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Abstract: An approach to automatically generate a dynamic energy simulation model in Modelica
for a single existing building is presented. It aims at collecting data about the status quo in the
preparation of energy retrofits with low effort and costs. The proposed method starts from a polygon
model of the outer building envelope obtained from photogrammetrically generated point clouds.
The open-source tools TEASER and AixLib are used for data enrichment and model generation. A
case study was conducted on a single-family house. The resulting model can accurately reproduce the
internal air temperatures during synthetical heating up and cooling down. Modelled and measured
whole building heat transfer coefficients (HTC) agree within a 12% range. A sensitivity analysis
emphasises the importance of accurate window characterisations and justifies the use of a very
simplified interior geometry. Uncertainties arising from the use of archetype U-values are estimated
by comparing different typologies, with best- and worst-case estimates showing differences in pre-
retrofit heat demand of about £20% to the average; however, as the assumptions made are permitted
by some national standards, the method is already close to practical applicability and opens up a
path to quickly estimate possible financial and energy savings after refurbishment.

Keywords: UAV; UAS; building energy simulation; building energy modelling; heat demand; heat
transfer coefficient; Modelica

1. Introduction

The buildings sector is directly or indirectly responsible for 18.4% of total anthro-
pogenic greenhouse gas emissions [1]. Reducing this impact is one of the key issues for
mitigating global warming. For a pathway that aims at limiting global warming to an
average temperature increase of 1.5 °C, existing buildings should be renovated at a rate
of 5% per year by 2020 [2]. This benchmark number is far from being reached: In the
EU, the weighted annual renovation rate is at about 1% [3]. Nevertheless, countries have
implemented different policies. These include minimum requirements for energy retrofits
of existing buildings and rules for their execution. As the first step of renovation mea-
sures, the laws usually demand an analysis of the current state, e.g., by energy consultants.
They evaluate the status quo energy performance according to national or international
standards and give recommendations for suitable retrofit measures. For the post-retrofit
state, requirements regarding overall energy demand, thermal transmittance (U-values) of
certain building parts, or whole building heat transfer coefficients (HTC) apply [4].

The associated calculations require knowledge about certain boundary conditions as
well as about the geometry and the fabric of the building. Most parameters can be individ-
ually assessed: For example, blower-door tests can determine the airtightness [5] and heat
flow sensors can be used to measure the U-value of building parts [6]. Besides more or less
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advanced measurement devices, available plans of the building are an important source for
geometric dimensions [7]. To keep the measurement effort for individual building analysis
reasonably low, standards and laws give room for assumptions and provide default values.
For example, air exchange rates for certain situations [8] and heat conductivities of certain
building materials [9] can be used. In Germany, the German Meteorological Service (DWD)
offers representative weather data as test reference years [10]. Furthermore, the legislation
allows to use “simplified measurements” and “empirical values for building parts and
system components of comparable age classes” if no better knowledge about the building
is available [11]. A similar approach exists as Reduced Standard Assessment Procedure
(RASAP) in the United Kingdom [12]. Although such simplifications are important to keep
the effort small, they cause inaccuracies that are one reason for the so-called “performance
gap” between predicted demand and actual energy use [13].

One possibility for mitigating these inaccuracies is the whole building’s qualifica-
tion by measurement of its HTC. Several methods are able to determine this metric, for
example the evidently reliable co-heating test [14] or the QUB method [15]. They have
the advantages of directly measuring the actual energy performance and not requiring
the geometry or similar preliminary knowledge of the building. Their drawbacks are
that they cannot be the only source of information for individual envelope component
refurbishment, that solar gains and air exchange need to be accounted for with additional
measurements and modelling effort, and the need for an unoccupied building. If such
dedicated measurement campaigns should be avoided, some available approaches are
the energy signature method [16], grey-box regression [17], or modelling based on data
from smart meters or building automation systems [18,19]. Similar approaches can also be
used to calibrate existing models [20]. The further spread of smart meters and smart home
devices may enable the wider application of these tools, which is currently limited by the
need for a comparatively long time series of data that can only be meter-read or measured
using dedicated equipment, meaning an amount of work that is unreasonably high for
small building retrofit preparations. A more technologically complex approach to reduce
the data acquisition effort is the automation of the measurement and the “white-box” [21]
modelling process. Regarding the geometry, terrestrial laser scans (TLS) or images obtained
from unmanned aerial vehicles (UAVs, also known as drones) can be applied to create
accurate point cloud or mesh representations of the building envelope [22-24]. Commercial
software allows to manually extract surfaces and to create models for building information
modelling (BIM) from the point clouds. They may also include interior surface information
from original [24] or TLS-reconstructed [25] floor plans. Regarding thermal parameters,
data from infrared thermography (IRT) are useful for qualitative inspections, but faces
limited applicability in quantitative studies due to a lack of accuracy [26,27]. As a conse-
quence, material information or thermal parameters are sourced from previously known
information or the aforementioned measurement methods. After adding these data to
BIM, interfaces to building energy models (BEM) enable energy simulations. The use of
established software makes this approach pragmatic, but individual modelling effort is
high [28]. To achieve a suitable cost-benefit ratio that is necessary for increasing renovation
rates and to compensate the limited availability of skilled labour, further automation of the
whole process is highly desirable.

In urban building energy modelling (UBEM), the need for reconstruction and mod-
elling of large datasets has led to the development of largely automated approaches.
Simplified geometries with semantic annotations are reconstructed from remotely sensed
point clouds [29,30]. Using these or open data as a source, several tools are able to estimate
building energy demands on a large scale (see e.g., the reviews on the field by Reinhart and
Cerezo Davila [31] or Sola et al. [32]). During that process, models are often enriched with
common “archetype” building properties. For example, the open-source tool TEASER [33]
contains data from the TABULA project [34] to assign common envelope component layers
to residential buildings depending on their age and size class and creates a dynamic energy
simulation model applying the Modelica library AixLib [35]. For these applications on
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urban scale, the modelling accuracy of individual buildings is reduced in favour of less
computational effort, maintaining adequate accuracy on an aggregated level. The latter
was confirmed for the combination of TEASER and AixLib by Remmen et al. [33] and
Lauster and Miiller [36]. To increase individual building accuracy, promising calibration
approaches exist [37]; however, they require substantial time series data to be collected in
advance, which is again unsuitably laborious for small retrofit projects.

The approach presented in this paper applies UBEM data enrichment and simulation
tools to a single building, with the goal of providing information for individual retrofits. It
uses accurate geometry information that can be obtained using UAVs, shows how the whole
process can be highly automated, and avoids some simplification steps in the generation of
the energy simulation model that are commonly used in automated model generation at
district and city scale. In this way, a model for dynamic energy simulation is generated with
minimal user interaction. The paper includes a case study as a first step towards validation.

The article is structured as follows: In Section 2, the approach is presented, consisting
of the creation of a polygonal 3D model from photogrammetry, data enrichment from
available knowledge and typologies, and the generation of a simulation model using an
interface between Python and Modelica. The case study building to which it was applied
is introduced as well. Section 3 describes the results of modelling and simulation. Their
relationship to the actual conditions of the case study building concerning the dynamic
behaviour during a measurement campaign and to its theoretical heat demand and HTC is
discussed. In the final section, conclusions are drawn on the applicability of the approach
in practice and how it could benefit from additional research in remote sensing technology.

2. Methods

The goal of this study is to demonstrate how largely automatable processes starting
from UAV-based remote sensing can be used to generate a building energy simulation
model. The steps of the approach are depicted in Figure 1. For the case study of a single-
family house, the geometry is modelled based on close-range aerial imagery. After the
model is augmented by additional simple pieces of information about the house (e.g., year
of construction and basement height) acquired from owners or inhabitants, it is enriched
with energetically relevant properties and processed to a Modelica simulation model using
the open-source tools TEASER [33] and AixLib [35]. Several variations of the model are
created to determine the sensitivity of the simulation results to differences in the building
parameters. With the simulation models, the dynamic behaviour during a measurement
campaign is computed and the annual heat demand as well as the HTC of the building
are derived.

In the following, the case study building is described and the steps are explained,
illustrated by exemplary data from the case study.

2.1. Case Study Building

An unoccupied single-family house located in a rural neighbourhood and constructed
around 1965 was used for the case study. Above its full cellar, two heated stories cover a
total floor area of about 117 m2. An unheated attic is located beneath the roof. The windows
were replaced in the mid-1990s.

During a measurement campaign in February 2019, the building was heated for
several days using distributed electrical heaters and fans, was kept at an approximately
constant mean interior temperature of above 30 °C for seven days, and was afterwards
exposed to free cooling. Meanwhile, interior temperatures, heating loads, and exterior
conditions were monitored.

From construction plans, on-site inspections (including drillings), and material tests,
information designed to serve as reference values for the presented approach was collected.

The complimentary dataset provided for this paper contains floor plans of the building,
recordings from the measurement campaign, and additional data that are mentioned further
on in this paper [38].
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Figure 1. Steps of the approach presented in the study: Generating a building energy simulation
model from UAV (unmanned aerial vehicle) imagery and using it for case study calculations.

2.2. Data Collection

Portraying the geometry is the first step of white-box building modelling. In this case,
the source for the geometry is a CityGML file containing above-ground outside surfaces
of walls, roofs and windows. The file is available in the dataset [38]. It was created from
a point cloud of the building’s envelope that has been obtained photogrammetrically
from high-resolution RGB images. The images had been captured with a standard digital
single-lens reflex camera mounted on a UAV. With the point cloud (visualised in Figure 2)
as input, the method of Frommbholz et al. [29] delivered a textured 3D polygonal model
of the building envelope. Windows were recognised on the textures using a colour-based
approach [39]. CityGML was chosen as the data exchange format due to its comprehensible
structure combining semantic and positional data and because it was designed to be created
from measurements, which makes it more suitable for surface-based modelling tasks than
the BIM formats usually created during a building design phase [40].

Figure 2. Point cloud of the case study building (left) and visualisation of its Python object model
representation after adding the basement (right).
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After importing the geometry from the CityGML file into a custom building model
programmed in Python, additional information is introduced. First, the window polygons
are exploited to separate the buildings into storeys (see Figure 3): Windows are classified
as French or other windows and those with overlapping vertical position are collected,
assuming they belong to the same storey. The vertical position of floors of storeys with
French windows is directly below their lower edge. For storeys without French windows,
the common window cill height of 0.85m according to the German technical standard
DIN 5034-4 [41] is assumed as the distance between the floor and the median of the lower
window edges. The median has the advantage of cancelling out possible staircase windows.
The ceiling thicknesses are assumed as 0.3 m, the height of the uppermost storey is derived
from the average height of other storeys (if necessary, which was not the case here due to
the attic windows), and the floor-to-ceiling height of the basement is obtained from owners
or inhabitants (here: 2.07m). Thus, all ceiling positions can be derived and volumetric
room objects for each storey are created in the Python model. The exterior shape of the
resulting model is visualised in Figure 2.
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Figure 3. Projected wall polygons with ceiling heights automatically detected from window positions.
Dotted lines mark wall polygons below ground.

Additional simple information from owners or inhabitants enrich the model by defin-
ing storeys as heated or unheated, by specifying the year of construction of the building as
a whole and of the individual windows, and by enabling the choice of default airtightness
values for unconditioned spaces according to Table 7 in ISO 13789 [8]. In this case, the attic
and the basement are unheated and their air exchange rates are assumed as 10h~! and
1h~!, respectively.

2.3. Data Enrichment and Interface to Simulation

For performing building energy simulations, the model requires thermal parameters
of the building parts and use conditions of the zones as well as an interface to a simulation
tool. Both data enrichment and interface are offered by the open-source Python module
TEASER [33]; therefore, the information stored in the custom Python model is transferred
to a TEASER model of the building. In that process, the data are enriched by default use
conditions, area of internal walls, ceilings and floors, and building part materials from the
German TABULA typology [34].

TEASER was designed for urban energy modelling of archetypal buildings. The appli-
cation presented in this study demanded to improve its applicability to single buildings.
For this purpose, several parts of the code were modified. First, the archetype building
creation process was expanded by additional parametrisation options. In the adjusted
workflow, component attributes such as areas, orientations, and layer structures are intro-
duced. Second, an attribution of a neighboured zone to inner walls was made possible
in order to enable the modelling of zone borders. Previously, the different zones within a
building were modelled without interaction between them. Third, the generation of the
simulation model from the stored data was modified. TEASER offers an interface to the
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“ReducedOrder” model (ROM) of the likewise open-source Modelica library AixLib [35].
The export process includes lumping multiple heat-transferring components to a single
resistance-capacitance (RC) element according to the guideline VDI 6007 Part 1 [42]. Win-
dows are modelled separately. For urban simulations, a two-element model with one
element lumping all roofs, outer walls, and ground floors and a second one for internal
structures offers a reasonable accuracy at low simulation times [43]. For single buildings,
some simplifications can be avoided in favour of a higher accuracy. To do so, the respective
parts of the AixLib ROM were modified along with the TEASER algorithms. First, the
previously largely neglected differences in dynamic thermal behaviour between building
parts with different exposition to radiation are accounted for. This is achieved by reducing
the lumping to one element per component type and exterior orientation. Additional ele-
ments cover the borders between heated and unheated spaces. The resulting configuration
is visualised in Figure 4. Furthermore, the assumption that all outside surfaces exchange
longwave radiation only with the sky tends to cause an underestimation of exterior surface
temperatures. It is removed by introducing a possibility to source weather data from DWD
test reference years (TRY), which include terrestrial longwave radiation and by modifying
the implementation of calculating the heat exchange with the exterior. In the calculations
according to VDI 6007 Part 1 [42], the heat flux g from the exterior space to an exterior
surface with surface temperature T is computed as

q= hcomb,se ’ (Teq,se - Tse) (1)

by merging radiant and convective heat transfer coefficients of the surface to a combined
coefficient hoomp se and using the equivalent outdoor temperature

Teq,se = Tamp + ATeq,sw,se + ATeq,lw,se 2)

that is based on the (dry-bulb) ambient temperature Ty, and includes a contribution of
shortwave (solar) radiation ATeq,sw,se and of longwave radiation ATeg jw,se- The previous
implementation in AixLib computes the latter from the difference between air temperature
and black sky temperature Ty, (derived from atmospheric longwave radiation) as

hrag
ATeq,lw,s.e = (Tsky - Tamb) e ’ (3)

hcomb,se

where /1,4 ¢e is the radiant heat transfer coefficient for the surface. The newly imple-
mented algorithm follows the guideline except for the influences of horizon elevation and
a radiation-dependent radiant heat transfer coefficient, leading to

|—E E £so - N
AT _[a ter,lw (l _F ) 4/ Catmlw F _T ) se " Mge rad 4
eqlw,se ( 093 .0 se,sky + 093 o se,sky amb hse,comb 093’ ( )

where Eie, )y is the terrestrial longwave radiation (which is defined downward in the TRYs
and therefore always negative), Eyym 1w is the atmospheric longwave radiation, s is the
longwave emissivity, and

1+ cos 1
F, se,sky — % (5)

is the sky view factor of the surface, calculated from its tilt angle 7y ge-
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Figure 4. Thermal network of the used thermal zone model in the style of the electrical analogy
networks for the AixLib models by Lauster [44]. Dashed lines and bold variables indicate parallel
connections and components modelled as arrays. Roomb sex iS the thermal resistance for the heat
exchange between the exterior surface of a (lumped) building element x and the ambience. Ry rest
and Ry form the thermal resistance of the element itself, while Cy is its thermal capacitance and Revx
is the convective thermal resistance between its interior surface and the zone air temperature Ty;,. To
maintain clarity, the resistances representing the radiation exchange between each pair of interior
surfaces are replaced by a dotted line. Heat gains from solar radiation, internal gains, and heating
are split into a convective part Qg,cv and radiative parts onto each interior surface Qg,md,x.

The resulting workflow makes it possible to generate a dynamic energy simulation
model in Modelica from the measured polygonal 3D geometry of an existing building,
with energetically relevant parameters mostly originating from the typology. The model
can be applied to calculate the building’s annual heat demand and to simulate its thermal
behaviour under predefined boundary conditions.

2.4. Model Variations and Sensitivity Analysis

In order to determine the sensitivity of the simulation results to differences in the
building parameters, simulation models of the case study building were created in six
different variations. Variations 1 to 4 represent an increasing amount of information
acquired on site that is introduced into the model. Variation 5 and 6 are used for analysing
the confidence region of the simulation results of variation 3, containing best-case and
worst-case archetype U-values. The key parameters are listed in Table 1. The dataset [38]
contains a table of all Modelica model parameters and TEASER-compatible JSON files for
each variation.
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Table 1. Building part heat transfer coefficients (U-values), window solar heat gain coefficients
(SHGC) and interior surface areas of different variations of the simulation model for the case study
building. Window U-values are always 1.9 Wm~2 K~!. Brackets indicate U-values of envelope
components of unheated spaces from which inappropriate insulation layers were removed.

Var. U-Value (Mean) U-Values [Wm~2 K—1] SHGC Au,

No. Source Roofs  Ext. Walls Attic Floor Basem. Ceil.
1 TABULA 09 (3.2) 1.2 0.8 1.1 0.6 376
2 TABULA 09 (3.2) 1.2 0.8 1.1 0.36 376
3 TABULA 0.9 (3.2) 1.2 0.8 1.1 0.36 265
4 Bestguess 04(67) 13(L8) 0.5 11 036 265
5  Bestcase 07(32) 09 (L7) 0.7 0.8 036 265
6  Worstcase 1.8(3.2) 1.7 1.3 1.3 0.36 265

Regarding the U-values, variations 1 to 3 use the TABULA values [34] as implemented
in TEASER. Variation 4 contains the best knowledge from building plans and on-site
investigations about the walls (exterior and interior) and the roof of the building. As the
actual compositions of the building parts in contact to soil and of the basement ceiling
are unknown, it falls back to TABULA values there. Variations 5 and 6 reflect the best-
and worst-case, respectively, when considering the building typology for the German
state of North Rhine-Westphalia [45] where the case study building is located. They are a
remedy for the unavailability of uncertainty information on TABULA’s archetype building
components and can be understood as the boundary of the confidence region for the
thermal parameters of the building. As the time of window installation was known to be
more recent than the state typology, their U-values were not varied.

The variations also differ in the solar heat gain coefficient (SHGC) of the windows and
in interior component surface areas to assess the model sensitivity for these parameters.
Variations 2 to 6 use a reduced SHGC that accounts for the fact that the window recognition
process yields window areas including frames, but the typology SHGC value refers to
the glazed area. The implied glazing-to-frame area ratio of 1.5 results from observations
on site. Variations 1 and 2 use an estimation for the interior component area (including
walls, floors, and ceilings) that assumes rooms with a standard size of 6m x 3m. In
the original implementation of TEASER, the floor area is separated into rooms and one
wall per room is considered an exterior wall [36]. Although the estimation approach
applies a modified formula that also considers the actual footprint and therefore does not
overestimate thermal mass as much as the original one, the values are still higher than the
reference values (see Section 2.1) of the building implemented in variations 3 to 6.

In all cases, the model consists of three thermal zones: attic, basement, and one heated
zone that covers all the living area in the ground and first floor. Two small unheated spaces
between the roof and a part of the first floor are modelled as part of the heated zone as they
are not visible from the outside.

3. Simulation Results and Discussion

On the simulation models generated from the variations described in Section 2.4, three
different types of computations were performed. First, the measurement campaign was
simulated using the recorded exterior conditions and heat loads. Second, the annual heat
demands for the existing building and a refurbishment scenario of each variation were
determined using the local test reference year. Third, the HTC of the whole building was
calculated, simulating a steady state situation. In this section, the results are presented
and discussed.

3.1. Simulation of the Measurement Campaign

To test the ability of the model to reproduce the dynamic thermal behaviour of the
building, the simulated interior temperatures of the model variations 1 to 4 under the
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conditions recorded during the measurement campaign (described in Section 2.1) are
compared to the measured ones. Figure 5 shows measured and simulated values of the
mean air temperature of the building’s heated zone over the course of the campaign. The
comparison of the five graphs leads to several observations:

e Allin all, the simulated temperatures, in particular of variation 4, match the measured
temperatures well, especially when considering that the zone is actually divided into
six rooms of which one (the kitchen, located in the ground floor) heated up much
more quickly than the others and kept a temperature of about 37 °C from February 9
until the start of the cooldown due to the placement of the largest heater. Furthermore,
the influence of the fans (intended to homogenise air temperatures) on convection
was not modelled;

e  The temperatures on February 13 and afterwards show that variation 1 overestimates
daily temperature oscillation. With window SHGC and therefore solar gains reduced,
the other model variations are more consistent with the measured temperatures during
the period of approximately constant temperature between February 13 and 16;

e When comparing variations 2 and 3, the reduced interior thermal mass in variation 3
makes the simulated temperatures fit better to the measured values during the
cooldown phase, but overshoot during heating up;

e  Variation 4, which represents the best knowledge of the building and should therefore
create the best temperature fit, reproduces the temperatures better than the other vari-
ations until the beginning of cooling down and is still reasonably accurate afterwards.
The slight mismatch in the speed of heating up and cooling down cannot be caused
by deviations of the thermal transmittance of the building envelope as temperatures
fit well between February 10 and 16. A possible explanation is that the simplified
resistance-capacitance representation of the exterior walls in Modelica cannot exactly
model the dynamic behaviour of the actual walls. They are mostly composed of
lightweight concrete with low heat capacity on the inside and bricks with high heat
capacity on the outside and therefore will store heat further outside than their model
representation and react faster to changes in the heat flow from the building interior;

¢ The agreement between simulated and measured temperatures is even better than the
one of a simulation model based on German archetypes to a detailed simulation of a
similar Belgian house in the original publication on TEASER [33]; therefore, the good
agreement points towards the validity of the overall approach, at least for this specific
age and size class.

In Figure 6, the mean air temperatures of the unheated zones (basement and attic)
are visualised. The difference between measured and simulated temperatures varies
and reaches up to 5K for a few points in time. Given the intense dynamics, this can
be considered a satisfactory agreement between simulated and measured temperatures;
however, it stands out that modelled basement temperatures of February 11 and afterwards
oscillate more than the measured temperatures. Most likely, the reason is an overestimation
of the air exchange rate. Other possible explanations are an overestimation of the impact of
solar gains on the heat flow from the ground floor to the basement or an underestimation
of the thermal masses in the basement.
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Figure 5. Mean air temperature of the heated zone of the case study building during the measurement campaign in February
2019, measured and simulated using model variations 1 to 4 (see Section 2.4).
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Figure 6. Mean air temperatures of the unheated zones of the case study building (solid lines: attic, dotted lines: basement)
during the measurement campaign in February 2019, measured and simulated using model variations 1 to 4 (see Section 2.4).
Simulated attic temperatures of variations 1 to 3 largely agree, causing the line for variation 3 to cover the others.

3.2. Determination of the Heat Demand

The annual heat demands for all six model variations were calculated running simula-
tions for the complete DWD test reference year. Additionally, a retrofit scenario for each of
them was created using the additional insulation layers applied by the TABULA standard
retrofit scenario [34] as implemented in TEASER.
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The results without retrofit in Figure 7 show that the increased SHGC of variation 1
leads to a considerable reduction in heat demand compared to variation 2. This illustrates
the importance of not just detecting the window openings, but also the frame portion
of the existing windows when generating a building model automatically from remote
sensing data.

=40
lg 35- B Existing state
Z 30 1 Retrofit scenario
= 25 -
’g 20 A
g 15
< 10 1 ! 8 S 3 3 G
T 5- -
[}
T 0-
1 2 3 4 5 6

Model variation

Figure 7. Simulated heat demand of the case study building in its existing state and in retrofit
scenarios for all six model variations presented in Section 2.4.

In contrast to that, the difference in internal thermal mass has almost no impact
on the heat demand. It must be noted that the simulations were made without any set-
point reduction in the heating during the night (which is the default setting in TEASER).
Introducing set-point reduction may result in higher impacts of the internal thermal mass.

On the one hand, the small difference between variations 3 and 4 shows that the
case study building is a good representative of its TABULA type. On the other hand, the
high difference between the heat demands of variations 5 and 6 may give a feeling for
the width of the distribution of energy performances of buildings with similar age and
construction type and illustrate that the randomly chosen case study building could as well
have been more or much less energy-efficient. Even though the demands in the retrofit
scenarios do not differ considerably between best and worst case, owners would choose
their retrofit options based on savings compared to the status quo. This emphasises the
high importance for the difference between the heat demands in the existing state and a
potential retrofit scenario. At this point, it becomes clear that the overall reliability of the
approach would benefit from an increased accuracy in the measurement of U-values by
complimentary remote sensing techniques; however, measurements through quantitative
infrared thermography [26] currently must be considered more uncertain than typology
values and other standard procedures [6,46] are too laborious for the goal of this approach.

3.3. Determination of the Heat Transfer Coefficient (HTC)

Figure 8 shows calculated and measured HTC values for the case study building. The
measured one was derived from a period during the measurement campaign with approx-
imately constant ambient and interior air temperatures. For the steady state simulation
results, the soil temperature was assumed equal to the ambient temperature, which reflects
the situation during the measurement. Nevertheless, values are generally below those
calculated according to ISO 13789 [8]. The ISO standard does not account for solar gains
and interior thermal masses, which results in equal values for the model variations 1 to 3.
The AixLib simulation model includes radiative heat transfer between interior surfaces of
envelope components and interior component surfaces, leading to a slightly lower HTC in
variation 3 where the latter is smaller.
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Figure 8. Comparison of HTC values from a steady state simulation and a calculation accord-
ing to ISO 13789 for the model variations (see Section 2.4) with the measured value of the case
study building.

All in all, HTC values simulated through the realistic model variations (1 to 4) are
within a 12% range below the measured value. As the circumstances (simple geometry of
the building, relatively accurate U-values in the model) are beneficial, this range cannot
be taken as the general uncertainty of the method. For example, increased convection
caused by the fans leads to an increase in the measured HTC. For variation 3, increasing the
internal convection coefficients of the heated zones by 4 Wm~2 K~ (which is equivalent
to an increase in the wind speed of 1 ms~! when concerning ISO 6946 [47]) leads to a
simulated HTC value of 382.5 WK 1. Furthermore, the best-/worst-case model variations
(5 and 6) lead to a difference to the measured value of —24% and +20%, respectively. As a
consequence, accurate U-values measured by infrared thermography or other techniques
again would be a valuable improvement; however, the fact that the HTC does not account
for solar gains, air infiltration, and interior thermal masses makes it measurable through the
presented method with smaller uncertainty than the heat demand. This is also illustrated
by the low or non-existing differences between variations 1 to 3.

4. Conclusions and Outlook

The article has presented an approach to automatically generate a Modelica energy
simulation model for an existing building from a point cloud derived from remote sensing
using a Python building model and the open-source tools TEASER and AixLib. TEASER
and the reduced-order model in AixLib were modified for the use case of modelling single
residential buildings based on measured data enriched with typology parameters. Thus,
the applicability of their combination for simulating such buildings was demonstrated.
For a single-family house as a case study building, the model can accurately reproduce
the internal temperatures during a 21-day measurement campaign in which the building
was heated up and freely cooled afterwards. Using test reference years as weather data,
the annual heat demand for the existing state and for retrofit scenarios can be calculated.
As a consequence, the approach has the potential to quickly, automatically, and therefore
inexpensively calculate pre- and post-retrofit heat demand estimates and, hence, compare
possible savings of potential refurbishment scenarios.

Whole building heat transfer coefficients calculated through the model match values
calculated according to ISO 13789 (2017) well and show deviations between —8% and
—12% compared to the measured value.

For the accuracy of the simulation results, the study emphasises the importance of
solar gains, while interior thermal masses appear to be less vital. To increase the fidelity of
the former, the window recognition process should be improved. Regarding the latter, the
presented method can be considered to model it well enough. Due to missing data, the
uncertainty of the U-values from the typology cannot be determined, but best- and worst-
case estimates showing differences of about +20% to the average values give a feeling for
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the magnitude of the confidence region; however, using characteristic U-values is allowed
by German legislation; therefore, the presented approach is already close to practical
applicability and can supply energy consultants with a useful building energy simulation
model as soon as interfaces to the commonly used software packages are created.

The generated model would benefit from measured U-values nevertheless; therefore,
one of the next steps is to improve the accuracy of quantitative infrared thermography and
include it into the method. It may also be applied using UAVs and could be combined
with wall structure analysis by microwave radar [48]. Further possible improvements
include the use of faster measurement approaches for airtightness [49], an interface to
common BIM software, and the addition of a tool for the economic evaluation of potential
retrofit scenarios.
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The following abbreviations are used in this manuscript:

BEM Building energy model

BIM Building information modelling

DWD German Meteorological Service (Deutscher Wetterdienst)
HTC Heat transfer coefficient

IRT Infrared thermography

RC Resistance-capacitance

ROM ReducedOrder model (as used in AixLib)
SHGC Solar heat gain coefficient

TLS Terrestrial laser scans

TRY Test reference year

U-value Thermal transmittance/overall heat transfer coefficient
UAV Unmanned aerial vehicle (“drone”)

UBEM  Urban building energy modelling
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