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Abstract: This paper first analyzes the climate characteristics of five typical cities in China, including
Harbin, Beijing, Shanghai, Shenzhen and Kunming. Then, based on Grasshopper, Ladybug and
Honeybee analysis software, according to the indoor layout of typical residential buildings, this
research extracts design parameters such as the depth and width of different rooms and their window-
to-wall ratios etc., to establish a climate responsive optimization design process with indoor lighting
environment comfort, with heating and cooling demand as the objective functions. Meanwhile, based
on Monte Carlo simulation data, ANN (Artificial Neural Network) is used to establish a prediction
model to analyze the sensitivity of interior design parameters under different typical cities’ climatic
conditions. The study results show that the recommended values for the total width and total depth
of indoor units under the climatic conditions of each city are both approximately 14.97 m and 7.88 m.
Among them, under the climatic conditions of Harbin and Shenzhen, the design parameters of
residential interiors can take the recommended value of UDI optimal or nZEB optimal. While the
recommended values of window-to-wall ratios for the north bedroom, master bedroom and living
room in Shanghai residential interiors are 0.26, 0.32 and 0.33, respectively. The recommended value
of the window-to-wall ratio of the master bedroom in Kunming residences is 0.36, and that of the
remaining rooms is between 0.15 and 0.18. The recommended values of window-to-wall ratios for
the master bedroom and living room in Beijing residences are 0.41 and 0.59, respectively, and that
for the remaining rooms are 0.15. The multi-objective optimization process based on parametric
performance simulation used in the study can effectively assist architects in making energy-saving
design decisions in the preliminary stage, allowing architects to have a case to follow in the actual
design operation process.

Keywords: climate responsive optimization design; lighting environment comfort; heating and
cooling demand; ANN

1. Introduction

Energy consumption of the construction industry accounts for 40% of the total energy
consumption of most countries, and the related emissions account for 40% of the total
greenhouse gas emissions [1]. This energy use will potentially grow by more than 50% by
2050 without energy-efficiency improvements in the building sector [2]. In the past two
decades (1984–2004), major energy consumption has increased by 49%, carbon dioxide
emissions have increased by 43%, and the average annual growth rate is 2% and 1.8% [3].
This speed of resource and energy consumption will affect every aspect of people’s daily
lives around the world. According to the energy use forecast of different countries and
major developed countries, the speed of building energy consumption will continue to
increase, bringing immeasurable serious consequences to nature and ecology. In order
to cope with environmental problems, it is necessary to improve the energy efficiency of
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buildings and promote the use of renewable energy. The research of near-zero energy
building (nZEB) has been rapidly developed in this context. Near-zero energy buildings
refer to buildings that adapt themselves to climate characteristics and natural conditions.
Through adopting envelopes with high thermal insulation and better airtight performance,
as well as high-efficiency fresh air heat recovery technology, nZEB aims to minimize the
heating and cooling needs of buildings and make full use of renewable energy to provide
a comfortable indoor environment with less energy consumption and meets the basic
requirements of green building [4]. On 18 June 2010, the European Union issued the
“Energy Performance of Buildings Directive” (Agenda 2030), which stipulated that all of
the new buildings in the members of EU countries should be near-zero energy buildings
since 31 December 2020 [5]. Moreover, EPBD2010 also required that since 31 December
2018, buildings used or owned by the government should be near-zero energy buildings [6].
In 2016, China also released the “Chinese Near-Zero Energy Building Best Practice Cases
Collection” to summarize and sort out the technology and construction methods of Chinese
existing near-zero energy building projects.

A large number of existing studies have shown that the design phase is of great signif-
icance to the realization of near-zero energy buildings, and most building designers lack
effective means to evaluate and predict building energy efficiency in the early design stage
of the project, which has greatly limited the development of near-zero energy consumption
buildings. The focus of energy conservation design in the design phase and subsequent
phases is different. The early design phase focuses more on the interaction and influence
between the building and the environmental factors. As the design process advances,
the subsequent phases will gradually shift focus to the internal mechanical system level.
Therefore, the earlier the design phase, the easier to adjust the design factors of the building-
environment interaction, and the adjustment of each factor will make a huge difference in
the environmental benefits of the building. Therefore, the decision at the schematic stage is
an extremely important part of the building energy-saving design process, which largely
determines the direction of the subsequent design process.

EPBD pointed out that the building’s energy-saving goals cannot be achieved at the ex-
pense of indoor comfort. Based on Chinese typical cities in different climatic environments,
the research builds a multi-variable and multi-objective optimization design framework,
proposes optimal design guidelines for each typical city and summarizes the design rules
of residential buildings under different climatic conditions. Using digital tools, profes-
sional simulation software widely used internationally and multi-objective optimization
algorithm, this study creates a set of systematic parametric analysis processes, which can
effectively carry out building climate responsive design in the schematic design stage.
Based on the perspective of architects, this paper establishes the relationship between
architectural design strategy, building lighting environment and building energy demand,
in order to providing architects with low energy demand and high lighting comfort design
basis for building climate responsive design. In addition, through the analysis of simulation
data, and the comparison of the optimization results with the performance indicators of
reference buildings in various cities, it provides a quantitative analysis method for the
design decision-making from multiple perspectives of public sector and private residents.
Meanwhile, the energy-saving design rules of residential buildings in typical cities under
different climate conditions are summarized.

2. Background and Literature
2.1. Literature Review
2.1.1. Building Climate Responsive Design

The design strategy of building climate responsive aims to study the climate control
method suitable for building comfort space. By considering the climate differences in
different places, appropriate strategies are used to improve the indoor comfort of residents.
The building provides a comfortable indoor environment for human daily activities by
adjusting the microclimate of the natural environment. In this method, the selection of
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technology is based on the relationship between external climate conditions and human
needs. In the building climate responsive design, architects need to make full use of
the potential of natural climate while adapting to the natural environment, and actively
and reasonably use various technical measures such as heat preservation, heat insulation,
ventilation, shading and daylighting to adapt to the climate characteristics of the region.
Table 1 illustrates the literature review of building climate responsive design.

Table 1. Literature review of building climate responsive design.

Authors Time Main Work Reference

V. Olgyay 1953
He first proposed the building climate analysis method which

recommended architects to use passive means to adjust the building
microclimate in architectural design.

[7]

V. Olgyay 1963

He published “Design with Climate” which proposed to adopt a
passive design method to maximize the use of renewable energy such

as solar energy and wind energy, as well as reduce building
energy consumption.

[8]

B. Givoni 1976

He improved Olgyay’s bioclimatic chart and proposed architectural
bioclimatic design method based on climate environment and

distinguished it from Olgyay’s method. Architectural bioclimate
design requires that, in the process of architectural design, solve the
problems of the architectural environment by making use of natural
conditions as much as possible, propose corresponding architectural
technical means and control methods, and create a more comfortable
and healthier environment that meets the requirements of modern

society on the basis of respecting the nature environment.

[9]

M. Alsousi 2005

They studied the climate responsive design of buildings in Gaza and
investigated 12 high-rise residential buildings in terms of thermal

comfort and energy consumption. The researchers finally found that
most of the building energy consumption in summer is caused by the

heat generated by the walls, windows and roof. In addition, the
occupants, daily life facilities and air infiltration will also increase the
building energy consumption, while the effect of them on the thermal

performance and occupants’ comfort are relatively small.

[10]

Enedir Ghisi and
Ricardo

Felipe Massignani
2007

They tested the thermal performance of a multi-story residential
building in southern Brazil. They recorded the thermal performance

of eight bedrooms on two floors and four directions. Different
variables are used to examine various factors, such as surface color,

window shadow and thermal properties of walls and windows.
Finally, it is concluded that the heating transmittance and area of the

building envelope have the greatest influence on the maximum
temperature, and it needs to be minimized to improve the indoor

thermal environment in summer. While heat capacity and thermal
time lag have the strongest correlation with the minimum

temperature, so they should be maximized to improve the thermal
environment comfort in winter.

[11]

Jürgen Schnieders et al. 2015

They used the same typical analysis model to analyze and compare
the design strategies of passive housing, including envelope design,
air tightness, operation of cooling coil, heat recovery equipment and
supply air temperature, etc., taking Yekaterinburg, Tokyo, Shanghai,

Las Vegas, Abu Dhabi and Singapore as examples, to propose the
corresponding design guidelines for passive buildings.

[12]
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Table 1. Cont.

Authors Time Main Work Reference

Letizia
Martinelli and

Andreas Matzarakis
2017

They selected six Italian cities as representatives, including Aosta,
Milan, Campobasso, Florence, Lecce and Catania. Based on the

climate data of each city in the past 30 years, the influence of
courtyard-type parameters such as the ratio of height to width on the
humidity and thermal comfort of the courtyards of various cities in

different climate zones is analyzed.

[13]

Fatima Harkouss et al. 2018

They selected 25 typical cities in different climate regions to simulate
and optimize the passive design of residential buildings according to

the Köppen climate zoning. He compared the performance of
residential buildings in different cities by taking the life cycle cost
(LCC) and building cooling and heating consumption as objective

functions, to obtain the corresponding energy-saving design strategy.

[14,15]

Fabrizio Ascione et al. 2019

They used MATLAB, EnergyPlus and genetic algorithm to compare
the multi-objective optimization of residential buildings in typical

cities in different climates in Italy and obtained the envelope design
strategy for each climate zone.

[16]

Julià Coma et al. 2019

Based on the European residential building database compiled by the
TABULA/EPISCOPE project, they analyzed and compared the

energy-saving strategies of many European countries with building
energy consumption and carbon dioxide emissions as indicators.

They also evaluated the feasibility of using new energy technologies
in different cities in hot, warm and cold climate zones in Europe.

[17]

Virgilio Ciancio et al. 2020

They discussed the impact of climate warming on residential
buildings in 19 different cities in Europe based on the Köppen climate
zoning. They concluded that the gradual increase of average climate

temperature from 2050 to 2080 will lead to the decrease of heating
energy consumption of residential buildings, and the increase of
cooling energy consumption and carbon dioxide concentration.

Moreover, cities in the Mediterranean climate zone are more affected
by global heating than inland cities in Europe. This trend can be

alleviated by improving the buildings’ energy efficiency.

[18]

2.1.2. Multi-Objective Optimization

As mentioned above, this study proposes the use of optimized search methods based
on building environment simulation. Optimization is the process of finding the best
combination of different solutions when the given constraints are met [19]. The execution of
optimization requires decision variables, objective functions and constraints. Equation (1)
expresses the general mathematical optimization process:

minx∈Rnƒ(X)
Subject to: gi(X) ≤ 0, i = 1, 2, . . . , m

Kj(X) = 0, j = 1, 2, . . . , p
(1)

where X represents different decision variables, ƒ(X) are objective functions, constraints
are gi(X) ≤ 0, i = 1, 2, . . . , m and Kj(X) = 0, j = 1, 2, . . . , p. Determining decision variables,
objective functions and constraints are the most important parts of the optimization process,
and different optimization algorithms can be selected based on the classification of different
objective functions and constraints.

According to Farshad Kheiri [20], the most widely used optimization method for
building energy performance problems is the genetic algorithm (GA) [21]. John Holland
has developed genetic algorithms (GAs) based on evolutionary biology, which perform
optimization operations by simulating genetics, mutation, selection and crossover. [22] The
evolution of genetic forms is based on the rules of the defined “genetic code”. Mutations are
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achieved through the “reproduction” process of gene crossover and mutation. Information
interaction and changes control the process of morphogenesis. The use of genetic algo-
rithms in the first step is to define a set of generation rules and define their evolution and
development so that they can be mapped to a specific design environment, and candidate
forms can be evaluated based on their performance in a simulated environment. After a
lot of tests, researchers believe that genetic algorithms are suitable for searching research
problems in large spaces, while also avoiding local optimization.

The early algorithms mainly focused on single-objective optimization [23–25]. How-
ever, the research results of some scholars show that there are conflicts between different
optimization goals, and the single-objective optimization cannot achieve satisfactory results.
Therefore, there are several studies which focus on the multi-objective optimization of
buildings’ performance, as shown in Table 2.

Table 2. Literature review of building performance simulation based on multi-objective optimization.

Authors Time Main Work Reference

Fanny Pernodet
Chantrelle et al. 2011

They used NSGA-II algorithm (Non-dominated Sorting Genetic
Algorithm) and dynamic simulation tool TRNSYS to carry out
multi-objective optimization design of building envelope and

shading control strategy based on building energy consumption, cost,
thermal comfort and environmental protection.

[26]

Omer T. Karaguzel et al. 2014
They combined the building energy simulation software EnergyPlus
and the optimization tool GenOpt to optimize the life cycle cost of a

commercial office building.
[27]

Alessandro Prada et al. 2014

They implemented a comprehensive framework of multi-objective
energy optimization in buildings, and used EnergyPlus and NSGA-II
algorithm for building environment simulation and multi-objective

optimization to search Pareto frontier for building
energy-efficiency design.

[28,29]

Fabrizio Ascione et al. 2014

They combined MATLAB and EnergyPlus to optimize the
construction plan of a hospital building with multiple goals. The

optimization goals are the primary energy consumption of the
building, the initial investment and global cost of the renovation plan.

[30]

Mohammad Rahmani
Asl et al. 2015 They presented an integrated framework for building information

modeling (BIM)-based performance optimization, BPOpt. [31]

Tomás
Méndez

Echenagucia et al.
2015

An integrative approach for the early stages of building design is
proposed to obtain detailed information on energy-efficient

envelope configurations.
[32]

Facundo Bre et al. 2016
They took daylighting and energy saving as optimization goals, and

used sensitivity analysis and genetic algorithms to optimize the
design of typical independent houses.

[33]

Ahmed Toutou 2018 They discussed the potential of parametric algorithms to optimize
residential design lighting and thermal performance. [34]

Richard
Gagnon et al. 2019

Through a case study of a residential building, they compared a
sequential versus a holistic design approach based on

multi-objective optimization.
[35]

Yin Li et al. 2019

They proposed a hierarchical decomposition approach that can
achieve global optimal solutions. This approach was applied to a

multi-objective optimization problem to minimize the carbon
emissions and operating costs of buildings.

[36]

Tianqi Zhang et al. 2020

This research calculated the energy-saving effect of buildings with
different shape parameters and the cooling load of thermal

performance of different envelope by numerical simulation. In
addition, the corresponding energy-saving indexes for cooling load

reduction (CLR) are presented.

[37]
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Table 2. Cont.

Authors Time Main Work Reference

Zhixing Li et al. 2021

They proposed an integrated multi-objective multivariate framework
for building performance optimization. Then, a comparison of the

performance indicators of low-rise and medium-rise residential
buildings under five typical urban climatic conditions are carried out.

[38]

Yizhe Xu et al. 2021

They proposed a two-stage multi-objective optimization method
based on a meta-model to obtain the optimal design scheme for

primary and secondary school education buildings, based on
daylighting, thermal comfort, energy savings and economy.

[39]

2.1.3. Research Gap

The research on residential building climate responsive design has shown a trend of
gradual deepening and refinement over time, which is reflected in the following characteristics:

1. Transition from energy-saving design practice or theoretical research based on quali-
tative analysis to quantitative research based on energy consumption simulation.

2. The research related to building energy consumption is becoming more and more
comprehensive, from only focusing on the thermal performance of buildings or the
energy consumption of heating and cooling systems to comprehensive assessments
that also consider other factors such as total building energy consumption, lighting
and indoor thermal comfort.

3. “Performance coupling factors” are valued. The development of society and economy
requires sustainable building design to achieve low energy consumption under the
premise of ensuring high performance building environment, and “high performance”
cannot be sacrificed for low energy consumption. As the pursuit of single-environment
performance improvement often has an adverse effect on other aspects of performance,
research on multiple environments and their coupling performance has attracted more
and more attention.

4. New tools or new methods for building performance simulation such as BIM technol-
ogy or computer programming technology are constantly emerging. On this basis,
the amount of simulated data is increasing and the reliability of simulation results
is improving.

However, current research still pays more attention to the building equipment opti-
mization, while ignoring the influence of passive design parameters such as the building
space form in the preliminary design stage on energy saving. As the schematic design stage
has a far-reaching impact on building energy efficiency, and the flexibility of adjustment is
greater than other design stages. If the energy-saving benefits and climate responsiveness
of the building are ignored in the early stage of the design, it is difficult to compensate for
the energy-saving efficiency of the building only through technical stacking and parameter
adjustment of active equipment in the later stage. Therefore, this article will take the resi-
dential indoor space form design as the research object and conduct an in-depth discussion
on the residential building climate responsive design in different regions in China.

2.2. Typical Cities’ Selection

China is located on the west coast of the Pacific Ocean. The climate is mainly affected
by the monsoon circulation, and it is complicated due to the variability of the terrain. It
is roughly divided into the eastern monsoon area, the western dry area and the alpine
area with the Gangdise Mountains, Bayan Har Mountains, Yinshan Mountains, Helan
Mountains and Daxingan Mountains as the boundary. Taking Kunlun Mountains, Altun
Mountains, Qilian Mountains and Hengduan Mountains as the approximate geographic
boundaries, the northwest arid and semi-arid regions, the eastern monsoon regions and
the Qinghai-Tibet alpine regions are distinguished [40].
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In the “Code for Thermal Design of Civil Buildings GB50176-93” promulgated in 1993,
China divided the country into 7 first-class building climate zones and 20 second-class
building climates based on the average temperature of the coldest and hottest months across
the country. The first-class climate zone reflects the big difference in the national building
climate, as shown in Figure 1, while the secondary zone reflects the small differences in the
building climate of each major zone.
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According to the building climate division in China, five typical cities are selected
from climate zones I, II, III, IV and V, which are Harbin (severe cold region I), Beijing (cold
region II), Shanghai (hot summer and cold winter zone III), Shenzhen (hot summer and
warm winter zone IV) and Kunming (temperate area V), as shown in Figure 2.

Buildings 2022, 12, x 9 of 42 

 

 
Figure 2. Geographical location of typical cities in China. 

Table 3. Typical cities selected according to building climate zoning. 

Climate Zone 
Typical 

City 
Heating Degree 

Day (18 °C) 
Heating Period (Day/Month) 

Heating Hours 
per Day 

Severe cold area I Harbin ≥3800 20/10 to 15/4 24 h 

Cold region II Beijing 2000–3799 15/11 to 31/3 24 h 

Hot summer and 
cold winter area III 

Shanghai 700–1999 There is no mandatory requirement – 

Hot summer and 
warm winter area 

IV 
Shenzhen <500 

There is no mandatory requirement 

(according to the actual demand, heating 
time is not set in the simulation) 

– 

Temperate region 
V 

Kunming <2000 

There is no mandatory requirement 

(but it is set to 15/12 to 1/3 in the simula-
tion according to the actual demand) 

– 

3. Multi-Objective Model Set-Up 
3.1. Building Performance Optimization Workflow 

Grasshopper and Ladybug/Honeybee were used in this study to achieve building 
performance simulation-based optimization. Grasshopper is a visual programming lan-
guage and environment that runs within the Rhinoceros 3D computer-aided design 
(CAD) application. Ladybug and Honeybee is a plug-in of Grasshopper, which analyzes 
the environmental performance of the building model [41–43]. Ladybug imports standard 
RADIANCE, energy models using OPENSTUDIO and envelope heat flow using THERM. 
This study applied integrative building performance simulation and optimization work-
flow as shown in Figure 3. TT toolbox and Octopus, as Grasshopper plug-ins were used 
for collecting dynamic simulation results by Ladybug and Honeybee which was then an-
alyzed via MATLAB for understanding the data distribution characteristics. 

Figure 2. Geographical location of typical cities in China.



Buildings 2022, 12, 59 8 of 38

China divides the heating area with the Qinling mountain and Huaihe River as
the boundary. The area north of the Qinling mountain and the Huaihe River starts to
centralize heating around 15 November and lasts for 4 months until 15 March. Some areas
(such as Harbin and other northern cities) will extend the heating period due to climatic
reasons. There are no mandatory centralized heating measures for cities on the south of the
Qinling mountain and the Huaihe River, however, some communities will provide heating
according to actual needs. Table 3 lists the heating period of typical cities based on the
current actual heating situation survey in various cities.

Table 3. Typical cities selected according to building climate zoning.

Climate Zone Typical City Heating Degree
Day (18 ◦C)

Heating Period
(Day/Month)

Heating Hours
per Day

Severe cold
area I Harbin ≥3800 20/10 to 15/4 24 h

Cold region II Beijing 2000–3799 15/11 to 31/3 24 h
Hot summer and

cold winter
area III

Shanghai 700–1999
There is no
mandatory

requirement
–

Hot summer and
warm winter

area IV
Shenzhen <500

There is no
mandatory

requirement
(according to the
actual demand,

heating time is not
set in the

simulation)

–

Temperate
region V Kunming <2000

There is no
mandatory

requirement
(but it is set to

15/12 to 1/3 in the
simulation

according to the
actual demand)

–

Due to the vast land area of China and the influence of different factors such as altitude,
topography, coastal or inland areas, the climate in different regions varies greatly. Among
these five typical cities, the average relative humidity of Beijing and Harbin is relatively
low. From January to April each year, the average relative humidity of Beijing and Harbin
fluctuates around 40%. Regarding the average dry bulb temperature, except for Kunming,
where the annual temperature changes are relatively gentle, the coldest month is about
10 ◦C and the hottest month is about 30 ◦C. The average dry bulb temperature among
the other four cities basically shows a trend of gradual decrease from south to north. The
coldest months in Harbin are January and December each year and the average dry bulb
temperature can reach −15 ◦C.

3. Multi-Objective Model Set-Up
3.1. Building Performance Optimization Workflow

Grasshopper and Ladybug/Honeybee were used in this study to achieve building
performance simulation-based optimization. Grasshopper is a visual programming lan-
guage and environment that runs within the Rhinoceros 3D computer-aided design (CAD)
application. Ladybug and Honeybee is a plug-in of Grasshopper, which analyzes the
environmental performance of the building model [41–43]. Ladybug imports standard RA-
DIANCE, energy models using OPENSTUDIO and envelope heat flow using THERM. This
study applied integrative building performance simulation and optimization workflow
as shown in Figure 3. TT toolbox and Octopus, as Grasshopper plug-ins were used for
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collecting dynamic simulation results by Ladybug and Honeybee which was then analyzed
via MATLAB for understanding the data distribution characteristics.
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Figure 3. Parametric building optimization process.

3.2. Building Parameter Settings

The study takes the 118.11 square meter apartment in one of Tianjin residential com-
munities as an example to optimize the internal space design parameters. The reference
building is shown as Figure 4, its parameters are listed in Table 4, and Figure 5 depicts the
apartment layout for optimization analysis. The parametric model is established based on
the house type on the left. The house type includes three bedrooms, one living room and
one dining room, two bathrooms and a kitchen. The bedrooms are mainly distributed on
the west side of the room. The master bedroom faces south and has a separate bathroom.
The second bedroom faces north and the middle bedroom is smaller which can also be
used as a study room. The living room is connected to the dining room, there is a balcony
on the south side, and the kitchen is connected to the dining room on the north side.

The parameter settings used for optimization are shown in Table 5. Under the changes
of different spatial parameters, the model always maintains a total area of 118 square
meters, that is, it satisfies the relationship of Equations (2)–(4). In the parametric model, as
the parameters in Table 5 change, the spatial scale of the apartment also changes, as shown
in Figure 6, and the Grasshopper operation process is shown in Figure 7.
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Table 4. Parameters of the baseline model.

Type Subcategory Parameter Category Unit Baseline Model

Geographical position Climate Climate data of Tianjin – Climate data of Tianjin

Architectural form
parameters

Building type

Number of layers – 2.00
Net height of each floor m 3.30

Total height of each floor m 3.60
Width (s/N direction) m 13.5

Aspect ratio – 2.15
Window-to-wall ratio (WWR) – 0.35

Orientation deg 0

Geometry
parameters

Volume m3 3089.5
Total surface area m2 1336.4

Total floor area m2 668
Body shape coefficient – 0.325

Design
parameters of

envelope
Enclosure structure

External wall heating
transmittance

(average)
W/(m2K) 0.56

Ground heating transmittance
(average) W/(m2K) 0.46

Roof heating transmittance
(average) W/(m2K) 0.71

Window heating transmittance
(average) W/(m2K) 3.30

Solar heat gain coefficient
(shading coefficient) – 0.60

Building
operation

parameters

Behavior
Indoor heat gain (lighting,
appliances and occupancy,

daily average)
W/m2 5

Control and
operation
settings

Heating set point temperature ◦C 20
Cooling set point temperature ◦C 26
Air change rate (air tightness

and ventilation) vol/h 0.8

Schedule—Option 1:
Ig/VE/H/C * N. 0

Schedule—Option 2:
Ig/VE/H/C * N. 0/0/1/2

* Ig: indoor heat gain, VE: ventilation, H: heating, C: cooling.
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Master bedroom depth + Middle bedroom depth + Northern bedroom depth
= Kitchen/Dining room depth + Living room depth
= Total depth

(2)

Master bedroom width + Living room width + 1.8 m (Toilet width)
= Northern bedroom width + 1.8 m (Toilet width) + Dining room width + Kitchen width
= Total width

(3)

Total depth × Total width = 118 (4)

Table 5. Interior space design parameter settings for optimization.

Classification Number Describe Unit Reference
Parameter

Minimum
Value

Maximum
Value

Spatial
morphological

parameters

A1 Floor height m 3 2.7 3.3
A2 Total width m 10.2 8 15
A3 Total depth m 13.7 7.8 14.8
A4 Master bedroom width m 3.6 2.5 5
A5 Master bedroom depth m 4.4 2.5 6.5
A6 Middle bedroom width m 3.6 2.5 5
A7 Middle bedroom depth m 3 1.7 5
A8 North bedroom width m 3.6 2.5 5
A9 North bedroom depth m 4.2 1.7 6.5

A10 Kitchen width m 1.8 1.7 5
A11 Kitchen depth m 3 1.7 6.5

Window
parameters

B1 Window-to-wall ratio in
north bedroom – 0.35 0.15 0.6

B2 Window-to-wall ratio in
middle bedroom – 0.3 0.15 0.6

B3 Window-to-wall ratio in
master bedroom – 0.35 0.15 0.6

B4 Window-to-wall ratio in
living room – 0.55 0.15 0.6

B5 Window-to-wall ratio in
Kitchen – 0.3 0.15 0.6

B6 Window-to-wall ratio in
dining room – 0.35 0.15 0.6
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In order to compare the optimization results of typical cities in different climate zones
with the reference model, and to understand the improvement of the optimization results
on the reference model, Table 6 lists the performance indicators of the reference model.

Table 6. Performance indicators of the reference model.

Objective Function Harbin
(Severe Cold Area I)

Beijing
(Cold Regions II)

Shanghai
(Hot Summer and

Cold Winter Area III)

Shenzhen
(Hot Summer and

Warm Winter Area IV)

Kunming
(Temperate
Region V)

BED (kWh/m2):
Building energy demand

179.42 114.81 85.16 65.20 36.10

H (kWh/m2):
Heating energy demand

174.31 97.14 60.21 0 26.03

C (kWh/m2):
Cooling energy demand

5.11 17.67 24.95 65.20 10.07

UDI 100–2000 (%):
Useful

Daylight Illuminance
56.58 59.75 60.75 64.67 67

3.3. Objective Function Settings

The evaluation indicators of building climate responsive design include lighting
environment comfort and building energy demand. In order to facilitating the parametric
modeling and analysis, this section explains the theoretical basis of these two objective
functions and clarifies the relevant design influence factors.

3.3.1. Building Energy Demand

The annual building energy demand is defined as the sum of the cooling and heating
loads of all apartments [44–46]—domestic hot water, electrical equipment and other energy
needs are not included in the calculation. The cooling period in summer and the heating
period in winter are set according to the requirements of different climate zones. In
this study, in order to avoid the influence of HVAC system parameters, its performance
coefficient is assumed to be 1, so the energy demand can be directly extracted from the
EnergyPlus simulation results. It is assumed that no heat recovery device is implemented in
the HVAC system. Therefore, the objective function of the annual building energy demand
can be calculated as Equation (5):

BED = 1/A ×∑n
i=1(Eci + Ehi) (5)

where BED represents the annual building energy demand per unit building area (kWh/m2)—the
calculation of building energy demand only considers heating and cooling demand, and
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does not consider other aspects, such as lighting, domestic hot water, etc. Eci is the cooling
demand of the i-th floor, Ehi is the heating demand of the i-th floor, n is the total number of
floors in the building and A is the total area of each floor in the air-conditioning area of the
building.

3.3.2. Lighting Environment Comfort

There are currently two types of light environment evaluation indicators, which
are divided into static indicator and dynamic indicator. The static indicators include
illumination, uniformity of illumination (U0), Daylight factor—DF, Unified Glare Rating—
UGR and Scope of View. The static lighting environment evaluation index is simple,
intuitive and easy to calculate. It is suitable for index control under general conditions,
but it cannot distinguish the difference in lighting environment performance under the
influence of different climatic factors, and it cannot distinguish the different types of
buildings; moreover, it is impossible to evaluate various technical measures such as an
auxiliary lighting system. Whereas the dynamic daylighting evaluation indicators including
Daylight Autonomy (DA), Continuous Daylight Autonomy (DAcon) and Useful Daylight
Illuminance (UDI) take into account the characteristics of different climate zones. It takes
one hour as the step length to reflect the annual illuminance level, which is close to the actual
situation. The practicability of dynamic daylighting evaluation indicators is significantly
better than that of static indicators. Such indicators not only consider the role of daylighting
auxiliary systems, but also evaluate their advantages and disadvantages, thereby providing
support for low-energy design [47].

This study uses the lighting environment evaluation index as one of the optimization
objectives and conducts a coupling analysis with the building’s annual cooling and heating
demand. The dynamic daylighting evaluation index is more convenient to evaluate the
design parameters from the time scale of the whole year, which is in line with the purpose
of this study. Therefore, this study uses the Useful Daylight Illuminance (UDI) as the index
of lighting environment optimization. The UDI indicator is mainly used to evaluate the
dynamic lighting quality of indoor spaces, and takes into account the part where the actual
illuminance of the indoor working surface exceeds the design illuminance at a certain time
and may cause glare. This indicator expresses a range value. Within this range, the surface
illumination level meets the requirements of indoor work. Nabil and Mardaljevic [48]
proposed the effective illuminance range value in 2005: 100 lx < UDI < 2000 lx, below 100 lx
indicates that the indoor working surface illuminance is seriously insufficient, and 2000 lx
or more may cause glare, which will adversely affect the indoor light and heat environment.
Therefore, the UDI of residential buildings should be divided into three intervals, namely,
the annual percentage of 100 lx and below, 100–2000 lx, and 2000 lx and above to evaluate
the indoor light environment quality.

3.4. Multi-Objective Optimization Algorithm

The basic idea of the NSGA-II algorithm is: first, randomly generate an initial popula-
tion of size N, and after non-dominated sorting, the first generation of offspring population
is obtained through the three basic operations of genetic algorithm selection, crossover and
mutation. Secondly, starting from the second generation, merge the parent population with
the offspring population for fast non-dominated sorting. At the same time, the crowding
degree is calculated for the individuals in each non-dominated layer, and suitable individ-
uals are selected according to the non-dominated relationship and the crowding degree
of the individuals to form a new parent population. Finally, a new offspring population
is generated through the basic operations of genetic algorithm and so on, until the con-
ditions for the end of the program are met [49–52]. The program flow chart is shown in
Figure 8 below.
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Assuming that the population is P, the algorithm needs to calculate two parameters
Np and Sp of each individual p in P, where Np is the number of individuals dominating
individual p in the population, and Sp is the set of individuals dominated by individual p
in the population. The total computational complexity of these two parameters is O (Mn2).

The main steps of the algorithm are as follows: (1) find all the individuals with Np = 0
in the population and save them in the current set Fl, (2) for each individual i in the current
set Fl, its dominating individual set is Si, for l in Si, execute nl = nl − 1, if nl = 0, then
save individual l in set H, (3) the individual obtained in Fl is the individual in the first
non-dominated layer, and H is used as the current set, and the above operation is repeated
until the entire population is classified

In order to estimate the crowding degree of the solutions around a particular solution
in the population, NSGA-II algorithm calculates the average distance between the two
points on both sides of this point according to each objective function. This value is used as
an estimate of the perimeter of a box with its nearest neighbor as its vertex (known as the
crowding factor) [53]. In Figure 9 below, the crowding factor of the i-th solution at its front
is the length of the cuboid around it (as shown by the dashed box). The calculation of the
crowding factor ensures the diversity of the population.

The calculation of the crowding factor needs to sort the populations according to
the ascending order of the value of each objective function (that is, if the first-level non-
dominated layer is obtained, it is sorted according to the value of the objective function,
and then the crowding degree is calculated). Therefore, for each objective function, the
boundary solution (the solution with the maximum and minimum values) is specified
as the value of the infinite distance. All other intermediate solutions are designated as
the normalized absolute difference of the function values of the two adjacent solutions.
The calculation method is the same for other objective functions. All the crowding factor
values are calculated by the sum of the distance values of each individual target, and each
objective function is normalized before calculating the crowding factor.
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In the non-dominated sorting genetic algorithm of elite strategy, the calculation of
crowding factor is an important link to ensure the diversity of population. The pseudo
code of its function is as follows:

(1) Let nd = 0, n = 1, 2, . . . , N
(2) For each objective function

1. The population was ranked based on the objective function,
2. Let the crowding degree of two individuals on the boundary be infinite, that is,

ld = nd = ∞,
3. Calculate nd = nd + (ƒm(i + 1) − ƒm(i − 1)), n = 2, 3, . . . , N − 1

After the fast non-dominated sorting and crowding factor calculation, each individual
i in the population has two attributes: the non-dominated order irank (i.e., the rank) and the
crowding degree id. According to these two attributes, the crowding degree comparison
operator can be defined, i.e., individual i compares with another individual j, and as long
as any of the following conditions are met, individual i wins.

(1) If irank < jrank
(2) If they have the same rank and individual i has a larger crowding distance than

individual j, i.e., irank = jrank and id > jd

The first condition ensures that the selected individual belongs to the superior non-
inferior rank. The second condition selects the individual who is located in the less crowded
area (having a greater crowding degree id) among the two individuals who are in the same
non-inferior rank and who are indifferent due to their crowded distance. The winning
individual enters the next operation.

The NSGA-II algorithm adopts the elite strategy shown in Figure 10 [54]. First, the
new population Qt produced by the t th generation and the parent Pt are combined to form
Rt, and the population size is 2N. Then, Rt performs non-dominated sorting, generates a
series of non-dominated sets Zi and calculates the crowding factor. Since both offspring and
parent individuals are included in Rt, the individuals included in the non-dominated set Z1
after non-dominated sorting are the best in Rt; so first put Z1 into the new parent population
Pt+1. If the size is less than N, then continue to fill the next-level non-dominated set Z2 into
Pt+1, until the size of the population exceeds N when Z3 is added. The crowding degree
comparison operator is used for the individuals in Z3 to make the number of individuals in
Pt+1 reach N. Then a new offspring population Qt+1 is generated through genetic operators
(selection, crossover, mutation).
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4. Predictive Model Set-Up and Sensitivity Analysis
4.1. Artificial Neural Network Theory

Artificial Neural Network (ANN) is usually called neural network, which is an infor-
mation processing system that imitates the structure and function of the human brain [55,56].
The establishment of artificial neural networks is based on the collection of connected units
or nodes of artificial neurons, which can loosely model neurons. Each connection is like
a synapse in a biological brain. It can transmit signals to other neurons. The artificial
neurons that receive the signals then process them and send signals to connected neurons.
The output of each neuron is calculated by a nonlinear function of the sum of its inputs.
Neurons usually adjust their weights as they learn. The increase or decrease of the weight
affects the strength of the signal at the connection. Neurons can have a threshold so that
they only send a signal when the total signal exceeds the threshold. Generally, neurons are
clustered into layers, and different layers can perform different transformations on their
inputs. Signal propagation from the first layer (input layer) to the last layer (output layer)
may require multiple traversal of all layers.

For system modeling, the main feature of an artificial neural network is that it has
strong adaptability and capacity in the process of dealing with actual problems. In the
actual modeling process, there is no need to know the composition of the research object,
but only need to limit the topology of the neural network. Its weight or threshold not only
specifies the parameters of the model, but also specifies the structure and properties of the
model. An accurate network model can be obtained by using the known input and output
data as learning and testing samples for training.

BP neural network (Back Propagation Neural Network) is a multi-layer feedforward
neural network based on the error back propagation algorithm, which consists of two
parts: the forward transmission of information and the back propagation of errors [57,58].
In the process of forward propagation, through the training and testing of samples, the
input information is calculated layer by layer through the weight or threshold between
the input layer to the hidden layer, and the hidden layer to the output layer. Finally, the
result is passed to the output layer. If the deviation between the result of the output layer
and the actual value is outside the error range, the error change value of the output layer
is calculated. Then the error is back propagated, and the error signal is transmitted back
along the original connection path through the network, thereby adjusting the weights of
the neurons in each layer. The two processes of forward transmission of information and
back propagation of error are repeated until the predicted value of the BP neural network
can accurately reflect the result of the actual situation. The process is shown in Figure 11.
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Figure 11. Neural network structure of BP algorithm.

The input neurons of the neural network model established in this paper include
design parameters such as the width and depth of different bedrooms and kitchens, as
well as the window-to-wall ratios of different rooms and facades. Based on the previous
simulation results as the basis of the database, 10,000 sets of data are selected for each city
as a sample set to train the prediction model. The output neuron parameters of the model
are the annual energy demand per unit area of the building and the annual percentage of
UDI 100–2000 lx. According to the output parameters (2) and input parameters (17) of the
network model, a three-layer neural network model is established, as shown in Figure 12.
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4.2. Prediction Model Set-Up for Residential Building Simulation in Typical Cities

Taking the climate of Shanghai as an example, 10,000 random simulation data of total
energy demand (including heating demand and cooling demand) and annual percentage
of Useful Daylight Illuminance (100 lx < UDI < 200 lx) are obtained in the simulation
results; the minimum, maximum and average values of the total energy demand per square
meter are 71.78 kWh/m2, 117.40 kWh/m2 and 94.30 kWh/m2, respectively. The lowest
UDI 100–2000 lx is 38.67% and the highest is 72%. Therefore, through the adjustment of
internal space design parameters, the maximum energy-saving rate can reach 38.8% and
the maximum light environment improvement rate is 33.4%.
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The study did not establish a neural network for each of the typical cities to predict
the impact of residential indoor space on energy demand and lighting. Instead, “city” was
taken as one of the input data of neural network, and about 10,000 random simulations
were conducted for each city. The design parameters used in the Monte Carlo simulation
uniformly covered their respective value ranges. Compared with the establishment of
different neural network models, this method can greatly reduce the amount of data needed
for training neural network under the premise of ensuring the accuracy of prediction, thus
saving simulation time. In order to prevent the neural network from over-fitting, the cross
validation method is used to divide the training set and test set according to the ratio of
8:2. There are more than 40,000 data in training set and more than 10,000 data in test set.
Before training, in order to speed up the convergence of the neural network and improve
the accuracy of prediction, the data were normalized in the process of training a neural
network model; when indicators such as the root mean square error of the model tend to
be stabilized, it can be considered that the model has reached convergence. If the error
is small enough, it indicates that the prediction effect of the neural network is good, and
it can replace the building simulation as the adaptive evaluation in the multi-objective
optimization. Table 7 shows the performance of the neural network model on the training
set and the validation set. The results show that the error of the neural network has been
controlled within an acceptable range. In order to visually demonstrate the predictive
ability of the neural network model, the study randomly selected 100 data from the test
set to compare with the prediction results of the neural network. The results are shown in
Appendix A, Figures A1–A4.

Table 7. Fitting index of neural network prediction model.

Data Set Data Type MAE MSE R2

Training set Cooling demand 0.067 0.012 1.000
Heating demand 0.056 0.007 1.000

Light environment
(UDI index) 0.261 0.207 0.996

Test set Cooling demand 0.072 0.009 1.000
Heating demand 0.059 0.006 1.000

Light environment
(UDI index) 0.318 0.304 0.994

4.3. Sensitivity Analysis of Design Parameters of Residential Interior Space

The study is based on 15,000 sets of data obtained for each city in a Monte Carlo
simulation, and uses IBM SPSS Statistics 24 to analyze the Spearman correlation coefficient
between the parameters and the objective function. The correlation analysis results are
shown in Appendix A, Tables A1–A5. In regard to the Spearman correlation coefficient, the
coefficient has high correlation in the range 0.8–1, strong correlation in the range 0.6–0.8,
medium correlation in the range 0.4–0.6, weak correlation in the range 0.2–0.4 and extremely
weak correlation in the range 0–0.2 [59].

It can be seen from Tables A1–A5 that the depth and width variables of each room
have a moderate impact on the Useful Daylight Illuminance (UDI 100–2000 lx), because the
Spearman coefficient of the relevant design parameters is between 0.3 and 0.5. Compared
with these parameters, the window-to-wall ratio of each room has a weaker influence on
the lighting environment, with the Spearman coefficient in between 0.1 and 0.3. Regarding
the total energy demand, floor height has a strong influence on it for each typical city.
However, except for the climatic conditions of Shenzhen and Kunming where the depth
and width of each room have a moderate impact, under the climatic conditions of Harbin,
Beijing and Shanghai, the depth and width of each room have a weak influence on it
(generally less than 0.3). Except for Kunming, under the climatic conditions of Harbin,
Beijing and Shanghai, the influence of room depth and width on building cooling demand
is significantly higher than that on heating demand. In Kunming, these design parameters
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have similar effects on cooling and heating; while in Shenzhen, since there is no heating
time period, the influence of design parameters on heating demand is zero. In addition,
under the climatic conditions of typical cities, the window-to-wall ratio of each room has a
higher impact on building cooling demand than it has on building heating demand.

In addition to the analysis of Spearman coefficient, the study also conducted a local
sensitivity analysis of different design parameters to understand the influence of each
design parameter on the objective function under different climate conditions. However,
due to the large number of design parameters, and each of them affects more than one
objective function, Figures 13–28 only select 4 typical design parameters for local sensitivity
analysis, namely floor height, total width, master bedroom window-to-wall ratio and
living room window-to-wall ratio to intuitively understand the changes of objectives under
different climatic conditions.
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From Figures 13–15, it can be seen that with the increase in floor height, the total energy
demand for residential buildings in each city is increasing, where the increase in Harbin
climate is the largest and the energy demand per unit building area is much higher than
that of other cities, while the increase in Kunming is the smallest. The heating and cooling
demand of different cities account for different proportions of the total energy demand. The
energy demand in Harbin mainly comes from heating which is about 160–205 kWh/m2,
while the cooling demand is only 5–10 kWh/m2. Under the climatic conditions of Beijing
and Shanghai, the heating demand is higher than the cooling demand. The heating demand
is about 50–110 kWh/m2, while the cooling demand is only 15–35 kWh/m2. Residential
buildings under the climate conditions in Shenzhen are different from the above cities
where the building energy demand comes only from the cooling demand, which is about
65–85 kWh/m2. In addition, compared with other cities, residential heating and cooling
demand under the climatic conditions of Kunming are at a lower value, indicating the
climate there is quite pleasant.

From the analysis of lighting environment and floor height in Figure 16, it can be
seen that with the increase of floor height, under all typical climate conditions, the annual
percentage of UDI 100 lx–2000 lx is decreasing. By comparing the residential indoor light
environment in different cities, it is clear to see that Kunming has the best indoor light
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environment, followed by Shenzhen, Beijing and Shanghai, and Harbin has the worst
indoor light environment, resulting from different latitude and solar angles in different
cities. Through the sensitivity analysis of the floor height, it can be summarized that with
the increase of the floor height, the energy demand and the indoor lighting environment
are deteriorating. Therefore, it is recommended to control the floor height at 2.7 m in order
to obtaining the optimal goals.

Since the total area of the apartment is always controlled at 118 m2, the total width and
the total depth are symmetrical with respect to the objective function. Therefore, the study
only conducts local sensitivity analysis for the total width of the apartment. Figures 17–19
show the relationship of the total width and the building energy demand, where it is clear
to see that the total energy demand under the climate conditions of Harbin and Beijing
gradually decreases as the total width increases, while under Shanghai climate conditions,
the total width has little influence on the fluctuation of total energy demand. Moreover,
under the climatic conditions of Shenzhen and Kunming, as the total width increases, the
total energy demand is gradually increasing. This is because in residential buildings in
Harbin and Beijing, as the total width becomes larger, the heating demand is decreasing.
Although the corresponding cooling demand increases slightly, the magnitude is not as
large as the change in heating demand, which leads to a decrease in total energy demand.
Specifically, under the climate conditions of Harbin, the total energy demand decreases
from 235 kWh/m2 to about 200 kWh/m2 as the width increases, and under Beijing climatic
conditions, the total energy demand decreases from 150 kWh/m2 to about 135 kWh/m2 as
the width increases. Different to Harbin and Beijing, the total energy demand of residential
buildings in Shenzhen and Kunming has increased with the increase in width, mainly
because the change in heating demand is relatively stable, while the demand for cooling
has increased. For example, under the climatic conditions in Shenzhen, as the width of
the house becomes larger, the cooling demand has increased from 80 kWh/m2 to about
90 kWh/m2.

According to the analysis of the total width and the annual percentage of UDI
100 lx–2000 lx in Figure 20, as the width increases, the annual percentage of UDI 100 lx–2000 lx
is decreasing. Among them, Kunming has the best indoor light environment, followed by
Shenzhen, Shanghai and Beijing. Harbin’s indoor light environment comfort is worse than
other cities.

Through the sensitivity analysis of the total width, it can be seen that under different
typical urban climate conditions, the change in the total width of the house has different
correlations with the objective function. The main difference lies in the impact on the total
energy demand. Therefore, it is necessary to perform an optimization search on a global
scale to find the optimal width value that weighs the total energy demand and the comfort
of the light environment.

Figures 21–23 analyze the effect of the window-to-wall ratio of the master bedroom
on the total energy demand (including heating demand and cooling demand) and annual
percentage of UDI 100–2000 lx. It can be seen that the increase in the window-to-wall ratio
of the master bedroom has little effect on the total energy demand of residential buildings
in cities other than Shenzhen where the total energy demand of residential buildings has
increased. This is because the increase in window area has led to a significant increase in
the demand for cooling in the area, from 82 kWh/m2 to 95 kWh/m2. From the analysis in
Figure 24, it can be seen that with the increase in the window-to-wall ratio in the master
bedroom, annual percentage of UDI 100–2000 lx in all typical cities has gradually decreased,
thus the lighting environment comfort has a certain degree of degradation.

Figures 25–27 analyze the impact of window-to-wall ratio in the living room on the
total energy demand (including heating demand and cooling demand) and annual percent-
age of UDI 100–2000 lx. With the increase in the window-to-wall ratio in the living room,
the total energy demand of residential buildings under the climate of Shenzhen is also
increasing, but that under the climatic conditions of Kunming is decreasing, and there is
little fluctuation in other cities. This is because with the increase in the window-to-wall ratio
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in the living room, more solar radiation enters the room, leading to a significant increase in
residential cooling demand in Shenzhen, from 210 kWh/m2 to about 240 kWh/m2. How-
ever, due to different climatic conditions, the demand for residential cooling in Kunming
has slightly decreased, from 30 kWh/m2 to about 20 kWh/m2.

From the analysis in Figure 28 which shows the impact of the window-to-wall ratio
in the living room on the indoor lighting environment, it is summarized that with the
window-to-wall ratio increases, the annual percentage of UDI 100–2000 lx in each typical
city gradually decreases, therefore, the light environment comfort has a certain degree
of degradation.

5. Discussion of Optimization Results
5.1. Optimization Results of Residential Interior Design in Typical Cities

The research obtained the best solution through parametric performance simulation
and NSGA-II algorithm to optimize all design parameters, as shown in Figure 29, where the
darkest part in red is the Pareto front. Tables 8 and 9 list the best building energy demand
(that is, the smallest building energy demand solution, nZEB optimal solution) and the
best light environment (that is, the highest annual percentage of UDI 100 lx–2000 lx, UDI
optimal solution) for each city under different climatic conditions and its corresponding
design parameters.

It can be seen from Table 8 that in the optimal design of nZEB and UDI in all cities,
the floor height is 2.7 m. Furthermore, in nZEB solution, the total depth and total width of
residential buildings in Harbin, Beijing and Shenzhen are the same (total width is 14.97 m,
total depth is 7.88 m), while those parameters in Shanghai and Kunming are different. The
total width in Shanghai nZEB optimal solution is 12.28 m and the total depth is 9.61 m; the
total width in Kunming nZEB optimal solution is 11.20 m and the total depth is 10.54 m,
leading to the fact that the difference of nZEB optimal design parameters in Harbin, Beijing
and Shenzhen are mainly from the difference in depth between the master bedroom and
the middle bedroom. With respect of the window-to-wall ratio of each room, the best
window-to-wall ratio in the master bedroom and the living room of Beijing nZEB solution
(0.41 and 0.59, respectively) is higher than that of Harbin and Shenzhen nZEB solution (0.19
and 0.32 in Harbin, 0.18 and 0.24 in Shenzhen). However, in general, the window-to-wall
ratio in colder cities in the north are larger than those in warm cities in the south. This is
because residential buildings in northern cities need to introduce more solar radiation into
indoor space to reduce heating demand in winter, while southern cities need to reduce the
window-to-wall ratio to prevent too much solar radiation from entering the room, thereby
reducing the demand for cooling in summer, however, too large window area will also
accelerate the flow of indoor energy to the outdoors and reduce the insulation performance
of the building. Therefore, the window-to-wall ratio in severe cold areas such as Harbin
should not be too large.

In addition, the total depth and total width in the UDI optimal solution for all cities
are approximately the same. The total width is 14.97 m and the total depth is 7.88 m,
leading to the depth and width of each room being approximately the same. The main
difference between the UDI optimal design solution in each city is the window-to-wall ratio
parameter of each room. The window-to-wall ratio of the north bedroom, master bedroom
and living room of the UDI optimal design solution in Shanghai is greater than that in
other cities, which are 0.26, 0.32 and 0.33, respectively. The kitchen window-to-wall ratio of
UDI optimal design solution in Shenzhen is greater than that in other cities, which is 0.59.
Moreover, the window-to-wall ratios of dining room in Harbin, Beijing and Shenzhen UDI
optimal design solution (0.54, 0.50 and 0.60, respectively) are significantly greater than that
in Shanghai and Kunming (0.19 and 0.16, respectively).
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Table 8. Optimization design parameters of residential interior space form in typical cities.

Classification Code Description

Harbin
(Severe Cold

Area I)

Beijing
(Cold Regions II)

Shanghai
(Hot Summer and

Cold Winter
Area III)

Shenzhen
(Hot Summer and

Warm Winter
Area IV)

Kunming
(Temperate
Region V)

nZEB(*) UDI(*) nZEB(*) UDI(*) nZEB(*) UDI(*) nZEB(*) UDI(*) nZEB(*) UDI(*)

Spatial
morphological

parameters

A1 Floor height 2.70 2.70 2.70 2.70 2.70 2.70 2.70 2.70 2.70 2.70
A2 Total width 14.97 14.96 14.97 14.97 12.28 14.98 14.98 14.90 11.20 14.92
A3 Total depth 7.88 7.89 7.88 7.88 9.61 7.88 7.88 7.92 10.54 7.91
A4 Master bedroom width 2.50 2.50 2.50 2.50 4.42 2.51 2.50 2.50 3.63 2.50
A5 Master bedroom depth 3.94 4.48 2.59 4.48 4.58 4.47 4.23 4.42 4.88 4.51
A6 Middle bedroom width 2.50 2.50 2.50 2.50 4.42 2.51 2.50 2.50 3.63 2.50
A7 Middle bedroom depth 2.24 1.70 3.60 1.70 3.18 1.70 1.88 1.73 3.89 1.70
A8 North bedroom width 2.50 2.50 2.50 2.50 4.42 2.51 2.50 2.50 3.63 2.50
A9 North bedroom depth 1.70 1.71 1.70 1.70 1.85 1.71 1.77 1.77 1.77 1.70
A10 Kitchen width 1.70 4.95 1.71 1.74 1.96 1.70 1.70 5.00 1.70 1.74
A11 Kitchen depth 1.70 1.71 1.70 1.70 1.85 1.71 1.77 1.77 1.77 1.70

Window
parameters

B1 Window-to-wall ratio in
north bedroom 0.15 0.16 0.15 0.27 0.29 0.26 0.15 0.18 0.15 0.15

B2 Window-to-wall ratio in
middle bedroom 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15

B3 Window-to-wall ratio in
master bedroom 0.19 0.15 0.41 0.15 0.49 0.32 0.18 0.16 0.15 0.36

B4 Window-to-wall ratio in
living room 0.32 0.15 0.59 0.20 0.60 0.33 0.24 0.16 0.15 0.17

B5 Window-to-wall ratio
in Kitchen 0.23 0.28 0.16 0.20 0.24 0.33 0.15 0.59 0.15 0.18

B6 Window-to-wall ratio in
dining room 0.15 0.54 0.15 0.50 0.16 0.19 0.15 0.60 0.15 0.16

nZEB(*): the best solution for annual energy demand, UDI(*): the best solution for the annual percentage of UDI
100–2000 lx.

Table 9. Performance index of optimal solution.

Objective Function
Harbin

(Severe Cold Area I)
Beijing

(Cold Regions II)

Shanghai
(Hot Summer and

Cold Winter Area III)

Shenzhen
(Hot Summer and

Warm Winter Area IV)

Kunming
(Temperate Region V)

nZEB(*) UDI(*) nZEB(*) UDI(*) nZEB(*) UDI(*) nZEB(*) UDI(*) nZEB(*) UDI(*)

BED (kWh/m2):
Building energy demand 84.36 91.23 110.69 137.48 24.86 29.47 63.57 70.08 23.69 28.85

H (kWh/m2):
Heating energy demand 70.36 77.46 104.57 132.69 24.77 27.82 0 0 17.05 19.10

C (kWh/m2):
Cooling energy demand 14.00 13.77 6.12 4.79 0.09 1.65 63.57 70.08 6.64 9.75

UDI 100–2000 (%):
Useful Daylight Illuminance 80.27 82.92 71.43 78.99 67.49 88.84 87.06 89.24 71.56 87.19

nZEB(*): the best solution for annual energy demand, UDI(*): the best solution for the annual percentage of UDI
100–2000 lx.

From the comparison of the performance indicators of the optimal solution in Table 9,
it is obvious to see that the heating demand of residential buildings in Harbin, Beijing and
Shanghai is much higher than the cooling demand. Meanwhile, as mentioned above, the
heating schedule in Shenzhen is set to zero, thus the building energy demand in Shenzhen
is all from cooling demand. Furthermore, through the comparison of the optimal energy
demand of nZEB and UDI solution in various cities, it can be seen that the energy demand
of residential buildings in Beijing is higher than other cities, which are 110.69 kWh/m2

and 137.48 kWh/m2. While Kunming and Shanghai are the lowest. Besides, with the
exception of Beijing, the optimal energy demand indicators in nZEB and UDI solution in
each city are not much different. Different from the energy demand index, the index of
annual percentage of UDI 100–2000 lx in nZEB optimal solution and UDI optimal solution
in Shanghai and Kunming are quite different. The annual percentage of UDI 100–2000 lx of
the two optimal solutions in Shanghai differed by 21.35%, while that in Kunming differed
by 15.63%.

5.2. Comparison of Optimization Results with Reference Model

Table 10 compares the optimal indicators of each city with the simulated indicators
of the reference house. As far as Harbin is concerned, the energy demand of the two
optimization results is greatly reduced compared with the reference building, and the main
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reason for the decrease is that the heating demand is greatly reduced on the basis of a
small increase in cooling demand. Heating demand has been reduced by 103.95 kWh/m2

and 96.85 kWh/m2 respectively. In addition, in terms of the annual percentage of UDI
100–2000 lx, the two optimal results of Harbin residential building types have also been
greatly improved compared with the reference building, increasing by 23.69 and 26.34%,
respectively. However, it is worth noting that under Harbin climatic conditions, the per-
formance indicators of the nZEB optimal solution and the UDI optimal solution have
little difference for the improvement to the reference building in terms of these two
objective functions.

Table 10. The gap between the optimal solution and the performance index of the reference building.

Objective Function Harbin
(Severe Cold Area I)

Beijing
(Cold Regions II)

Shanghai
(Hot Summer and

Cold Winter Area III)

Shenzhen
(Hot Summer and

Warm Winter Area IV)

Kunming
(Temperate Region V)

nZEB(*) UDI(*) nZEB(*) UDI(*) nZEB(*) UDI(*) nZEB(*) UDI(*) nZEB(*) UDI(*)

BED (**) (kWh/m2):
Building energy demand 95.06 88.19 4.12 −22.67 60.3 55.69 1.63 −4.88 12.41 7.25

H (**) (kWh/m2):
Heating energy demand 103.95 96.85 −7.43 −35.55 35.44 32.39 0 0 8.98 6.93

C (**) (kWh/m2):
Cooling energy demand −8.89 −8.66 11.55 12.88 24.86 23.3 1.63 −4.88 3.43 0.1

UDI 100–2000 (**) (%):
Useful Daylight Illuminance −23.69 −26.34 −11.68 −19.24 −6.74 −28.09 −22.39 −24.57 −4.56 −20.19

nZEB(*): the best solution for annual energy demand, UDI(*): the best solution for the annual percentage of UDI
100–2000 lx, (**) A positive value indicates that the proposed solution reduces the performance index, while a
negative value indicates an increase.

In cold regions represented by Beijing, the optimal total energy demand of nZEB
is reduced by 4.12 kWh/m2 compared to the reference house. The main reason is that
the cooling demand decreases more than the increase in heating demand. Meanwhile,
the nZEB optimal solution also increases annual percentage of UDI 100–2000 lx 11.68%.
Whereas, although an annual percentage of UDI 100–2000 lx is better in the UDI optimal
solution which is 19.24% than that in nZEB optimal solution, it increases the total energy
demand by 22.67 kWh/m2 where cooling demand decreases by 12.88 kWh/m2, but the
heating demand increases by 35.55 kWh/m2.

In the hot summer and cold winter area represented by Shanghai, the total energy
demand of the two optimization solutions has been greatly reduced compared with the
reference house, which are 60.3 kWh/m2 and 55.69 kWh/m2, respectively. However,
the UDI optimal solution improves the annual percentage of UDI 100–2000 lx (which is
28.09%) better than nZEB optimal solution (6.74%). Therefore, from a global perspec-
tive, the UDI optimal solution is more in line with the improvement of multi-objective
performance indicators.

In the hot summer and warm winter area represented by Shenzhen, the total energy
demand of the two optimization solutions has little change compared to the reference
house. Specifically, the nZEB optimal solution reduces 1.63 kWh/m2, while the UDI
optimal solution only increases 4.88 kWh/m2. Since the heating schedule of the model is
not set according to the actual situation, the changes in total energy demand all come from
cooling demand. Different from the indicator of energy demand, annual percentage of UDI
100–2000 lx have greatly improved by these two optimal solutions which are 22.39% (nZEB
optimal solution) and 24.57% (UDI optimal solution), respectively.

Similar to Shenzhen, in the temperate climate zone represented by Kunming, the total
energy demand of the two optimal solutions has little change compared to the reference
house, where nZEB optimal solution reduces 12.41 kWh/m2 and UDI optimal solution
reduces 7.25 kWh/ m2. However, the improvement of UDI optimal solution for annual
percentage of UDI 100–2000 lx is significantly higher than that of nZEB optimal solution.
Specifically, the annual percentage of UDI 100–2000 lx in nZEB optimal solution is increased
by 4.56% compared with the reference house, but improved by 20.19% in UDI optimal
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solution. Therefore, in the actual project, design parameters in UDI optimal solution are
more in line with the improvement of global performance indicators.

6. Conclusions

This research uses the meteorological parameters of 5 typical Chinese cities and takes
the 118.11 square meter apartment in Tianjin residential community as an example to carry
out the optimization analysis for indoor space design. Finally, the optimal indoor space
design parameters are explored from the perspective of lowest building energy demand
and highest annual percentage of UDI 100–2000 lx. Meanwhile, the design parameters and
performance indicators of each typical city are compared and explained to understand the
difference of indoor space design under different climate conditions.

From the analysis results, it can be concluded that in the early stage of the schematic
design, the indoor space design optimization can effectively reduce the residential energy
demand and improve the indoor lighting environment comfort. According to the opti-
mization results in this case, the total energy demand per square meter and the annual
percentage of UDI 100–2000 lx in each optimal solution under different typical cities are
generally better than the original reference apartment plan.

Under the climate conditions of Harbin, the design parameters of nZEB optimal
solution and UDI optimal solution have greatly improved the performance of the reference
apartment. Both design optimization results suggest that the total indoor width is 14.97 m,
the total depth is 7.88 m, the window-to-wall ratio of the living room is 0.32 (nZEB optimal
solution) or 0.15 (the UDI optimal solution), and the value of the restaurant window-
to-wall ratio is 0.15 (nZEB optimal solution) or 0.54 (the UDI optimal solution). Under
the climate conditions of Shenzhen, both the nZEB optimal solution and UDI optimal
solution greatly improve indoor lighting environment comfort, which are 22.39% (nZEB
optimal solution) and 24.57% (UDI optimal solution), respectively. However, they have
little difference in the improvement of total energy demand, which are 1.63 kWh/m2 (nZEB
optimal solution) and−4.88 kWh/m2 (UDI optimal solution), respectively. Under Shanghai
climatic conditions, compared with the performance index of nZEB optimal solution, the
UDI optimal solution has higher overall benefits. Therefore, the recommended total width
is 14.98 m and the total depth is 7.88 m. The window-to-wall ratio of north bedroom, master
bedroom and living room are 0.26, 0.32 and 0.33, respectively. Similar to Shanghai, the
interior design parameters of residential buildings under Kunming climate conditions are
also recommended to take the UDI optimal design solution, which means that the total
width is 14.92 m, the total depth is 7.91 m, the window-to-wall ratio of the master bedroom
is 0.36, and that of the remaining rooms is between 0.15 and 0.18. Different from Shanghai
and Kunming, it is recommended to take nZEB optimal design solution for residential
building interior design parameters under Beijing climatic conditions, i.e., the total width
is 14.97 m, the total depth is 7.88 m, the window-to-wall ratio of the master bedroom and
the living room are 0.41 and 0.59, respectively, and that of the rest of the room is 0.15.

Through the correlation analysis between the design parameters and energy demand
and the indoor lighting comfort, the indoor space design parameters have a strong influ-
ence on the energy-saving design of residential buildings, so it needs to be differentiated
according to the climate characteristics of different typical cities, which enables architects
to make wise decisions on parameter values according to different climatic conditions,
and to meet multiple design intents in terms of architectural function, aesthetics and
architectural performance.

Based on the Grasshopper, a parametric multi-objective optimization process was
created in this research for the preliminary stage of residential building design. Through
sensitivity analysis, the research discusses the relationship between residential indoor
space design parameters, building performance and lighting environment, which enables
architects to make design decisions based on parameter sensitivity. The research is only
optimized for a specific case, but this method has a certain general applicability and can
be widely used in the optimization of different residential interior designs. Therefore,
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the application and promotion of this optimization method is of great significance to
residential projects.
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Table A1. Comparison of Spearman coefficients of residential interior space design parameters
in Harbin.

Classification Code Description

Harbin
(Severe Cold Area I)

H C BED UDI
C* S* C* S* C* S* C* S*

Spatial
morphological

parameters

A1 Floor height 0.891 0.00 0.397 0.00 0.898 0.00 0.237 0.00
A2 Total width −0.127 0.00 0.523 0.00 −0.062 0.00 −0.579 0.00
A3 Total depth 0.127 0.00 0.523 0.00 0.062 0.00 0.579 0.00
A4 Master bedroom width 0.127 0.00 0.523 0.00 0.062 0.00 0.579 0.00
A5 Master bedroom depth −0.031 0.00 −0.467 0.00 −0.086 0.00 0.563 0.00
A6 Middle bedroom width −0.127 0.00 0.523 0.00 −0.062 0.00 −0.579 0.00
A7 Middle bedroom depth −0.129 0.00 −0.258 0.00 −0.155 0.00 0.148 0.00
A8 North bedroom width −0.127 0.00 0.523 0.00 −0.062 0.00 0.579 0.00
A9 North bedroom depth 0.350 0.00 −0.288 0.00 0.307 0.00 0.387 0.00
A10 Kitchen width 0.049 0.00 0.316 0.00 0.085 0.00 −0.344 0.00
A11 Kitchen depth 0.350 0.00 −0.288 0.00 0.307 0.00 0.387 0.00

Window
parameters

B1 Window-to-wall ratio in
north bedroom 0.065 0.00 0.177 0.00 0.084 0.00 −0.124 0.00

B2 Window-to-wall ratio in
middle bedroom 0.028 0.00 0.288 0.00 0.061 0.00 −0.159 0.00

B3 Window-to-wall ratio in
master bedroom −0.036 0.00 0.437 0.00 0.018 0.00 −0.292 0.00

B4 Window-to-wall ratio in
living room −0.054 0.00 0.409 0.00 −0.003 0.00 −0.405 0.00

B5 Window-to-wall ratio
in kitchen 0.044 0.00 0.147 0.00 0.060 0.00 −0.102 0.00

B6 Window-to-wall ratio in
dining room 0.034 0.00 0.074 0.00 0.042 0.00 −0.070 0.00

C* coefficient; S* Significance.
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Table A2. Comparison of Spearman coefficients of residential interior space design parameters
in Beijing.

Classification Code Description

Beijing
(Cold Regions II)

H C BED UDI
C* S* C* S* C* S* C* S*

Spatial
morphological

parameters

A1 Floor height 0.865 0.00 0.522 0.00 0.894 0.00 −0.257 0.00
A2 Total width −0.196 0.00 0.472 0.00 0.001 0.00 −0.588 0.00
A3 Total depth 0.196 0.00 −0.472 0.00 −0.001 0.00 0.588 0.00
A4 Master bedroom width −0.196 0.00 0.472 0.00 0.001 0.00 −0.588 0.00
A5 Master bedroom depth 0.024 0.00 −0.439 0.00 −0.140 0.00 0.502 0.00
A6 Middle bedroom width −0.196 0.00 0.472 0.00 0.001 0.00 −0.588 0.00
A7 Middle bedroom depth −0.094 0.00 −0.263 0.00 −0.175 0.00 0.087 0.00
A8 North bedroom width −0.196 0.00 0.472 0.00 0.001 0.00 −0.588 0.00
A9 North bedroom depth 0.397 0.00 −0.221 0.00 0.263 0.00 0.510 0.00
A10 Kitchen width 0.002 0.00 0.293 0.00 0.108 0.00 −0.349 0.00
A11 Kitchen depth 0.397 0.00 −0.221 0.00 0.263 0.00 0.510 0.00

Window
parameters

B1 Window-to-wall ratio in
north bedroom 0.055 0.00 0.188 0.00 0.118 0.00 −0.168 0.00

B2 Window-to-wall ratio in
middle bedroom 0.009 0.00 0.264 0.00 0.103 0.00 −0.172 0.00

B3 Window-to-wall ratio in
master bedroom −0.075 0.00 0.389 0.00 0.078 0.00 −0.292 0.00

B4 Window-to-wall ratio in
living room −0.157 0.00 0.397 0.00 0.012 0.00 −0.358 0.00

B5 Window-to-wall ratio
in kitchen 0.028 0.00 0.146 0.00 0.079 0.00 −0.132 0.00

B6 Window-to-wall ratio in
dining room 0.036 0.00 0.084 0.00 0.063 0.00 −0.103 0.00

C* coefficient; S* Significance.

Table A3. Comparison of Spearman coefficients of residential interior space design parameters
in Shanghai.

Classification Code Description

Shanghai
(Hot Summer and Cold Winter Area III)

H C BED UDI
C* S* C* S* C* S* C* S*

Spatial
morphological

parameters

A1 Floor height 0.879 0.00 0.645 0.00 0.894 0.00 −0.21 0.00
A2 Total width −0.172 0.00 0.396 0.00 0.078 0.00 −0.599 0.00
A3 Total depth 0.172 0.00 −0.396 0.00 −0.078 0.00 0.599 0.00
A4 Master bedroom width −0.172 0.00 0.396 0.00 0.078 0.00 0.599 0.00
A5 Master bedroom depth 0.008 0.00 −0.388 0.00 −0.188 0.00 0.455 0.00
A6 Middle bedroom width −0.172 0.00 0.396 0.00 0.078 0.00 −0.599 0.00
A7 Middle bedroom depth −0.118 0.00 −0.242 0.00 −0.196 0.00 0.274 0.00
A8 North bedroom width −0.172 0.00 0.396 0.00 0.078 0.00 −0.599 0.00
A9 North bedroom depth 0.387 0.00 −0.148 0.00 0.190 0.00 0.405 0.00
A10 Kitchen width 0.029 0.00 0.256 0.00 0.146 0.00 −0.338 0.00
A11 Kitchen depth 0.387 0.00 −0.148 0.00 0.190 0.00 0.405 0.00

Window
parameters

B1 Window-to-wall ratio in
north bedroom 0.035 0.00 0.198 0.00 0.123 0.00 −0.063 0.00

B2 Window-to-wall ratio in
middle bedroom 0.012 0.00 0.244 0.00 0.130 0.00 −0.107 0.00

B3 Window-to-wall ratio in
master bedroom −0.061 0.00 0.330 0.00 0.125 0.00 −0.331 0.00

B4 Window-to-wall ratio in
living room 0.357 0.00 −0.113 0.00 0.102 0.00 −0.435 0.00

B5 Window-to-wall ratio
in kitchen 0.006 0.00 0.155 0.00 0.083 0.00 −0.006 0.00

B6 Window-to-wall ratio in
dining room 0.025 0.00 0.086 0.00 0.062 0.00 0.026 0.00

C* coefficient; S* Significance.
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Table A4. Comparison of Spearman coefficients of residential interior space design parameters
in Shenzhen.

Classification Code Description

Shenzhen
(Hot Summer and Warm Winter Area IV)

H C BED UDI
C* S* C* S* C* S* C* S*

Spatial
morphological

parameters

A1 Floor height 0.00 0.00 0.733 0.00 0.733 0.00 −0.239 0.00
A2 Total width 0.00 0.00 0.350 0.00 0.350 0.00 −0.589 0.00
A3 Total depth 0.00 0.00 −0.350 0.00 −0.350 0.00 0.589 0.00
A4 Master bedroom width 0.00 0.00 0.350 0.00 0.350 0.00 −0.589 0.00
A5 Master bedroom depth 0.00 0.00 −0.369 0.00 −0.369 0.00 0.429 0.00
A6 Middle bedroom width 0.00 0.00 0.350 0.00 0.350 0.00 −0.589 0.00
A7 Middle bedroom depth 0.00 0.00 −0.253 0.00 −0.253 0.00 0.023 0.00
A8 North bedroom width 0.00 0.00 0.350 0.00 0.350 0.00 −0.589 0.00
A9 North bedroom depth 0.00 0.00 −0.077 0.00 −0.077 0.00 0.633 0.00
A10 Kitchen width 0.00 0.00 0.244 0.00 0.244 0.00 −0.347 0.00
A11 Kitchen depth 0.00 0.00 −0.077 0.00 −0.077 0.00 0.633 0.00

Window
parameters

B1 Window-to-wall ratio in
north bedroom 0.00 0.00 0.181 0.00 0.181 0.00 −0.191 0.00

B2 Window-to-wall ratio in
middle bedroom 0.00 0.00 0.186 0.00 0.186 0.00 −0.161 0.00

B3 Window-to-wall ratio in
master bedroom 0.00 0.00 0.282 0.00 0.282 0.00 −0.236 0.00

B4 Window-to-wall ratio in
living room 0.00 0.00 0.308 0.00 0.308 0.00 −0.271 0.00

B5 Window-to-wall ratio
in kitchen 0.00 0.00 0.132 0.00 0.132 0.00 −0.165 0.00

B6 Window-to-wall ratio in
dining room 0.97 0.97 0.097 0.00 0.097 0.00 −0.126 0.00

C* coefficient; S* Significance.

Table A5. Comparison of Spearman coefficients of residential interior space design parameters
in Kunming.

Classification Code Description

Kunming
(Temperate Region V)

H C BED UDI
C* S* C* S* C* S* C* S*

Spatial
morphological

parameters

A1 Floor height 0.808 0.00 0.278 0.00 0.838 0.00 −0.238 0.00
A2 Total width −0.236 0.00 0.289 0.00 −0.182 0.00 −0.599 0.00
A3 Total depth 0.236 0.00 −0.289 0.00 0.182 0.00 0.599 0.00
A4 Master bedroom width −0.236 0.00 0.289 0.00 −0.182 0.00 −0.599 0.00
A5 Master bedroom depth 0.044 0.00 −0.286 0.00 −0.007 0.00 0.489 0.00
A6 Middle bedroom width −0.236 0.00 0.289 0.00 −0.182 0.00 −0.599 0.00
A7 Middle bedroom depth −0.097 0.00 −0.036 0.00 −0.101 0.00 0.054 0.00
A8 North bedroom width −0.236 0.00 0.289 0.00 −0.182 0.00 −0.599 0.00
A9 North bedroom depth 0.449 0.00 −0.209 0.00 0.406 0.00 0.568 0.00
A10 Kitchen width −0.012 0.00 0.179 0.00 0.020 0.00 −0.362 0.00
A11 Kitchen depth 0.449 0.00 −0.209 0.00 0.406 0.00 0.568 0.00

Window
parameters

B1 Window-to-wall ratio in
north bedroom 0.029 0.00 0.137 0.00 0.052 0.00 −0.169 0.00

B2 Window-to-wall ratio in
middle bedroom −0.023 0.00 0.601 0.00 0.069 0.00 −0.161 0.00

B3 Window-to-wall ratio in
master bedroom −0.101 0.00 0.457 0.00 −0.023 0.00 −0.257 0.00

B4 Window-to-wall ratio in
living room −0.248 0.00 0.162 0.00 −0.215 0.00 −0.278 0.00

B5 Window-to-wall ratio
in kitchen 0.003 0.00 0.125 0.00 0.025 0.00 −0.137 0.00

B6 Window-to-wall ratio in
dining room 0.018 0.00 0.032 0.00 0.024 0.00 −0.100 0.00

C* coefficient; S* Significance.
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