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Abstract: Most of the reinforced concrete buildings in Nepal are low-rise construction, as this type
of construction is the most dominant structural form adopted to construct residential buildings in
urban and semi-urban neighborhoods throughout the country. The low-rise residential constructions
generally follow the guidelines recommended by the Nepal Building Code, especially the mandatory
rules of thumb. Although low-rise buildings have brick infills and are randomly constructed, infill
walls and soil–structure interaction effects are generally neglected in the design and assessment
of such structures. To this end, bare frame models that are used to represent such structures are
questionable, especially when seismic vulnerability analysis is concerned. To fulfil this gap, we
performed seismic vulnerability analysis of low-rise residential RC buildings considering infill walls
and soil–structure interaction effects. Considering four analysis cases, we outline comparative seismic
vulnerability for various analysis cases in terms of fragility functions. The sum of observations
highlights that the effects of infills, and soil–structure interaction are damage state sensitive for
low-rise RC buildings. Meanwhile, the design considerations will be significantly affected since
some performance parameters are more sensitive than the overall fragility. We also observed that
the analytical fragility models fundamentally overestimate the actual seismic fragility in the case of
low-rise RC buildings.

Keywords: seismic vulnerability; fragility function; RC; infill masonry; soil–structure interaction

1. Introduction

Structural response is fundamentally a function of response of superstructure, sub-
structure (foundation), and soil underlying the foundation. Thus, performance of a building
under earthquake excitation is attributed not only to the physical vulnerabilities of struc-
tural and nonstructural components, but also the soil foundation structure interaction.
Many moderate to strong earthquakes that hit various parts of the world have exposed
seismically vulnerable aspects of reinforced concrete buildings (see e.g., [1–8]). Many
residential RC buildings are designed considering the foundation as rigid, even in areas
with soft soil deposits, thus neglecting the effect of soil–structure interaction. Fixed-based
foundation assumption may not be so important for low-rise buildings resting in relatively
stiff soil, but for medium and high-rise buildings constructed on soft soil, effect of soil
behavior can alter their seismic performance to a large extent [9].
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Brick infills are widely used in RC buildings. While they might provide considerable
stiffness during lateral shaking, it is customary in design practice to ignore their stiffness
contribution. They are accounted for in structural analysis and design mainly for the dead
loads they impose on the structural frames. Brick infill walls in RC framed structures are
known to cause an important role in seismic damage [2,4,5,8,10]. Their effect on stiffness
and strength of RC framed buildings is well documented in the literature (see e.g., [11–14]).
Effects of masonry infill walls on overall performance of buildings have been studied using
analytical [15–17] and experimental [18–21] methods. While well-distributed infill walls
are known to reduce inter-story drift demands, irregular distribution is known to cause
undesirable mechanisms such as soft story failure [22], short-column damage, etc. Pujol
and Fick [21] report that stiff infills can cause brittle failure of columns in RC frames. Infills
can provide stiffness against lateral drift, which can be effective under moderate shaking.
Due to their inherent lack of strength and ductility, they crack under strong shaking and
cause undesirable transfer of forces to the RC frames. Effect of infill walls in overall seismic
performance can therefore be both positive and negative, depending on several factors, and
a subject that needs to be better understood.

Some remarkable cases of infill damage were observed during the 2015 Gorkha and
2016 Central Italy earthquakes [23,24]. Out-of-plane collapse of infill walls is one of the
most dangerous failure modes that possess great risk to occupants.

Soil–structure interaction effects can be categorized as inertial and kinematic inter-
actions [25]. Inertial effects occur mainly due to flexibility in the soil foundation system,
which gets deformed due to inertial forces exerted by the structure. The overall effect is a
more flexible (than a fixed based) system. Kinematic interactions arise due to the stiffness
of the foundation, which interferes with the motion of the surrounding soil and result in
differences between foundation input and free-field ground motions. Incoherent shaking
across the foundation slab and variation of shaking at different depths of foundation are
typical consequences of kinematic interactions. The difference between the flexible and
rigid base systems in the foundation soil has been widely studied using shake table experi-
ments (see e.g., [26]). Mylonakis and Gazetas [27] discussed the beneficial and detrimental
effect of soil–structure interaction on structures. Past records show that the increase in
flexibility of structure increases the fundamental vibration period of the building. As a
result, base shear decreases and on the other hand displacement demands increase. The
decrease in base shear may be advantageous but the increase in displacement can lead to
damage in the structural elements as well as potential pounding with adjacent structures.
However, several other studies have pointed out that increase in vibration period and
effective damping due to soil–structure interaction may not always reduce story shear
forces [28,29]. In some contexts, especially in soft soil sites, soil–structure interaction may
have harmful effects on the seismic performance of structures. Studies by Mylonakis and
Gazetas [27] and Jie et al. [30] highlight both beneficial and adverse effects of soil–structure
interaction. Soil–structure interaction effect is accounted for, albeit in different ways, in
seismic design codes. The Eurocode-8 [31] acknowledges increase in the fundamental
period of vibration and overall damping in structures resting on soft soil compared to those
built on rock. Site effects are, however, accounted for mostly by increasing the design forces,
which is meant to amplify peak ground acceleration depending on the stiffness of the
underlying soil. Similarly, the ASCE/SEI 7-10 [32] provides mathematical formulations that
focus on the design earthquake forces and corresponding displacements of the structure
due to soil–structure interaction. The IS code 1893-2016 [33] and NBC 105:2020 [34] also
highlight the effects of soil–structure interaction. Both codes suggest that the structure built
on rigid base does not require consideration of soil–structure interaction (SSI). However,
structures resting on soft soil site are required to be designed considering the effects of
SSI. It is pertinent to note that most design codes follow an over-simplified approach to
addressing the SSI problem. Effects of infill walls and SSI on overall seismic performance of
structures therefore need further investigation and understanding for them to be adequately
incorporated in design codes.
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The main aim of this study is to shed light on effect of SSI and brick masonry in seismic
performance of RC buildings with brick infill walls built on soft soil. A typical three storied
RC framed structure in the Kathmandu Valley is used as a case study. Although some
studies on seismic performance of such structures have been reported in the literature (see
e.g., [7,24,35]), incorporation of both SSI and brick infill walls, and their effects on seismic
fragility is missing. Analytical models of the SSI system are used in estimating seismic
fragility, which is compared with empirically observed fragilities of similar buildings.

2. Materials and Methods
2.1. Case Study Building

Although, the NBC-205 guideline is not intended for irregular buildings, low-rise
RC residential buildings often adopt structural sizing from it. Using fewer reinforcement
bars than required by the code, RC buildings that are constructed using mandatory rules
of thumb are commonly non-compliant to the code. We selected one such representative
residential RC frame building as shown in Figure 1. The sectional details of beam, column,
and foundation are respectively presented in Figures 2–4. The geometrical and material
properties of the case study building are summarized in Table 1.

Buildings 2022, 12, x FOR PEER REVIEW 3 of 15 
 

The main aim of this study is to shed light on effect of SSI and brick masonry in seis-
mic performance of RC buildings with brick infill walls built on soft soil. A typical three 
storied RC framed structure in the Kathmandu Valley is used as a case study. Although 
some studies on seismic performance of such structures have been reported in the litera-
ture (see e.g., [7,24,35]), incorporation of both SSI and brick infill walls, and their effects 
on seismic fragility is missing. Analytical models of the SSI system are used in estimating 
seismic fragility, which is compared with empirically observed fragilities of similar build-
ings. 

2. Materials and Methods 
2.1. Case Study Building 

Although, the NBC-205 guideline is not intended for irregular buildings, low-rise RC 
residential buildings often adopt structural sizing from it. Using fewer reinforcement bars 
than required by the code, RC buildings that are constructed using mandatory rules of 
thumb are commonly non-compliant to the code. We selected one such representative res-
idential RC frame building as shown in Figure 1. The sectional details of beam, column, 
and foundation are respectively presented in Figures 2–4. The geometrical and material 
properties of the case study building are summarized in Table 1.  

 
Figure 1. Typical floor plan of the case study building. Figure 1. Typical floor plan of the case study building.



Buildings 2022, 12, 72 4 of 15Buildings 2022, 12, x FOR PEER REVIEW 4 of 15 
 

 
Figure 2. Geometrical and reinforcement details of RC beam section. 

 
Figure 3. Geometrical and reinforcement details of column section. 

 
Figure 4. Typical arrangement of isolated footing. 

Table 1. Geometric and material properties used for finite element modeling. 

Component Description Details 

Frame 

Type Special moment resisting frame (SMRF) 
No. of stories 3 

No. of bays in X-direction 3 
No. of bays in Y-direction 2 

Story height 2.87 m 
Total width along X-axis 8.54 m 

Figure 2. Geometrical and reinforcement details of RC beam section.

Buildings 2022, 12, x FOR PEER REVIEW 4 of 15 
 

 
Figure 2. Geometrical and reinforcement details of RC beam section. 

 
Figure 3. Geometrical and reinforcement details of column section. 

 
Figure 4. Typical arrangement of isolated footing. 

Table 1. Geometric and material properties used for finite element modeling. 

Component Description Details 

Frame 

Type Special moment resisting frame (SMRF) 
No. of stories 3 

No. of bays in X-direction 3 
No. of bays in Y-direction 2 

Story height 2.87 m 
Total width along X-axis 8.54 m 

Figure 3. Geometrical and reinforcement details of column section.

Buildings 2022, 12, x FOR PEER REVIEW 4 of 15 
 

 
Figure 2. Geometrical and reinforcement details of RC beam section. 

 
Figure 3. Geometrical and reinforcement details of column section. 

 
Figure 4. Typical arrangement of isolated footing. 

Table 1. Geometric and material properties used for finite element modeling. 

Component Description Details 

Frame 

Type Special moment resisting frame (SMRF) 
No. of stories 3 

No. of bays in X-direction 3 
No. of bays in Y-direction 2 

Story height 2.87 m 
Total width along X-axis 8.54 m 

Figure 4. Typical arrangement of isolated footing.

2.2. Soil–Structure Interaction Modeling

Since the case study building is situated on soft soil deposit at the northwestern fringe
of Kathmandu Valley, soil parameters were collected from a nearby site. The uncorrected
SPT-N value was converted to shear wave velocity using the empirical correlation proposed
by Gautam [36]. Soil flexibility is modeled with equivalent springs with six degrees of
freedom as shown in Figure 5 at each footing. Mechanical properties of the springs are
based on formulations presented by Gazetas [37]. The shear wave velocity for the site
was estimated to be 100 m/s and mass density of the soil was adopted as 13,500 Kg/m3.
Meanwhile, Poisson’s ratio and modulus of rigidity of the underlying soil were respectively
adopted as 0.4 and 13,500 KN/m2.
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Table 1. Geometric and material properties used for finite element modeling.

Component Description Details

Frame

Type Special moment resisting frame (SMRF)

No. of stories 3

No. of bays in X-direction 3

No. of bays in Y-direction 2

Story height 2.87 m

Total width along X-axis 8.54 m

Total width along Y-axis 9.14 m

Size of beam 230 × 355 mm

Size of column 305 × 305 mm

Thickness of slab 125 mm

Load

Live load at floor slab 2.5 KN/m2

Live load at roof 1.5 KN/m2

Staircase load 3 KN/m2

External wall load 8.98 to 12.83 KN/m

Internal wall load 4.86 to 6.94 KN/m

Isolated square footing 1.52 × 1.52 m, 1.5 m below the plinth level

Material

Grade of concrete 20 MPa for all concrete members

Grade of steel rebar Fe-500 for all RCC members

Brickwork 7.5 MPa bricks in 1:6 cement-sand mortar
for 230 mm thick walls
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In Figure 5, Kx, Ky, and Kz are the equivalent spring stiffnesses along the translational
DOF (along x, y, and z axes) and Krx, Kry, and Krz are the equivalent spring stiffnesses along
the rotational DOF (along x, y, and z axes). Kx, and Kz were estimated to be 136,419 KN/m,
while Ky is calculated to be 154,410 KN/m. Similarly, Krx and Krz were calculated to be
226,321 KN-m/rad, while Kry was estimated as 3,243,045 KN-m/rad.

2.3. Infill Panel Modeling

Masonry infill wall is a composite material made up of brick, and mortar joints. The
material and geometric properties of the infill walls vary to a large extent in practical
applications. Nowadays, two finite element modeling techniques: (a) micro-models (plane
finite element) and (b) macro model (equivalent strut model) are widely adopted for
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numerical analysis of infill walls. The first method is based on continuum theory, which
provides accurate results of both material and geometric aspects of masonry infill panels.
On the other hand, macro models use equivalent diagonal struts. Thus, due to simplicity
in modeling, the macro-model is used in this study. The main disadvantage of the macro
model method lies in modeling the openings, but some approaches that consider the effect
of openings exist in the literature (e.g., [38,39]). To model the brick infills, we considered
brick units with 18 KN/m3 unit weight, 7.5 MPa compressive strength, and 1:6 cement-
sand mortar. The FEMA 306 [40] and IS 1893-2016 [33] recommend Equation (1) to model
the masonry infill panel using the equivalent diagonal compression strut of width Wds
(Figure 6). Unreinforced masonry infill walls without any opening width of equivalent
diagonal strut is given by:

Wds = 0.175αh
−0.4Lds (1)

where, αh = h×
(

4
√

Em t sin2θ
4 Et Ic h

)
, Em is the modulus of elasticity of the material of the infill

wall, Et is the elastic modulus of the RC moment resisting frame, Ic is the moment of inertia
of the adjoining column, t is the thickness of the infill wall, and θ is the angle of the diagonal
strut with the horizontal. The length of the equivalent diagonal strut (Lds) is given as

Lds = (

√
(length o f in f ill wall)2 + (clear height o f the column)2.

The modulus of the elasticity of the masonry infill wall was taken as:

Em = 550 fm (2)

where, the compressive strength of masonry prism ( fm) is given as:

fm = 0.433 fb
0.64 fmo

0.36 (3)

where, fb is the compressive strength of brick and fmo is the compressive strength of mortar.
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Diagonal struts were assigned only for 230 mm wide walls and partitioning walls
(single wythed brick walls) were considered only for their inertial effects. The strength
and stiffness of the masonry infill beyond the elastic range were determined following the
constitutive relation proposed by Panagiotakos and Fardis [41] to address their nonlinear
behavior. The nonlinear curve for masonry infill wall is characterized by a multilinear
curve as shown in Figure 7. The curve consists of four segments. The first part shows the
initial shear behavior of the panel when the panel is un-cracked. The second part depends
upon the diagonal strut itself when it starts to separate from the panel. The third part
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defines the infill wall’s softening behavior after the critical displacement Sm characterized
by the slope K3. The fourth part shows the final behavior of the panel that represents zero
residual strength Su. Using the approach proposed by Panagiotakos and Fardis [41], length,
shear modulus, initial stiffness, yield force, displacement at yield, ultimate force, ultimate
displacement, residual strength, and residual displacement properties were estimated to
assign in the diagonal strut. For example, infill wall on grid 1-1 between grid C and grid D
is calculated to have Sy, Fy, Sm, Fm, Sr, Fr equal to 0.67 m, 254.15 KN, 4.26 mm, 216.344 KN,
21.32 mm, and 17.307 KN, respectively.
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2.4. Finite Element Modeling

The building was numerically modeled using a three-dimensional finite element
model in SAP 2000 v.23 [42]. Beams and columns are modeled using 1D (line) element with
appropriate sections including reinforcements. The bending stiffness of slab is neglected
in the analysis as a common practice, while in plane stiffness of slab is considered using
rigid floor diaphragm and loads from slabs are distributed to beams using ‘none’ slab
section. The structure is modeled up to foundation top level, which is 1.5 m below the
plinth level that includes both plinth beam and foundation tie beams. The effect of solid
230 mm thick brickwork below plinth is modeled with diagonal struts, using a non-linear
compression-only link element. A 3D rendered model and an elevation with links used
to model diagonal struts and foundation spring are presented in Figure 8. We considered
four analysis cases: bare frame model without soil–structure interaction, infill wall model
without soil–structure interaction, bare frame model with soil–structure interaction, and
infill model with soil–structure interaction. The major features of the four analytical models
considered in the analysis are presented in Table 2.

Non-linear hinges were assigned at each end of beam and column elements at a
distance of 10% of member length from the joint. The non-linear hinges are defined as per
ASCE 41-17 [40]. Nonlinearity of frame is captured only at frame-hinge locations. Further,
in infill model, the non-linear compression only links are used modeling inelastic behavior.
Springs with six degrees of freedom are placed at each column footing to model SSI.
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infill considering soil–structure interaction along Grid-1.

Table 2. Features of finite element models.

Model Features

Bare frame model without
soil–structure interaction

• Stiffness due to infill wall in superstructure not being modeled.
• Structure is fixed at foundation top-level.

Infill model without
soil–structure interaction

• Stiffness due to infill wall in superstructure is modeled as
diagonal strut with 2-joint non-linear link-element.

• Structure is fixed at foundation top-level.

Bare frame model
considering soil–structure

interaction

• Stiffness due to infill wall in superstructure is not modeled.
• Structure is supported at foundation top-level on grounded

spring with appropriate stiffness in six degrees of freedom

Infill model with
soil–structure interaction

• Stiffness due to infill wall in superstructure is modeled as
diagonal strut with 2-joint non-linear link-element.

• Structure is supported at foundation top-level on grounded
spring with appropriate stiffness in six degrees of freedom

The capacity curve is obtained by performing pushover analysis in which static non-
linear analysis was carried out under displacement controlled incremental acceleration
loading, including P-∆ effect. Nonlinear time history analysis is carried out using direct-
integration approach, including P-∆ effect to estimate the displacement demands under
seven real earthquake ground motions as presented in Table 3. Dynamic analyses were
carried out after preloading the structure with deadload plus 30% of the live loads. A
summary of modal period for first four modes for the considered analysis scenarios is
presented in Table 4. As shown in Table 4, the fundamental vibration period of building
increases if soil–structure interaction effect is considered. When infill walls are modeled,
the fundamental vibration period is significantly reduced. The yield force, yield displace-
ment, ultimate force, and ultimate displacement for bare frame model were obtained as
750 KN, 40 mm, 2550 KN, and 370 mm, respectively. For infill model, the yield force,
yield displacement, ultimate force, and ultimate displacement were estimated as 2000 KN,
35 mm, 2900 KN, and 310 mm, respectively.
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Table 3. Acceleration time histories used for analysis.

Earthquake PGA (g) Station Magnitude (Mw)

Gorkha (2015) 0.1771 Kathmandu 7.8

Imperial Valley-06 (1979) 0.2354 EC County Center FF 6.53

Kocaeli Turkey (1999) 0.3642 Duzce 7.51

Northridge-01 (1994) 0.4434 Beverly Hills-14145 Muhol 6.69

Loma Prieta (1989) 0.5699 LGPC 6.93

Kobe Japan (1995) 0.6711 Takatori 6.9

Chi-Chi Taiwan (1999) 0.7604 CHY028 7.62

Table 4. Modal periods for various modeling scenarios.

Mode No.
Modal Period (Sec)

Bare Frame (fixed) Bare Frame (SSI) Infill (Fixed) Infill (SSI)

Mode 1 0.405 0.445 0.161 0.258

Mode 2 0.397 0.431 0.129 0.200

Mode 3 0.342 0.363 0.095 0.116

Mode 4 0.156 0.158 0.075 0.096

2.5. Fragility Analysis

One of the effective tools for seismic vulnerability assessment of structures is the
fragility function. Fragility functions can be derived from empirical, analytical, judgmental,
and hybrid approaches. Fragility functions fundamentally outline the exceedance prob-
ability of particular damage states/performance level under particular value of ground
motion intensity measure. Analytical fragility functions can be created from capacity and
demand analyses. Seismic demand in terms of spectral displacement was estimated from
time history analysis using the seven ground motions listed in Table 3. Capacity estimates
are obtained from pushover analysis following the approach suggested by Lagomarsino
and Giovinazzi [43]. Table 5 depicts the damage states and capacity functions for the four
adopted damage states. In Table 5, dy indicates the yield displacement and du indicates
ultimate displacement. The yield displacement and ultimate displacement parameters
were estimated using the approach suggested by Elnashai and Di Sarno [44].

Table 5. Capacity functions of various damage states for fragility analysis [43].

Capacity Function Damage States

D1 = 0.7 dy Slight damage

D2 = 1.5 dy Moderate damage

D3 = 0.5(dy + du) Extensive damage

D4 = du Complete damage

Due to limited availability of empirical data and possibility of biases, analytical fragility
functions are constructed for various types of structures. Jalayer et al. [45] proposed a
method to create analytical fragility functions using unscaled ground motion records. We
used the same approach to construct analytical fragility functions. The regression-based
fragility model uses the damage to capacity ratio for a particular damage level (DCRLS)
for the defined intensity measure (IM). The fragility model proposed by Jalayer et al. [45],
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which depicts the probability of exceedance of particular DCRLS can be represented by
Equation (4) as follows:

P(DCRLS > 1|Sa, χ) = P(lnDCRLS > 0|Sa, χ) = 1− φ
(
−lnηDCRLSSa
σlnβDCRLS |Sa

)
= φ

(
lnηDCRLSSa

σlnβDCRLS |Sa

) (4)

where, φ(·) indicates standard Gaussian cumulative distribution function, χ = [lna, b, DCRLS]

is the model parameter and DCRLSSa , σlnDCRLS

∣∣∣Sa . Furthermore, σlnβDCRLS|Sa can
be estimated as:

E[lnDCRLS|Sa] = lnηDCRLSSa = lna + blnSa (5)

σlnβDCRLSSa =

√√√√ N

∑
i=1

(lnDCRLS, i − lnηDCRLS, i|Sa)
2

N − 1
(6)

where, DCRLS = {DCRLS, i, i = 1: N} is the set of critical demand to capacity ratios for the limit
state (LS) obtained from nonlinear time history analysis performed for a suite of N unscaled
ground motions, and Sa = {Sa, i, i = 1: N} is the set of respective spectral acceleration values.
DCRLS, i and Sa, i are estimated for the ith ground motion record. Similarly, E [lnDCRLSSa]
is the expected value for the natural logarithm of DCRLS given Sa, ηDCRLSSa is the median
for DCRLS given Sa, and σlnβDCRLSSa is the logarithmic standard deviation for DCRLS
given Sa.

3. Results and Discussions

For the case study of low-rise RC building located in Kathmandu, Nepal, we performed
modal analysis for each analysis scenario, i.e., bare frame without soil–structure interaction,
infill model without soil–structure interaction, bare frame with soil–structure interaction,
and infill model with soil–structure interaction. The fundamental natural period of bare
frame without soil–structure interaction model was obtained as 0.405 s; meanwhile the
same for bare frame with soil–structure interaction, infill model without soil–structure
interaction, and infill model with soil–structure interaction was respectively 0.445, 0.161,
and 0.258 s. Thus, it is found that inclusion of soil–structure interaction slightly increases
the vibration period of the structure. Due to additional stiffness provided by the infill walls,
the vibration period of the models with infill walls is much lower than those without infill
walls. The infill model with soil–structure interaction is the most realistic representation
of the actual structure. Fragility functions for four damages states considering the four
building models were constructed. Figure 9 shows the fragility functions for bare frame
model without considering the effects of soil–structure interaction. As shown in Figure 9,
the exceedance probabilities of slight, moderate, extensive, and collapse damage states at
1 g spectral acceleration are respectively 100, 95, 50, and 20%.

Figure 10 depicts the fragility functions for low-rise RC buildings for infill frame model
without considering soil–structure interaction. As shown in Figure 10, the exceedance
probabilities for slight, moderate, extensive, and collapse damage states at 1 g, spectral
accelerations are 88, 78, 55, and 45%, respectively. This highlights that the infill walls have
a greater role in more severe damage states (extensive and collapse).

Fragility functions for low-rise RC building for bare frame model considering soil–
structure interaction are presented in Figure 11. As shown in Figure 11, exceedance
probabilities for slight, moderate, extensive, and collapse damage states at 1 g, spectral
acceleration are 100, 97, 55, and 25%, respectively. It is observed that the effect of soil–
structure interaction is not significantly large for low-rise RC buildings. The higher damage
states are almost unaffected.
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Figure 10. Fragility functions for low-rise RC building for infill frame model without considering
soil–structure interaction.

The most realistic scenario for soft soil deposits is reflected by infill model including
the effects of soil–structure interaction. Fragility functions for low-rise RC building for
infill model considering soil–structure interaction are presented in Figure 12. Together
with the analytical fragility functions, existing empirical fragility functions [46] for low-rise
substandard RC building class are also plotted in Figure 12 for comparison. The empirical
fragility functions were derived using the damage data collected after major earthquakes
in Nepal. The authors used a ground motion prediction equation-based intensity measure
to create fragility functions. Furthermore, the damage statistics were reinterpreted to create
a homogenized damage state, thus the authors considered three broad damage states.
As shown in Figure 12, the exceedance probabilities for slight, moderate, extensive, and
collapse damage states at 1 g are 92, 80, 48, and 31%, respectively. Figure 12 highlights that
the analytical fragilities are much higher than the empirical ones. Also, it should be noted
that the exceedance probabilities are quite high even at low spectral acceleration values for
the analytical models. Although empirical models are significantly more representative,
as such models do not suffer modeling uncertainties, empirical models are also likely



Buildings 2022, 12, 72 12 of 15

to get affected by the uncertainties arising from intensity measure value allocation and
exacting definition of damage state for individual building. To this end, both empirical
and analytical models are to be carefully judged before using. The results nevertheless
highlight the effect of SSI and brick infill walls in overall seismic fragility of the building
types studied here.
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Figure 12. Fragility functions for low-rise RC building for infill model considering soil–structure
interaction.

4. Conclusions

Realistic dissemination of seismic vulnerability is pivotal not only for pre-earthquake
strengthening initiatives, but also for post-earthquake loss assessment, recovery planning,
etc. A large proportion of residential buildings in the Kathmandu Valley are low-rise
residential buildings resting on soft soils. In order to understand the effects of mod-
elling uncertainties in seismic performance assessment of such structures, different models
with/without infill walls, and SSI effects of representative buildings are studied by numeri-



Buildings 2022, 12, 72 13 of 15

cal simulation using the finite element method. Analytical fragility functions of the models
are created using non-linear time history analysis using a set of real earthquake ground
motions. Using the demand to capacity ratio approach, we derived fragility functions for
four damage states: slight, moderate, extensive, collapse for four analysis scenarios: bare
frame model without considering soil–structure interaction, infill model without consider-
ing soil–structure interaction, bare frame model considering soil–structure interaction, and
infill model considering soil–structure interaction. As expected, the fundamental vibration
period is significantly reduced when infills are modeled; however, soil–structure interac-
tion slightly increases the fundamental vibration period. Fragility functions developed
for the four cases highlight that soil–structure interaction has more effects on the lower
damage states, while infills particularly affect the higher damage states increasing their
exceedance probabilities at designated spectral acceleration values. Comparison with the
existing empirical fragility models suggests that the analytical fragilities are significantly
higher than those inferred from empirical loss data. The results highlight the importance
of modelling infill walls and SSI effects. The large difference in empirical and analytical
fragility functions warrant for future research. These differences could arise from a number
of different factors including definitions of damage states, modelling uncertainties, etc.
Another important aspect that is not considered in this study is the damping provided by
the soil and its potential inelastic deformation. These factors along with many other un-
certainties mentioned above leave room for extensive future research to better understand
and model seismic fragility of low-rise residential buildings in the Kathmandu Valley.
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