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Abstract: The liquid limit (LL) is considered the most fundamental parameter in soil mechanics for
the design and analysis of geotechnical systems. According to the literature, the LL is governed
by different particle sizes such as sand content (S), clay content (C), and silt content (M). However,
conventional methods do not incorporate the effect of all the influencing factors because traditional
methods utilize material passing through a # 40 sieve for LL determination (LL40), which may contain
a substantial number of coarse particles. Therefore, recent advancements suggest that the LL must be
determined using material passing from a # 200 sieve. However, determining the liquid limit using
# 200 sieve material, referred to as LL200 in the laboratory, is a time-consuming and difficult task.
In this regard, artificial-intelligence-based techniques are considered the most reliable and robust
solutions to such issues. Previous studies have adopted experimental routes to determine LL200

and no such attempt has been made to propose empirical correlation for LL200 determination based
on influencing factors such as S, C, M, and LL40. Therefore, this study presents a novel prediction
model for the liquid limit based on soil particle sizes smaller than 0.075 mm (# 200 sieve) using gene
expression programming (GEP). Laboratory experimental data were utilized to develop a prediction
model. The results indicate that the proposed model satisfies all the acceptance requirements of
artificial-intelligence-based prediction models in terms of statistical checks such as the correlation
coefficient (R2), root-mean-square error (RMSE), mean absolute error (MAE), and relatively squared
error (RSE) with minimal error. Sensitivity and parametric studies were also conducted to assess
the importance of the individual parameters involved in developing the model. It was observed
that LL40 is the most significant parameter, followed by C, M, and S, with sensitivity values of 0.99,
0.93, 0.88, and 0.78, respectively. The model can be utilized in the field with more robustness and has
practical applications due to its simple and deterministic nature.

Keywords: artificial intelligence; gene expression programming; liquid limit; sensitivity and para-
metric studies

1. Introduction

The liquid limit (LL) can be defined as the amount of water content at which soil
behaves like a liquid and possesses the least possible measurable shear strength [1–4]. It is
commonly employed for assessment of the physical and mechanical response of soils [5].
The most fundamental applications of the liquid limit are to classify fine-grained soils and
determine its correlations with almost all the mechanical properties of cohesive soils such
as the shear strength, compressive strength, consolidation behavior, stress history, shrink
and swell characteristics, activity, toughness index, etc. [3,6].
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The LL is commonly determined in the laboratory using the Casagrande method and
fall cone method in accordance with ASTM standard 4318 [7] and BS 1377 [8]. The LL
is used to classify fine-grained soils, which, according to the ASTM standard, are soils
containing material having 50% or more particle sizes smaller than 0.075 mm [9]. However,
it is conventionally determined based on # 40 sieve (0.425 mm particles) passing material [7].
The question is whether it is appropriate to determine the liquid limit using # 40 sieve
passing material (LL40), as it may contain coarse content referred to as medium fine-grained
sand. This leads to major changes in soil classification and subsequent correlations of LL
with the mechanical characteristics of soils. It has recently been established that the LL
must be determined using # 200 sieve passing material (LL200) instead of # 40 sieve passing
material (LL40), as the LL is governed by several particle sizes including sand content
(S), silt content (M), and clay content (C) [10–12]. Therefore, this study is based on recent
advancements in the context of determining the liquid limit based on # 200 sieve passing
material. However, previous studies have adopted experimental routes to determine LL200
and no such attempt, to the best of the authors’ knowledge, has been made to propose
empirical correlation of LL200 using artificial-intelligence-inspired techniques based on
several influencing parameters.

However, determining LL200 in a laboratory is a challenging task. In contrast to
LL40, which is conventionally calculated based on material that passes through a # 40
sieve, LL200 requires extensive pulverization of dry soil particles in order for them to
pass through a # 200 sieve’s opening widths (0.075 mm opening size). This makes it
relatively difficult and time consuming to determine LL200. Moreover, determination of
influencing parameters such as clay content (C) and silt content (M) using hydrometer
analysis requires cumbersome procedures. This constitutes the main motivation of the
study: to propose a prediction model for LL200 that not only saves time and provides high
performance in terms of accuracy, but also incorporates critical influencing factors such as
S, C, and M. Moreover, it is less likely that the liquid limit will be underestimated due to
inaccuracy caused by LL40. In this case, artificial intelligence (AI)-based prediction models
are considered useful due to their capability to consider multiple influencing parameters,
robustness, effectiveness in terms of cost and time, and capability to incorporate multiple
influencing parameters [13–16].

It is worthwhile to note that the goal of the current study differs from the objectives of
earlier studies because # 40 sieve material is the only type used in previous studies that
consider the application of AI for determination of the LL. For instance, Seybold et al. [17]
developed a prediction model for the estimation of Atterberg limits (PL and LL) based on
clay content (C) and cation exchange capacity (CEC) as input variables, using a multiple
linear regression technique (MLR). The study indicated that C and CEC play a vital role in
determining Atterberg limits. Diaz et al. [18] proposed machine-learning-based models
for determining Atterberg limits using the fall cone and Casagrande method. Similarly,
Keller and Dexter [19] proposed relationships between Atterberg limits and clay content.
However, these studies were based on liquid limit determination using # 40 sieve passing
material and did not consider the liquid limit determination based on # 200 sieve passing
material. Furthermore, it has been recognized well that LL depends on clay, silt, and coarse
content [20]. Previous studies have adopted experimental routes for estimation of the LL
using a # 200 sieve and no correlation exists, according to the authors’ best knowledge, to
predict LL200 using gene expression programming (GEP) and incorporating clay, silt, and
sand content.

This research study aimed to propose a novel prediction model for LL200 based on
experimental data obtained from laboratory testing using gene expression programming.
The soil samples were obtained from different locations in Pakistan and were tested in the
laboratory to determine the liquid limit along with the basic index properties of soils such
as sand (S), silt (M), and clay (C) contents. The proposed prediction model was validated
through various statistical checks and error plots. Finally, sensitivity and parametric studies
were also conducted to further justify the reliability of the proposed prediction model.
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2. Research Methodology

The development of a prediction model using AI techniques requires authentic in-
formation supported by data either from laboratory or in-situ experimentation. The data
are then processed by the selection of suitable input parameters in relation to the output
variable. The data are further subdivided into training and validation categories. The use
of AI techniques is a critical process and requires rigorous knowledge of computer vision.
The model is trained, and performance is evaluated using different statistical checks. The
general process involved in any prediction model development is illustrated in Figure 1.
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Figure 1. Steps involved in developing prediction model using artificial intelligence techniques.

2.1. Data Collection

Soil samples were taken from different locations in Pakistan as shown in Figure 2
and were preserved for a laboratory testing program. The samples were collected from
various regions using the hand auger method from shallow depths. Most of the regions are
composed primarily of low plastic silty clay and sandy soils at shallow depths, followed by
sandstones, gravelly clay, shale, and mudstone at greater depths. However, in this study,
soil samples represent low plastic silty clay, which is also illustrated by laboratory results
in the following sections.
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Figure 2. Location map of the soil study area.

2.2. Laboratory Testing and Results

In order to develop a prediction model, selection of critical and appropriate influencing
input parameters is the fundamental process. It is well recognized from the literature that C,
M, and S tend to influence the LL of cohesive soils [21]. Therefore, based on this rationale,
S, M, C and LL40 have been considered as the function of LL200 as given by Equation (1).

LL200 = f (S, C, M, LL40) (1)

The laboratory testing program included the determination of basic index properties
of soils such as sand content (S), clay content (C), silt content (M), liquid limit using # 40
(LL40) and # 200 (LL200) sieve passing materials.

Oven-dried soil samples were used to perform sieve analysis for the determination of
sand and fine content in accordance with ASTM D 422 [22]. In this test, soils are passed
through a succession of sieves ranging between # 4 (4.75 mm) and # 200 (0.075 mm) in
descending order. The material retained in the # 200 sieve and passing from the # 4 sieve is
termed as the sand content (S), whereas the material passing from the # 200 sieve is known
as the fine content, which is further subdivided into C and M.

Since C (particle sizes smaller than 0.002 mm) and M (particle sizes between 0.075
and 0.002 mm) have very small sizes, they cannot be determined using sieve analysis.
Therefore, hydrometer analysis inspired by Stokes’ law of particle sedimentation is used to
determine C and M. In this test, soil particles having sizes smaller than 0.075 mm are mixed
with water along with a dispersing agent (sodium hexameta phosphate or sodium silicate),
and the relative movement of soil particles with regard to the hydrometer is recorded and
interpreted to determine the size of particles in the suspension based on Stokes’ theorem
of particle sedimentation. The percentage of particles having diameter ranges between
0.075 mm and 0.002 mm represents the silt content (M) whereas particle sizes smaller than
0.002 mm represent the clay content (C).
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The LL can be determined using the Casagrande method and the fall cone method. In
this study, the fall cone method was adopted due to its simplicity and time efficiency. A
cone of apex angle 30◦ having a weight of 0.78 N is lowered into soil of varying moisture
contents. The liquid limit is termed as the water content at which the penetration of the
cone is 20 mm in five seconds of its free fall from a certain height. In this study, the liquid
limit was determined using soils having particle sizes smaller than 0.075 mm and 0.425 mm
separately and these are referred to as LL40 and LL200.

Figure 3 shows the histograms of frequency distribution of the data obtained from
laboratory experiments. Figure 3a shows the frequency distribution of S determined from
sieve analysis tests. The results indicate that S varies between 2% and 36%. Figure 3b
indicates the frequency distribution of M, which varies between 34% and 93%. Figure 3c
illustrates C varying between 5% and 60%. Similarly, Figure 3d,e show the frequency
distribution of LL40 and LL200, which vary between 16% and 62%, and 23% and 70%,
respectively. The results indicate that soil samples contain a diversity of soil types with a
wide range of LL values. Table 1 presents the summary of basic statistics of data utilized
for the development of the prediction model. This is recommended to apply the proposed
model for the dataset ranges within the limits of dataset described in Table 1. The nature of
soil properties indicates low-plasticity silty clay soils according to the USCS. It is worthwhile
to mention that the proposed prediction model would be more realistically applicable to
low-plasticity silty clayey soils more specifically with the dataset ranges specified in this
study.

Table 1. Statistics of input and output data for LL200 prediction model.

Predictors Minimum Maximum Mean Std. Deviation

S [%] 2 36.2 5.95 4.39
C [%] 5 60 27.52 18.6
M [%] 34 93 66.45 17.68

LL40 [%] 16 62 39.1 11.75

Output Data

LL200 [%] 23 70 44.1 11.97
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Figure 3. Frequency distribution histograms of experimental data: (a) sand content S [%]; (b) silt
content M [%]; (c) clay content C [%]; (d) liquid limit from # 40 sieve passing material LL40 [%];
(e) liquid limit from # 200 sieve passing material LL200 [%].

3. Development of Prediction Model Using Gene Expression Programming

After the compilation of data, a prediction model was developed using the AI-based
technique. Gene expression programming (GEP) was chosen for this study because, in
contrast to other data-science methodologies, it offers transparent solutions in the form of
straightforward explicit mathematical equations and does not call for the prior assumption
of correlations. For instance, an artificial neural network (ANN) is considered a “black box”
and does not provide mathematical solutions. Similarly, simple multi-linear regression
(MLR) does not give insights into the inter-dependency of variables.

GEP is the extended and improved version of GP, which was proposed by Ferreira and
is widely appreciated by researchers in the field of geotechnical engineering [23–28]. Over
the past few years, GEP has been adopted by many researchers in order to model complex
physical phenomena. In GEP, chromosomes are expressed as branched structures also
known as expression trees (ETs) of non-linear entities with varying sizes and shapes, which
are initially encoded as fixed-size linear strings (genome). In a multi-genic chromosome,
each gene represents Sub-ET, which is composed of two main parts; namely, head and tail.
These are the positions where genetic operators are employed to develop new solutions.
In GEP, a genetic code operator develops an optimal and best-fit solution of a complex
problem in the form of empirical relations, which are formulated by linearly combining
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different input parameters and arithmetic operators (+, −, *, ÷, sine, cosine, tan, etc.) as a
function set and constants as a terminal set. The information is stored in a chromosome,
which is inferred using the Karwa language. Details in respect of the Karwa language can
be found in the literature [29].

Figure 4 represents the process involved in developing an algorithm and explicit
solution using GEP. The process begins with the random generation of an initial population
for all the individuals. The chromosomes are expressed in the form of branched trees,
i.e., ETs, and then best-fit solutions upon evaluation of fitness are used for the process
of reproduction. The fitness can be evaluated using multiple functions and the notable
examples are RMSE, MAE, RSE, and R2. The iteration process is continued until the best
desired optimal solution is obtained. Otherwise, the best-fit solution of the first iteration is
selected using the Roulette wheel method and then the processes of mutation, crossover,
and reproduction are applied to develop a new population of chromosomes. This process
of iterations is stopped when best desired solution is obtained.
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3.1. General Settings

The prediction model using GEP is controlled by the setting of general parameters
such as the number of genes, head size, and the number of chromosomes [30–32]. Several
trials were run to determine the optimal parameters for developing the algorithm. The
experimental data obtained from 100 soil samples were used for the prediction model
development by randomly distributing them into training and validation datasets in
proportions of 70% and 30%, respectively. The head size, number of chromosomes, and
genes were considered as 7, 30, and 3, respectively, in order to develop a robust solution
for the problem at hand. Table 2 shows the details of the setting of parameters involved in
developing the GEP-based prediction model.
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Table 2. General settings for the development of the prediction model.

General
Model Setting

LL200 [%]

Genes 3
Chromosomes 30
Head size 7
Set of functions +, −, ×, ÷
Linking function +

3.2. Prediction Model Evaluation Criteria

Prediction models are commonly evaluated using a single parameter known as a
correlation coefficient. However, R cannot be solely contemplated as the measure to
assess the performance and efficiency of the prediction model due to its insensitivity
to division and multiplication of the output to a constant value. Therefore, root-mean-
square error (RMSE), mean absolute error (MAE), and relatively squared error (RSE)
were also considered in this study. These statistical parameters can be determined using
Equations (2)–(5) [33].

RMSE =

√
∑n

i=1(ei − mi)
2

n
(2)

MAE =
∑n

i=1(ei − mi)

n
(3)

RSE =
∑n

i=1(mi − ei)
2

∑n
i=1

(−
e − ei

)2 (4)

R =
∑n

i=1(ei − ei)(mi − mi)√
∑n

i=1(ei − ei)
2 ∑n

i=1(mi − mi)
2

(5)

where n is the number of samples, ei is ith experimental output, mi is the ith model
output, and ei and mi are the average values of the experimental and the model responses,
respectively.

The performance of prediction can also be evaluated using other statistical means
as well as error plots. The prediction data that lie within the pre-defined error bounds
represent the higher accuracy and generalization capability of the model [34]. Therefore,
in this study, error plots were also drawn to ensure better insight into the accuracy of the
proposed prediction models.

4. Results and Discussion

Figure 5 represents the ETs developed using GEP, which are composed of three
sub-ETs (Sub-ET 1, sub-ET 2, and sub-ET 3). ETs were decoded according to the prin-
ciples of the Karwa language, and the simplified expressions to predict LL200 are given by
Equations (6)–(9). The procedure involves the simple process of reading the expression
tree from top to bottom and from left to right (exactly as we read a page of text). ETs are
composed of three types of parameters such as constants (derived from iterative process of
linear correlations to achieve a target value), input parameters, and pre-defined mathemat-
ical operators. It is evident from the mathematical expressions that the proposed model
includes all the parameters that were involved in developing the model, accompanied by
basic mathematical operators (+, −, * and ÷). These proposed mathematical models can be
utilized explicitly and are more user-friendly for design engineers. The model is capable of
quantifying the influence of different soil particles (S, C, and M), which can provide more
insight to practitioners while performing design and analysis especially for the settlement
analysis of foundations.

LL200 [%] = A + B + C (6)



Buildings 2022, 12, 1551 9 of 15

A =

[
C

LL40
S

− 1.29

]
− [S − LL40 + 1.33] (7)

B =

[(
44.2 − 8.5 × S

M

)]
(8)

C = (4 + LL40) +

[
(S − 6.4)

(
4.2
M

)]
(9)

where LL200 (%) is the liquid limit based on # 200 sieve passing material; A, B, and C are
the expressions derived from the three ETs; and LL200 pis the summation of A, B, and C.

4.1. Performance Assessment of Model

The practical application of a prediction model depends upon how well the model
meets the acceptance criteria. The model is deemed accurate and reliable if it satisfies
multiple criteria. The performance evaluation criteria have been discussed in Section 3.2.
Figure 6a represents the comparison of prediction data against the actual experimental
data. The values of the statistical expressions are also shown in this graph. It can be seen
that values of R2, RMSE, MAE, and RSE are 0.985, 1.458, 1.165, and 0.014, respectively, for
training data involved in training the prediction model, and are 0.983, 1.471, 1.207, and
0.018 for validation data. The values of R2 close to 1 and lower values of RMSE, MAE,
and RSE suggest strong predictability of the prediction equation [30]. This shows that the
proposed prediction model complements all the acceptance criteria required to validate the
performance of the prediction model as the values of R2 are close to 1, i.e., 98% accuracy,
whereas values of RMSE, MAE, and RSE are low enough for both training and validation
datasets. Moreover, the training model performed well against unseen testing data that
were not included in the development of the prediction model, with an accuracy of 98%.
This further justifies that the proposed model predicts the responses with minimal error
and high accuracy.
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In addition to statistical checks, error plots also provide useful insights into the
quantitative errors involved in predicting the responses using the trained model against
unseen data. A model with minimal error is deemed reliable and accurate. In this regard,
the proposed model was validated using several error plots. For example, Figure 6a also
shows the plot of error bounds, and experimental and prediction responses. The results
indicate that the experimental and predicted responses are well within the pre-defined
error bounds such as ±5. It can be seen that the prediction data against actual experimental
data lie within the +5% upper and −5% lower bounds, indicating the minimal error in
prediction data. The frequencies of all the responses lie within ±5 error, indicating the
high-performance efficiency of model.



Buildings 2022, 12, 1551 11 of 15

Buildings 2022, 12, x FOR PEER REVIEW 11 of 15 
 

the performance of the prediction model as the values of R2 are close to 1, i.e., 98% accu-

racy, whereas values of RMSE, MAE, and RSE are low enough for both training and 

validation datasets. Moreover, the training model performed well against unseen testing 

data that were not included in the development of the prediction model, with an accu-

racy of 98%. This further justifies that the proposed model predicts the responses with 

minimal error and high accuracy. 

In addition to statistical checks, error plots also provide useful insights into the 

quantitative errors involved in predicting the responses using the trained model against 

unseen data. A model with minimal error is deemed reliable and accurate. In this regard, 

the proposed model was validated using several error plots. For example, Figure 6a also 

shows the plot of error bounds, and experimental and prediction responses. The results 

indicate that the experimental and predicted responses are well within the pre-defined 

error bounds such as ±5. It can be seen that the prediction data against actual experi-

mental data lie within the +5% upper and −5% lower bounds, indicating the minimal er-

ror in prediction data. The frequencies of all the responses lie within ±5 error, indicating 

the high-performance efficiency of model. 

  

Figure 6. Performance evaluation of prediction model of LL200: (a) statistical analysis of proposed 

prediction model of LL200; (b) comparison of GEP model responses, experimental data, and abso-

lute error. 

4.2. Sensitivity and Parametric Study 

Sensitivity analysis (SA) is carried out to determine the contributions of individual 

parameters involved in developing a prediction model. The sensitivity analysis indicates 

the sensitivity of a parameter in estimating the output. The most sensitive parameter 

must be dealt with carefully when it is determined in the laboratory or on site. The SA 

can be determined using Equation (10) [35,36]. The SA value varies between 1 and 0. The 

value of zero indicates that the parameter has no significant impact on the model output, 

whereas a value close to 1 shows the higher significance and level of sensitivity of the 

parameter. 

𝑆𝐴 =
∑ (ℎ𝑖𝑘𝑖)

𝑛
𝑖=1

√∑ ℎ𝑖
2𝑥 ∑ 𝑘𝑖

2𝑛
1

𝑛
𝑖=1

 (10) 

where hi is the input parameter and ki is the response of the predicted model. 

Figure 7 shows the results of the sensitivity analysis for the proposed prediction 

model. It was observed that LL40 has the most significant impact, followed by C, M, and S. 

The determination of LL40 has a considerable effect on estimating LL200 and it must be 

20

40

60

80

100

20 40 60 80 100

Experimental liquid limit LL200 [%]

P
re

d
ic

te
d

 l
iq

u
id

 l
im

it
 L

L
2
0
0

[%
]

Ideal fit

 5 % error bound

Training data

Validation data

Training Model

R2 = 0.985

MAE = 1.165 RSE = 0.014

RMSE = 1.458

R2 = 0.983

MAE = 1.207 RSE = 0.018

RMSE = 1.471

Validation of Model

(a)

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80

Absolute error

GEP model data

Experimental data

Dataset

liq
u

id
 l
im

it
 L

L
2
0
0

[%
]

(b)

Figure 6. Performance evaluation of prediction model of LL200: (a) statistical analysis of proposed
prediction model of LL200; (b) comparison of GEP model responses, experimental data, and absolute
error.

4.2. Sensitivity and Parametric Study

Sensitivity analysis (SA) is carried out to determine the contributions of individual
parameters involved in developing a prediction model. The sensitivity analysis indicates
the sensitivity of a parameter in estimating the output. The most sensitive parameter must
be dealt with carefully when it is determined in the laboratory or on site. The SA can be
determined using Equation (10) [35,36]. The SA value varies between 1 and 0. The value of
zero indicates that the parameter has no significant impact on the model output, whereas a
value close to 1 shows the higher significance and level of sensitivity of the parameter.

SA =
∑n

i=1(hiki)√
∑n

i=1 h2
i x ∑n

1 k2
i

(10)

where hi is the input parameter and ki is the response of the predicted model.
Figure 7 shows the results of the sensitivity analysis for the proposed prediction model.

It was observed that LL40 has the most significant impact, followed by C, M, and S. The
determination of LL40 has a considerable effect on estimating LL200 and it must be treated
with utmost care in a laboratory. The order of significance is LL40 > C > M > S. C is the
most significant soil property that influences the Atterberg limits and similar findings have
been reported in the literature [37]. S is the least sensitive parameter. Nevertheless, the
value of SA for S is the least among all parameters, but it does not necessarily follow that
the impact of S on LL200 would be negligible as it has 78% sensitivity, which indicates its
higher sensitivity in relation to LL200. This translates to the fact that the model has been
trained effectively since all the parameters considered for developing the model have a
significant impact on LL200.

The development of prediction models brings robust and cost-effective solutions using
state-of-the-art knowledge. However, the models present several challenges to be addressed
before their consideration for wider applicability. Some models are trained effectively and
are solely based on the data utilized in the developing model. AI-based techniques cannot
assess whether the data utilized justify physical processes or not. In this regard, parametric
studies were conducted as shown in Figure 8. In this process, all the input parameters are
kept constant at their average values while one parameter is varied around its mean value,
and the corresponding variation in the dependent parameter is observed. It can be seen
that an increase in LL40 leads to an increase in LL200, which is because finer particles tend to
have a larger surface area and this consequently leads to an increase in the liquid limit with
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particle sizes smaller than 0.075 mm (# 200 sieve). Similarly, increases in C and M lead to
an increase in LL200; it has been discussed in several research studies that an increase in C
leads to an increase in the water holding capacity of soils [1,12,37]. Similarly, an increase in
M causes an increase in LL200 as M particles have a small size and can enhance the LL due
to the larger surface area. Variation of the most critical parameters has been considered for
the sake of brevity. These findings demonstrate that the model meets all the requirements
for prediction model acceptance and may be applied in practice with greater accuracy.
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Figure 8. Parametric analysis of input parameters; (a) variation of liquid limit LL200 with varying
liquid limit based on # 40 sieve passing material [%]; (b) variation of liquid limit LL200 with varying
silt content M [%]; (c) variation of liquid limit LL200 with varying clay content C [%].
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4.3. Practical Application and Future Prospects of Research

As discussed, the liquid limit is the most fundamental parameter that is commonly
used for the design and analysis of many geotechnical applications. One of the prime
examples is that it is employed for the settlement analysis of foundations and plays key
role in the classification of soils, leading to selection of material for the construction of
roads and backfill. The LL depends upon several factors such as particle sizes, type of clay
minerals (montmorillonite, illite, kaolinite etc.), cation exchange capacity (CEC), pH, and so
on. Conventional methods do not incorporate the effect of critical influencing parameters
and have certain limitations, which have already been discussed. Thus, the proposed
prediction model considers the most easily available critical parameters controlling the LL
of soil by proposing user-friendly stochastic expression. The suggested approach offers
helpful insights into how particle sizes affect LL determination, which ultimately results in
effective material selection based on accurate soil-type categorization and safe design of
construction. However, because of the attributes of the dataset used for model construction,
this model is better suited to low-plasticity silty clayey types of soils. Future research
may be conducted on the diverse nature of clayey soils (highly reactive, expansive, and
dispersive soils) incorporating a micro-structure study of clayey particles and several other
parameters, such as the cation exchange capacity of clayey soil and pH. The concept of
determining the LL based on # 200 sieve passing may also be implemented to revise existing
correlations of LL40 with the mechanical properties of soil.

5. Conclusions

In this study we proposed a novel AI-based prediction model for the liquid limit based
on material having a size smaller than 0.075 mm, using the GEP technique. The proposed
empirical model is the first of its kind and can be implemented in the field when provided
with known values of sand content, silt content, clay content, and liquid limit using # 40
sieve passing material. The following principal conclusions can be drawn from this study.

• The LL is governed by different particle sizes, which include S, C, and M. However,
conventional methods do not incorporate the effect of S, C, and M explicitly. Therefore,
the proposed model was developed to account for S, C, and M in order to better
capture the behavior of the consistency of fine soils.

• The proposed prediction model is simple, robust, and justifies all the acceptance
requirements in terms of high accuracy and low errors in prediction. The values of R2,
RMSE, MAE, and RSE for training data were found to be 0.985, 1.458, 1.165, and 0.014,
respectively, and were 0.983, 1.471, 1.207, and 0.018 for validation data. The results
indicate the higher accuracy and generalization capability of the proposed prediction
model.

• The proposed model predicted the responses with minimal error and the prediction
data lie within ±5% error, which further confirms the reliability. The performance of
the sensitivity analysis indicates that all the parameters involved in developing the
model are sensitive to LL200, with S being the least significant parameter and having a
sensitivity value of 0.78.

• The model can be used with the least possible error for low-plasticity clayey soils and
reduces the risk of underestimation of the LL, eventually leading to the safe design
and analysis of structures.
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