was
measured, which in this study was the target feedback parameter of the simplified model,
i.e., the indoor radiation temperature. It was compared with the expected value, and this
deviation was used to correct the system response and perform regulatory control.



Buildings 2022, 12, 1602 9 of 21

Buildings 2022, 12, x FOR PEER REVIEW 9 of 24 
 

 

Figure 6. Numerical simplified model. 

3.3. Reduced-Order Model (RM) 

Based on the simplified model, a reduced-order model was established using the re-

duced-order method [29]. The order-reduction method uses mathematical means to trans-

form the original model from high-order to low-order, from complex to simple, and to 

ensure that the simplified model output can approximate the mathematical processing of 

the original model output. If a high-order process can be approximated by a low-order 

model, using the low-order approximation model to design the control system can signif-

icantly simplify the calculation process and improve calculation speed [30]. In this study, 

the linear aggregation method was used for order reduction in a simplified model [31]. 

Aggregation combines the state variables of a system and uses a smaller set of state vari-

ables to describe the system model [32]. In a reduced-order model, making a reasonable 

choice of the reduced order is crucial to model simplification. In this study, MATLAB 

programming was used to realize the linear aggregation method. 

Obtaining a reduced-order model from a numerically reduced model requires the 

following steps, as shown in Figure 7. 
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3.4. Model Validation

In general, it was difficult to determine the optimal reduction order of the reduced-
order model, because this parameter is related to the frequency of excitation and type of
building. In this study, the second, fourth, sixth, and tenth orders were selected as the
comparison objects, and the calculation results were compared with the indoor temperature
measured at No. 15 measuring point on 5 June. The results are shown in Figure 8. It can
be seen that the errors between the calculated results of all reduced-order models and the
experimental data were less than 3%, indicating high accuracy. The second-order model
had some instability in the descending stage, whereas the curves of the sixth-order and
tenth-order models almost overlapped. These results are further explained in Table 2. It
can be seen that the accuracy of the second-order model was 99.9697%, the accuracy of the
fourth-order model was 99.9981%, and the accuracy of the sixth-order model was 99.9996%,
which is very close to 100%. Considering that this model was relatively simple, the second-
order accuracy is usually less than 99.99% for a slightly more complex architectural model;
thus, the fourth-order reduced-order model was selected for the calculation.

Buildings 2022, 12, x FOR PEER REVIEW 10 of 24 
 

Figure 7. Procedure used to obtain the RM model. 

The real-time load obtained by the real-time indoor air temperature was realized us-

ing a proportional-integral-derivative (PID) controller. This process comprised three 

parts: measurement, comparison, and execution. The actual value of the controlled varia-

ble was measured, which in this study was the target feedback parameter of the simplified 

model, i.e., the indoor radiation temperature. It was compared with the expected value, 

and this deviation was used to correct the system response and perform regulatory con-

trol. 

3.4. Model Validation 

In general, it was difficult to determine the optimal reduction order of the reduced-

order model, because this parameter is related to the frequency of excitation and type of 

building. In this study, the second, fourth, sixth, and tenth orders were selected as the 

comparison objects, and the calculation results were compared with the indoor tempera-

ture measured at No. 15 measuring point on 5 June. The results are shown in Figure 8. It 

can be seen that the errors between the calculated results of all reduced-order models and 

the experimental data were less than 3%, indicating high accuracy. The second-order 

model had some instability in the descending stage, whereas the curves of the sixth-order 

and tenth-order models almost overlapped. These results are further explained in Table 

2. It can be seen that the accuracy of the second-order model was 99.9697%, the accuracy 

of the fourth-order model was 99.9981%, and the accuracy of the sixth-order model was 

99.9996%, which is very close to 100%. Considering that this model was relatively simple, 

the second-order accuracy is usually less than 99.99% for a slightly more complex archi-

tectural model; thus, the fourth-order reduced-order model was selected for the calcula-

tion. 

 

Figure 8. Choice of reduction order. 

Table 2. Contribution of each order. 

Order Contribution Total Contribution Order Contribution Total Contribution 

1 99.9421 99.9421 6 0.0005 99.9996 

2 0.0281 99.9697 7 0.0003 99.9999 

3 0.0182 99.9879 8 0.0000 100 

4 0.0099 99.9981 9 0.0000 100 

20

21

22

23

24

25

26

27

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

T
em

p
er

at
u
re

 (
℃

)

Time(105s)

2nd-order 4th-order

6th-order 10th-order

Experimental data

Figure 8. Choice of reduction order.



Buildings 2022, 12, 1602 10 of 21

Table 2. Contribution of each order.

Order Contribution Total Contribution Order Contribution Total Contribution

1 99.9421 99.9421 6 0.0005 99.9996
2 0.0281 99.9697 7 0.0003 99.9999
3 0.0182 99.9879 8 0.0000 100
4 0.0099 99.9981 9 0.0000 100
5 0.0009 99.9991 10 0.0000 100

After determining the optimal order, the simplified model obtained in the previous
section was used to verify the accuracy of the reduced-order model. Using the same
meteorological preprocessing model, the reduced-order model was compared with the
corresponding simplified model. Taking a set of tests as an example, the meteorological
data for four days (1 June–4 June) were arbitrarily selected, and the indoor air temperature
comparison chart shown in Figure 9 was obtained. The two curves are very close in the
ascending stage, and the difference can be seen in the descending stage; the maximum
temperature difference is only 0.33 ◦C. Figure 10 compares the load values predicted by
the reduced-order and simplified models. It can be seen that the simulation results of
the two models are very consistent. However, there is a large error in the initial stage
because the initialization of the reduced-order model has no physical meaning, and there
is no way to define the initial temperature. Equilibrium can only be gradually reached in
the calculation.
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4. Experimental Results and Discussion
4.1. Experimental Conditions

The target feedback parameter of the simplified model in this study was the mean
indoor radiant temperature (MRT) [33]. For radiant air conditioning systems, the average
radiant temperature has a faster response speed than the indoor air temperature. Radiant
heat exchange accounts for 45% of the total heat exchange between the human body and
the surrounding environment, and can better meet comfort requirements.

MRT can be obtained from the surface temperature of the indoor envelope structure.
This method was adopted in this study. The calculation expression is as follows:

MRT = ∑ Fijtj (4)

where Fij represents the angle coefficient of surface i to surface j, and tj represents the
surface temperature of surface j (◦C).

This method did not require arranging the measurement points in the indoor personnel
activity area. However, because of the large number of surfaces in an indoor envelope, it
was necessary to arrange multiple measurement points for data collection. Therefore, the
degree to which the determination of the envelope structure surface temperature could be
simplified was crucial to the practicality of the system. Simplifying the MRT control system
and reducing the number of sensors were important objectives of this study. The envelope
structure surface temperature was measured using an Azbil TY7321B radiation temperature
sensor with a range of 5–50 ◦C, and an accuracy of ±0.37 ◦C. In order to avoid affecting
people walking indoors, the floor surface temperature was measured using thermocouples.

Figure 11 shows a schematic of the MRT control. The temperature and flow of the
chilled water were fixed using the traditional constant-condition control method. MRT
control monitors the temperature of the chilled water through the flow control valve on the
cold and heat source side, or adjusts the flow rate of the chilled water through the frequency
converter of the water pump to control the surface temperature of the radiant panel. In order
to achieve the purpose of controlling the indoor MRT, control strategies can be divided into
constant temperature and flow control strategies. The surface temperature of the radiant
panel under the set MRT conditions was calculated by substituting the angle coefficient and
temperature of each envelope structure into the radiant panel in Equation (4). Subsequently,
based on the deviation between the current surface temperature of the radiant panel and
the set value, the water temperature or flow rate of the radiant coil was controlled. The
fresh air system adjusted the working conditions of the chilled water, and the humidifier
sent air to the fresh air unit based on the set indoor humidity.

In the radiant air conditioner plus independent fresh air system as the controlled
object, fuzzy PID (proportional-integral-derivative) control, which is common in HVAC
systems [34,35], was used. The surface temperature of the radiant panel was controlled
by adjusting the opening of the chilled water flow control valve, so that the MRT was
consistent with the set value; the air supply volume was adjusted by controlling the fan
inverter, so that the indoor fresh air volume and humidity were consistent with the set
value. Taking the specific control process of the surface temperature of the radiant panel
as an example, when the calculated MRT value deviated from the set value, the opening
of the chilled water valve was controlled by changing the voltage, thereby adjusting the
chilled water flow. The heat exchange between the radiant panel and the chilled water
was changed to adjust the surface temperature of the radiant panel. The radiant heat
exchange between the radiant panel and the indoor environment was changed to adjust
the temperature of the air-conditioned room. The voltage adjustment range was 0–10 V, the
linear corresponding temperature change range was 0–100 ◦C, and the frequency change
range of the inverter was 0–50 Hz. The fuzzy PID control system is shown in Figure 12.
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The experiment was carried out under the cooling conditions of an HVAC system,
and the target MRT value was 26 ◦C. When using constant working condition control, the
temperature of chilled water was fixed at 18 ◦C, and the flow rate was fixed at 35 L/min.
When a constant flow control was used, the chilled water flow was fixed at 17.5 L/min. In
order to prevent condensation on the radiant panel, the lower limit of the chilled water
temperature was set to 14 ◦C. When using constant temperature control, the temperature
of the chilled water was fixed at 16 ◦C, and the flow rate was varied between 0–35 L/min.
The operating conditions of the three control methods were selected in the morning, with
strong sunshine and high temperatures. In the afternoon, it was a cloudy day, and the
temperature continued to decrease, causing significant changes in the air conditioning load.

4.2. Experimental Results and Discussion

Figures 13–15 show the changes in the MRT, indoor temperature, and radiant panel
surface temperature with time under different control methods. Figure 12 shows the
change process for each temperature under constant working conditions. Before the start
of the air conditioning system in the morning, as the outdoor air temperature gradually
increased, both the indoor air temperature and the MRT increased to 31 ◦C. After the air
conditioning system was started, the temperature of the radiant panel dropped rapidly, and
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the indoor air temperature and MRT gradually decreased and stabilized under the action
of radiation and convection heat transfer. After 13:00, the outdoor temperature continued
to increase to 30 ◦C, and the temperature difference with the highest temperature reached
4 ◦C. Since the chilled water flow and temperature remained unchanged, the cooling
capacity provided by the air conditioning system was excessive, resulting in a continual
decrease in the indoor air temperature and MRT. It can be seen that during the entire change
process of the indoor air temperature and MRT, the indoor air temperature could also drop
rapidly due to the forced convection of the mixed wind when the air conditioning system
activated. However, after the indoor thermal environment stabilized, the load changed,
the MRT continued to decrease, and the indoor temperature remained unchanged. When
the outdoor temperature dropped significantly in the afternoon, the indoor temperature
dropped from 27 ◦C to 26 ◦C between 13:00 and 18:00. The MRT decreased from 27 ◦C
to 25 ◦C, and the magnitude and speed of the decline were greater than the indoor air
temperature. This occurred mainly because the surface temperature of the east outer wall,
which was in contact with the outdoor environment, was directly affected by the decrease
in outdoor air temperature. Since the heat exchange with the outdoor environment was
reduced, the surface temperature of the east outer wall decreased accordingly. Although
constant operating condition control cannot maintain the indoor thermal environment
when the air conditioning load changes significantly, the experimental results indicate that
the MRT response to load changes was greater than the indoor air temperature under the
same conditions. The air conditioning system can be adjusted in a timely manner for load
changes using the MRT as a control parameter to feed back to the control system.
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Figure 14 shows the variation process for each temperature under constant flow
control. After the HVAC system was activated, the MRT and indoor air temperature
gradually decreased and then stabilized. In the morning, the outdoor air temperature
fluctuated to a certain extent, and the MRT responded and fed this back to the control
system in order to control the indoor air temperature by adjusting the temperature of the
chilled water. Although the indoor temperature also fluctuated, the amplitude was less
than 0.5 ◦C. Between 13:00 and 14:00 in the afternoon, the outdoor temperature fluctuated
rapidly, dropping by 2 ◦C within 10 min, and then rising by 2 ◦C within 10 min after



Buildings 2022, 12, 1602 15 of 21

being constant for approximately an hour. It can be seen that during this process, the
MRT decreased significantly, and the corresponding increase in the temperature of the
chilled water increased the temperature of the radiant panel. The indoor temperature also
fluctuated, but the amplitude was controlled within 0.3 ◦C, which did not affect indoor
comfort. Throughout the entire process, the indoor air temperature remained stable, with
the fluctuation range being much smaller than that of the MRT and the surface temperature
of the radiant panel.

Figure 15 shows the changing process for each temperature under the constant tem-
perature control. The variation law of each temperature under this control method in the
morning was similar to that under constant flow control; however, there was a large dif-
ference in the afternoon. In the afternoon, the outdoor temperature continued to decrease,
and the indoor air conditioning load gradually decreased. The surface temperature of the
radiant panel gradually decreased to 20 ◦C after the system was activated. After 14:00,
it fluctuated between 21–23 ◦C as the outdoor temperature gradually decreased, and the
affected MRT fluctuated between 25.5–26 ◦C. It can be seen that under constant temperature
control, the system responded in a timely manner to changes in the air conditioning load;
however, when the load was small, the system adjusted the board temperature by starting
and stopping. In addition, similarly to the constant flow control condition, after 13:00 the
MRT and surface temperature of the radiant panel fluctuated with time, but the variation
in the indoor temperature was not large. It can be observed that the response speed of
the indoor air temperature to the surface temperature of the radiant panel was slow. This
helped to maintain thermal stability in the room; however, care must be taken to prevent
excessive cooling of the radiant panels to cause condensation.

Figure 16 shows the horizontal distribution of MRT under constant flow control after
the indoor thermal environment was stabilized. The MRT in the central area of the room
was 26 ◦C, and near the enclosure it was 26.5–27.5 ◦C, with the highest at the east outer
wall. It can be observed that the distribution and change in indoor air conditioning load
had a significant influence on the MRT. If there are no measures implemented, such as
thermal insulation treatment for the enclosure structure and for the east outer wall, which
are greatly affected by the environment, special treatment needs to be taken when applying
the MRT control method.
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Figure 17 shows the temperature distribution in the vertical direction for the three
control methods. It can be observed that the vertical temperature difference in the working
area did not exceed 1 ◦C, and that the three control methods produced a uniform indoor
thermal environment.
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4.3. Simplified System Results and Discussion

From the experimental results in Section 4.2, it can be observed that controlling the
indoor average radiation temperature as the target feedback parameter of the simplified
model can maintain a stable indoor thermal environment and respond well to the distri-
bution and changes in the air conditioning load. However, this control strategy requires
the installation of sensors on the surfaces of each indoor enclosure to collect the surface
temperature. The control system is complicated and costly; therefore, considerations can
be made to simplify the system further. The specific method is to study the relationship
between the surface temperature of each envelope and the indoor air temperature, and
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replace the measured data with the calculation results of the prediction model, thereby
reducing the number of radiation temperature sensors.

Figure 18 shows the relationship between the indoor air temperature tair and the
surface temperature of each envelope tw when the air conditioning system is activated in
the summer. It can be seen that the relationship between the surface temperature and indoor
air temperature of the east outer wall was not very obvious, owing to the influences of solar
radiation and the outdoor environment. However, there was a good linear relationship
between the surface temperature of the south inner wall, west inner wall, and north inner
wall, with the indoor air temperature. From this, an approximate relationship between
the indoor air temperature and inner surface temperature of the envelope was obtained,
as follows:

tw = atair + b (5)

where tw represents the inner surface temperature of the envelope (◦C), and tair represents
the indoor air temperature (◦C).
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Figure 18. Relationships between indoor air temperature and surface temperature of each envelope.
(a) Linear fitting of the surface temperature of the eastern inner wall and indoor air temperature;
(b) linear fitting of the surface temperature of the south inner wall and indoor air temperature;
(c) linear fitting of the surface temperature of the west inner wall and indoor air temperature;
(d) linear fitting of the surface temperature of the north inner wall and indoor air temperature.
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Table 3 presents the coefficients of the surface temperature prediction models for the
southern, western, and northern interior walls. It can be seen that the surface temperature
of each inner wall was not much different from the indoor air temperature.

Table 3. Approximate coefficients for the surface temperature of the building envelope and the indoor
air temperature.

Building Envelope a b R2

South inner wall 0.9678 1.5127 0.8155
West inner wall 0.9478 1.1899 0.9182
North inner wall 1.0928 −2.3481 0.8114

The angle coefficients of each enclosure structure where the feedback signal collection
point was located were all less than 0.16. Therefore, when the surface temperature of
the envelope structure is not significantly different from the indoor air temperature, it
is assumed that the surface temperature of the envelope structure is equal to the indoor
air temperature, and will not have a significant influence on the accuracy of the MRT
prediction. Except for the surface temperature of the floor with a large angle coefficient, for
the east outer wall that is greatly affected by solar radiation, and the surface temperature
of the ceiling that is greatly affected by the air conditioning system, the MRT calculated
by the prediction model for the surface temperature of other envelope structures was
recorded as MRTmod. When the surface temperatures of other envelope structures were
regarded as equal to the indoor air temperature, the MRT was recorded as MRTair. When
all envelope surface temperatures were measured by sensors, the MRT was recorded
as MRTsen. Figure 19 shows a comparison of the results obtained using the three MRT
calculation methods. It can be seen that at 6:00, 9:00 and 11:00, the indoor air temperature
varied greatly. MRTair failed to reflect the inertia of indoor air temperature change over
time, which was 0.5 ◦C different from MRTsen. During the stabilization process at each
temperature, the difference between MRTmod and MRTsen did not exceed 0.2 ◦C, which
is closer to the measured results than MRTair, showing higher accuracy. Overall, there
was little difference between the three MRT results; the change trend and process were
consistent, and the error was less than 5%. It can be seen that it is feasible to establish an
MRT prediction model to simplify the calculation method for the control system.
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5. Conclusions

This study used the open-source Buildings Library model library developed by
Lawrence Berkeley National Laboratory to establish a load prediction control model of a
building dynamic HVAC system, using the open-source Modelica-based Building Library.
The linear aggregation method was used to establish a reduced-order model. The accuracy
of the simplified and reduced-order models was verified. The establishment of a simplified
prediction model for building a dynamic HVAC system load significantly reduces the re-
quired input parameters; moreover, these parameters are the most basic of building design,
and are easily measured environmental parameters. This can overcome the difficulty of
obtaining detailed building parameters during the regional planning stage. Simultaneously,
a reduced-order model was used to calculate the annual load prediction of the building,
which can improve the calculation speed of the simulation and control process. A control
strategy was constructed using the indoor average radiant temperature aggregated by the
simplified prediction model of the HVAC system load as the target feedback parameter,
and its feasibility was verified experimentally. It was found that MRT can predict changes
in outdoor air temperature and load over time, effectively reducing the influence of load
changes in addition to maintaining the stability of the indoor thermal environment. How-
ever, in the case of constant temperature control, the system was adjusted by starting and
stopping when the load was small. Therefore, the ideal control strategy is to use constant
temperature control to improve the response speed when the load and its variation are
large, and to respond more accurately to load changes by constant flow control when
the load is small. The MRT calculation method was further simplified based on model
predictive control, and experimental verification was performed. It was found that the
simplified model could reflect the change law in time when the indoor temperature varied
significantly; the error was less than 5%, and the change trends and processes were consis-
tent. This study provides reference and engineering experience for the practical application
of a dynamic HVAC system load-simplified prediction model for building HVAC system
control. In a follow-up study, the building internal disturbance module will be introduced
to more accurately predict building HVAC system control. This study simplifies the load
prediction model of a building’s dynamic HVAC system so that it can be applied to the
actual construction and operation of HVAC control systems. However, instead of simply
reducing the model and control accuracy, the main research workload is placed into the
design stage of the entire building, including the HVAC system; the key parameters are
screened and optimized based on the determination of various building characteristics.
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