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Abstract: Previous studies have shown that the effects of climate change on building structures will
increase the mould growth risk of the wood-frame building envelope in many circumstances. This
risk can be controlled by wind-driven rain deflection, improving water tightness of the exterior facade,
and improving cladding ventilation. However, the effectiveness of these risk mitigation strategies are
subject to various uncertainties, such as the uncertainties of wall component properties and micro-
climatic conditions. The objective of this paper is to apply stochastic hygrothermal simulation to
evaluate the mould growth risk of a brick veneer-clad wood-frame wall with a drainage cavity under
historical and future climatic conditions of Ottawa, a Canadian city located in a cold climate zone. An
extensive literature review was conducted to quantify the range of stochastic variables including rain
deposition factor, rain leakage moisture source, cladding ventilation rate and material properties of
brick. The randomised Sobol sequence-based sampling method, one of the Randomized Quasi-Monte
Carlo (RQMC) methods, was applied for risk assessment and error estimation. It was found that,
under the climatic condition of Ottawa, limiting the amount of wind-driven rain to which walls are
subjected is a more robust mitigation measure than improving cladding ventilation in controlling
mould growth risk, the improving of water tightness of exterior façade is not as robust as wind-driven
rain deflection and cladding ventilation, however, the reduction of rainwater penetration can reduce
the mould growth risk at different levels of rain deposition factor and cladding ventilation rate.

Keywords: stochastic simulation; wood-frame building envelope; mould growth; Randomized
Quasi-Monte Carlo (RQMC) method; risk assessment; error estimation

1. Introduction

Mould growth is one of the most important mechanisms of degradation that affects
the durability performance of wood-frame building envelopes. It has been well recognised
that climate change will bring more extreme weather conditions, such as severe rain events
and heat waves [1,2], whereby, in the future, the effects from such weather conditions are
anticipated to increase the mould growth risk of wood-frame building envelopes in many
circumstances [3–5].

In 1999, Hazleden and Morris [6] proposed the 4-D (Defense) strategy for controlling
and thereby reducing moisture-related issues including the mould growth in wood-frame
building envelopes. The 4-D strategy includes the deflection of wind-driven rain (WDR)
by use of roof overhangs; drainage of rainwater penetration by incorporating a drainage
cavity; drying of accumulated rainwater through cladding ventilation, and, using mois-
ture tolerant materials in the assembly. In past decades, there have been a considerable
number of studies dealing with WDR deflection strategies [7–9], quantifying the amount
of rainwater penetration [10–12], as well as evaluating the effect of cladding ventilation
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drying [13–15]. Recently, Brambila and Sangiorgio [16] conducted a comprehensive review
of the impact of climate change on mould growth in energy-efficient buildings and po-
tential mitigation strategies; they concluded that the control of wind-driven rain and the
increase of cladding ventilation were important mitigation strategies to reduce the mould
growth risk for wood-frame buildings in the future. However, there was still a lack of
studies to evaluate the robustness of different mitigation or design strategies when they
are exposed to various uncertainties such as uncertainties evident for material properties
and climatic conditions, as well as the influence of other design parameters, particularly in
consideration of climate change.

The stochastic approach can be applied in combination with hygrothermal simulation
to investigate the mould growth risk of wood-frame wall assemblies exposed to different
types of uncertainties, and thereby permit evaluating the robustness of proposed mitigation
or design strategies. The application of stochastic modelling for uncertainty analysis of
hygrothermal simulation can be traced back to 2001 when Salonvaara et al. [17] applied the
Monte-Carlo (MC) method to investigate the influence of inexact material properties on
simulation results. Zhao et al. [18] extended the MC analysis to boundary conditions, where
both the material properties and boundary conditions were considered as stochastic vari-
ables to allow quantifying the uncertainty in the simulation results. As part of the activities
of the IEA ANNEX 55 [19–22], a comprehensive probabilistic assessment framework was
established to investigate the uncertainties of hygrothermal simulation and assess moisture
problem risks. Thereafter, many researchers investigated the hygrothermal performance of
wall assemblies using a probabilistic or stochastic simulation approach [23–27]. Recently,
Wang and Ge [28] developed a stochastic modelling framework, which was intended
to allow investigating moisture problem risks under different environmental or design
scenarios. In this framework, the variables for both the environmental or design scenarios
were considered as discrete variables, which could be organised by full factorial design,
whereas, continuous stochastic variables were sampled using the Latin Hypercube Sam-
pling method. Thereafter, the Latin Hypercube Sampling method and stochastic simulation
were implemented within every scenario generated by factorial design to evaluate the
moisture problem risk under each scenario. Hou et al. [29] investigated the freeze/thaw
risk of masonry walls using four Randomized Quasi-Monte Carlo (RQMC) methods. They
considered discrete variables (scenario variables) as stochastic variables as well, making
them evenly mixed with continuous stochastic variables for stochastic simulation. Then the
stochastic results were categorised into different scenarios, i.e., climatic conditions or the
types of brick, by mapping the results to different discrete inputs to assess the freeze/thaw
risk under each scenario. In addition, the error estimation of the stochastic results could be
implemented for different sample sizes.

When the number of scenario variables increases, the number of simulations will
increase considerably. For example, Gaur et al. [30] generated 15 realisations of 31-year
climate data sets for one historical and 7 future climatological periods across 12 Canadian
cities, which can be used for assessing the impact of climate change on building perfor-
mance. To implement stochastic simulation, the climatic realisation could be considered as
a scenario variable, however, the total number of stochastic simulations will be 15 times
the number of stochastic simulations under each climatic realisation. Therefore, the compu-
tational cost will be further increased if the climatic realisations are combined with other
scenario variables, e.g., wall orientations, to complete a full factorial design.

In this paper, it is intended that computational efficient stochastic simulation, which
is based on Randomized Quasi-Monte Carlo (RQMC) methods, be applied to assess the
mould growth risk of a wood-frame building envelope using red matt clay brick as cladding
under different climatic realisations, wall orientations, and using different mould growth
mitigation strategies. Such strategies could include e.g., control of rain deposition, rain
leakage, or the use of cladding ventilation. The risk assessment was based on the historical
and future climatic conditions of Ottawa, a Canadian city located in a cold climate zone.



Buildings 2021, 11, 333 3 of 31

2. Methods

To investigate the uncertainties of hygrothermal simulation and assess the mould
growth risk, a baseline hygrothermal model was created. The 1-D hygrothermal model of a
typical wood-frame wall was generated using Delphin 5.9.6, a widely used hygrothermal
simulation program [31]. A comprehensive literature review was conducted to quantify the
range of the stochastic variables: rain deposition factor, rain leakage moisture source and
cladding ventilation rate, as well as the material properties of brick, i.e., water absorption
coefficient and effective saturation water content. A literature review was also performed
for different sampling methods, which largely determine the efficiency and reliability of the
stochastic simulation. Based on the literature review, the randomized Sobol sequence-based
sampling, one of the Randomized Quasi-Monte Carlo (RQMC) methods, was selected for
stochastic simulation. The standard error of the stochastic results, i.e., mean value and
standard deviation of the mould growth index, was evaluated at different sample sizes
for different climatic realisations and wall orientations. The robustness of different risk
control strategies was evaluated under the orientation that has the highest mould growth
index, with consideration of different climatic realisations and the uncertainties of material
properties of brick. The following sections demonstrate the process of stochastic simulation,
risk assessment as well as error estimation.

2.1. Hygrothermal Model
2.1.1. Wall Configuration and Material Properties

Figure 1 shows the wall configuration of the wood-frame wall investigated in this
paper, and the basic properties of the materials used in the wall components are given
in Table 1. The material properties were taken from a series of NRC’s material property
reports [32–35]. For the properties that were not found in NRC’s reports, these were taken
from Delphin’s material database.
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Figure 1. A typical wood-frame wall assembly.

To reduce the number of stochastic material properties, a preliminary sensitivity
analysis was performed to screen the influential material properties. The details of the
sensitivity analysis can be found in [36]. It was found that the moisture storage function
(scaled by effective saturation water content) and the liquid diffusivity (derived from
effective saturation water content and water absorption coefficient) of brick are the most
important material properties that influence the mould growth performance on OSB.
Therefore in this paper, the effective saturation water content and the water absorption
coefficient of the brick were considered as stochastic material properties.
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Table 1. Basic material properties of the wall components.

Bulk
Density
(kg/m3)

Porosity
(m3/m3)

Effective
Saturation

Water
Content
(m3/m3)

Capillary
Water

Content
(m3/m3)

Vapour
Resistance
Factor_Dry

(−)

Water
Absorption
Coefficient
(kg/m2s0.5)

Heat
Capacity
(J/kg·K)

Heat
Conductivity

(W/m·K)

Red matt
clay brick 1935 0.265 0.217 0.162 129 0.0268 800 0.5

Air space 1.2 0.99 - - 1 - 1006 0.025
SBPO * 464 0.012 0.012 0.01 305 0.00031 1250 0.248

OSB 650 0.4 0.38 0.27 753 0.0022 1880 0.094
Mineral

wool 37 0.92 0.9 0.9 1.09 - 840 0.032

Polyethylene 1256 - - - 1 × 106 - 2100 0.16
Gypsum

board 700 0.65 0.42 0.4 138 0.0019 870 0.16

* SBPO: Spun-bonded polyolefin.

2.1.2. Boundary Conditions and Climatic Realisations

Table 2 shows the boundary conditions that were considered as constant values. The
exterior heat and vapour transfer coefficients were set as dependent on wind speed according
to EN ISO 6964 [37], and the dependency functions are given in Equations (1) and (2).

hce = 4 + 4 × v (1)

βve = 2.44·10−8 + 2.44·10−8 × v (2)

where

hce—exterior heat transfer coefficient (W/m2·K)
βve—exterior vapour transfer coefficient (s/m)
v—wind speed (m/s)

Table 2. Boundary conditions.

Interior Heat Transfer
Coefficient (W/m2·K)

Interior Vapour Transfer
Coefficient (s/m)

Short Wave
Absorptivity (−)

Long Wave
Emissivity (−)

8 1.52 × 10−8 0.6 0.9

The wind-driven rain deposited on the exterior wall surface was calculated based on
the ASHRAE 160 model as given by Equation (3) [38]:

rbv = FE × FD × FL × U × cos θ × rh (3)

where

rbv—wind-driven rain deposited on the exterior wall surface
FE—rain exposure factor, reflects different exposure types, for buildings lower than 10 m;
the rain exposure factor can be assumed to have a value of 1.4 for the severe exposure
category, 1.0 for the medium exposure category, and 0.7 for the sheltered category
FD—rain deposition factor, reflects different roof designs; it can be assumed to have a value
of 0.35 for a steep-slope roof, 0.5 for a low-slope roof and 1.0 for a wall subject to rain runoff
FL—empirical constant, 0.2 kg·s/(m3·mm)
θ—angle between wind direction and normal to the wall
U—hourly average wind speed at 10 m height, m/s
rh—rainfall intensity, horizontal surface, mm/h
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In this paper, the rain exposure factor (FE) was considered as 1, and the rain deposition
factor (FD) was considered as a stochastic variable. To simulate rain leakage, a moisture
source was deposited on the exterior surface of the spun-bonded polyolefin (SBPO), and the
quantity of this moisture source was considered as a stochastic variable as well. The effect
of cladding ventilation was simulated using a source/sink approach, which considers the
air in the drainage cavity as a heat and moisture source by imposing a cladding ventilation
rate (ACH) that was considered as a stochastic variable. The range of these three stochastic
variables and the stochastic brick properties will be discussed in Section 2.2.

The 15 climatic realisations of the 31-year climate data sets were generated for 12 Cana-
dian cities, one baseline historical period (1986–2016) and 7 future scenarios with different
levels of global warming; the details for the climate data generation can be found in [30].
In this paper, the historical climate data and the climate data with the worst future scenario
for global warming (3.5 ◦C global warming) in the city of Ottawa were used for stochastic
simulation (Hereafter, referred to as historical and future periods). To save computational
costs, a 2-year moisture reference year was selected for each climatic realisation based on
the moisture index, which was calculated year by year based on Equation (4) [39]:

MI =
√
(1 − DI)2 + WI2 (4)

where

MI—moisture index of a specific year
DI—normalised drying index of a specific year
WI—normalised wetting index of a specific year

The drying index represents the degree of moisture saturation of ambient air, whereas
the wetting index considers the wind speed and horizontal rain. The absolute values of
yearly WI and DI were calculated using Equations (5) and (6) [39]:

WI =
8760

∑
1

U × Rh/1000 (5)

where

U—wind speed in a specific hour, m/s
Rh—horizontal rain in a specific hour, mm

DI =
8760

∑
1
(wsat − w) (6)

where

wsat—humidity ratio at saturation in a specific hour
w—humidity ratio of ambient condition in a specific hour

The yearly values for DI and WI were normalised based on the maximum and min-
imum values in all the 15 realisations within one climatological period, to consider the
relative difference amongst different realisations; thereafter, the moisture index was cal-
culated for every single year for each 31-year climatic realisation. The selected 2-year
moisture reference year include one 50 percentile and one 90 percentile of the moisture
index in each 31-year climatic realisation. Finally, there were 15 realisations (R01, R02 . . .
R15) of 2-year climate data sets for each climatological period, and the 15 realisations of
2-year climate data sets in each period were considered as discrete stochastic variables.
Figure 2 shows the 2-year averaged moisture index of each climatic realisation in historical
and future periods for Ottawa. It can be noted that the MIs were calculated based on DI
and WI, which were values normalised within each climatological period. Therefore, the
MIs reflect the relative difference amongst different climatic realisations, but, they do not
reflect the difference between historical and future periods.
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2.1.3. Wall Orientations

The wall orientations were assumed to follow a uniform distribution, which was
distributed from 0◦ to 360◦. The amount of wind-driven rain incidents on the wall varied
depending on the orientation as shown in Figure 3.
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Figure 3. Wind-driven rain rose of 15 realisations of 2-year climatic data for Ottawa.

The wind-driven rain for each orientation was calculated based on the use of the
ASHRAE wind-driven rain model by assuming a rain deposition factor of 0.5 and a rain
exposure factor of 1. According to the mean value of the 15 realisations, the SSW orientation
receives the highest amount of wind-driven rain for both the historical and future periods;
the orientation having the second-highest value is NNE. The North orientation has the
highest standard deviation for the historical period, and the NW orientation has the highest
standard deviation for the future period. The wind-driven rain distribution may largely
influence the risk to mould growth for different orientations, however, the mould growth
performance of the wall for each different orientation is a result of the combined effects of
wind-driven rain and solar radiation.

2.2. Literature Review of Stochastic Variables
2.2.1. Rain Deposition Factor

Although ASHRAE 160 specifies three levels of rain deposition factor, that represent
two types of roof design and one scenario of the wall subject to rainwater runoff, there is a
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lack of detailed information describing where the calculated wind-driven rain should be
applied on the building façade, and each level of rain deposition factor reflects what level
of overhang protection. To better understand the physical meaning of the rain deposition
factor, a literature review was conducted for catch ratio, which is defined as the ratio of
wind-driven rain to horizontal rain. Some important studies on quantifying catch ratio
from which values we obtained are summarised in Table 3. In general, the prevailing
wind-driven rain orientation was selected for quantifying the catch ratio, and the buildings
selected for measurement or simulation were located in a relatively exposed area. Although
it has been well known that the catch ratio depends on both wind speed and rain intensity,
the linear relationship between catch ratio and wind speed is much more significant than
rain intensity [40]; accordingly, only the information on wind speed (WS) was provided
in Table 3. Among the publications listed in Table 3, the maximum catch ratio, which
represents the worst position on the façade, varies between 0.4 and 1.6 depending on
the wind speed used for simulation and building geometry. However, according to field
measurements, the averaged catch ratio value at the worst position after a rain event, or a
period during field measurements is much lower than the catch ratio value at maximum
wind speed. For example, Ge et al. [8] investigated the catch ratio and the effectiveness of
the overhang of a mid-rise residential building in Vancouver through field measurements.
The average catch ratio value at the worst position on the building over one year of
measurements was 0.213, although the maximum catch ratio at a wind speed of 8 m/s was
about 1.

Table 3. Literature review on catch ratio.

Authors Year Building
Geometry 1 Approach Catch Ratio Notes

Choi [41] 1993 Bldg1, 4: 1: 1
Bldg2, 4: 8: 2 CFD simulation

Bldg1, 0.05–0.47, WS 2, 10
m/s; 0.34–1.17, WS, 20 m/s;

Bldg2, 0–0.4, WS, 10 m/s;
0.04–0.82, WS, 20 m/s

The variation of catch ratio at each
wind speed depends on the

positions on the façade.

Blocken and
Carmeliet [42] 2000 Bldg1, 4: 25: 7

Bldg2, 8: 25: 7 CFD simulation
Bldg1, 0–0.5
Bldg2, 0–0.4
WS, 0–6 m/s

Bldg 1 flat roof, Bldg 2 steep slope
roof. The catch ratio is in a fixed

position on the façade at
middle height.

Blocken and
Carmeliet [43] 2001 Same as above CFD simulation &

field measurement

Bldg1, 1.58
Bldg2, 1.26
WS, 10 m/s

The catch ratio is a specific catch
ratio of 1 mm raindrop at the worst

position on the façade-top edge.

Kubilay et al. [44] 2013 Tower building
35: 5: 4

CFD simulation &
field measurement

Maximum specific catch ratio
of 0.5 and 1 mm raindrop at

10 m/s WS is around 2.8

Averaged catch ratio at the worst
position after two rain events are

0.3 and 0.5, respectively

Foroushani et al. [7] 2014 Cubic building
10: 10: 10 CFD simulation 0.6 at the worst position at

WS 5 m/s
0.6 m overhang helps protect the

upper half of the façade up to 80%

Kubilay et al. [9] 2017 19: 16: 8 CFD simulation 1.2 at the worst position at
WS 10 m/s

A window sill with a size of 0.1 m
reduces the catch ratio by 37%

Ge et al. [8] 2017 20: 39: 15 Field measurement
1.0 at the worst position at
WS 8 m/s. Averaged catch
ratio at worst position 0.213

0.6 m overhang reduces the catch
ratio by 30% to 90% depending on

different positions
1 The dimensions listed in building geometry are height: length: width 2 WS: Wind Speed.

Some studies have demonstrated the effectiveness of overhangs for protecting the
building façade from wind-driven rain. According to the simulation study completed by
Foroushani et al. [7], a 0.6-m overhang at the top edge of a cubic building can reduce the
catch ratio at the upper half of the building by up to 80%. Ge et al. [8] further validated this
conclusion from numerical simulations by field measurements; it was found that a 0.6-m
overhang can reduce the catch ratio by 30% to 90% depending on the location on the façade.
According to the results from numerical simulation undertaken by Kubilay et al. [9], even
a window sill with a size of 0.1 m can decrease the catch ratio by up to 37%.

In this paper, the ASHRAE 160 semi-empirical model (Equation (3), rain exposure
factor = 1) was used to calculate the wind-driven rain at the worst orientation (SSW) of the



Buildings 2021, 11, 333 8 of 31

worst climatic realisation (2-year climate data) in the historical and future period (R03 for
historical, R13 for future), then the hourly catch ratio was calculated to compare with the
catch ratios listed in Table 3. Figure 4 shows the scatter plot of the wind-driven rain as a
function of wind speed for FD = 0.5 under historical and future periods. It can be seen that
the maximum value for catch ratio, with FD = 0.5 and WS = 10 m/s, is around 1. This value
for the historical period is slightly lower than the values obtained from field measurement
and numerical simulation for a mid-rise building [8,9], or low-rise building [43]. The value
for catch ratio is higher for the future projected climate period as compared to the historical
period, because of the higher projected wind speed in the future. The randomness of the
scatter plot is due to the randomness of the wind direction, although most of the time
the wind direction is normal to the facade. Therefore, the wind-driven rain calculated
using the ASHRAE semi-empirical model, and with FD = 0.5, can be considered as the
amount of rain deposited on the façade at the worst position (top or top edge). Similarly,
the hourly catch ratio values were also calculated for FD = 0.35 and FD = 1, the maximum
and 2-years’ averaged catch ratio at these two levels of FD were presented in Table 4. Since
catch ratio with FD = 0.35, is 30% lower than that with FD = 0.5, the scenario of FD = 0.35
can be considered as a moderate protection level, i.e., a 0.1-m overhang [9]. Whereas for the
scenario with FD = 1.0, this can be considered as the wall subject to rainwater runoff or the
façade on a high-rise building, since the average catch ratio is around 0.38, which is very
close to the average catch ratio of a tall building reported in the literature [44]. To consider
the uncertainty of the building geometry, a small range of values for FD was assigned for
each level of FD, whereby, the stochastic FD value was categorised into three ranges: 0.35 to
0.56, to represent the wall with some protection; 0.56 to 0.78, to represent the wall without
any protection, and; 0.78 to 1, to represent the wall subject to rainwater runoff or a wall in
a high-rise building.
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0.6 m overhang reduces the 
catch ratio by 30% to 90% de-
pending on different positions 

1 The dimensions listed in building geometry are height: length: width 2 WS: Wind Speed. 
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Table 4. Catch ratio for FD = 0.35 and FD = 1.

Rain Deposition Factor Maximum Catch Ratio Average Catch Ratio

0.35 Historical, 0.8; Future, 1.1 Historical, 0.129; Future, 0.135
1 Historical, 2.4; Future, 3.1 Historical, 0.371; Future, 0.384

2.2.2. Moisture Source from Rain Leakage

To simulate the influence of rainwater penetration, ASHRAE 160 specifies 1% of wind-
driven rain as a moisture source deposited on the water-resistive barrier if no other water
entry information is available [38]. However, the amount of rainwater infiltration varies
depending on different cladding types, water tightness levels, and climatic conditions
including wind pressure and the amount of wind-driven rain. In general, water tightness
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tests can be applied to wall specimens to quantify the water infiltration rate at different
levels of pressures and spray rates, representing the Driving Rain Wind Pressure (DRWP)
and Wind Driven Rain (WDR) load in the atmosphere during rain events. The infiltrated
water is then collected and measured to calculate the water infiltration rates. For most
scenarios, the water infiltration rates of a test specimen are positively correlated with
pressure differences across the wall assembly and the magnitude of the spray rates. For
the water that has infiltrated into the wall assembly, it can be further distributed to either
the interior surface of the cladding or the exterior surface of the sheathing membrane.
Whilst, part of the infiltrated water would be drained away if a drainage cavity is present,
Lacasse et al. [10] measured the distribution of infiltrated water at different locations, i.e.,
the interior side of the cladding and the exterior side of the sheathing membrane. It was
found that, generally, the amount of water that reached the sheathing membrane of a
wall assembly was ca. 15% of the total amount of water that penetrated the cladding and
approximately 75% of this amount would be drained away if the wall had a drainage cavity.
The greatest water penetration rate and the moisture source reached on the sheathing
membrane for different types of wall assemblies as measured by Lacasse et al. [10] was
summarised in Table 5.

Table 5. Water entry rate of different types of wall assemblies (Data from reference [10]).

Wall
Assembly

Drainage
Cavity

Water Entry Rate
(L/min)

Spray Rate
(L/min)

1 Pressure
(Pa)

Highest Water
Entry Ratio

Moisture Source on Sheathing
Membrane (SBPO)

Brick veneer Yes 0.042 0.85 75 4.9% 0.7%
Stucco Yes

0.191 1.7 0 11.2% 1.7%Stucco No
Fibre Board Yes 0.15 0.85 150 17.6% 2.6%
Fibre Board No 0.014 0.85 300 1.65% 0.25%

EIFS 2 No 0.218 3.4 300 6.41% 0.96%
Vinyl No 0.059 0.85 300 6.94% 1%
1 The pressure listed above was the pressure at which the highest water entry rate was obtained. In principle, a higher pressure will likely
lead to a higher water entry rate, however, the water-tightness tests are subject to measurement uncertainties and the water entry rate for
some deficiency types may not be sensitive to the applied pressure, therefore, the highest water entry ratio does not necessarily occur at the
highest pressure. 2 Exterior Insulation and Finish Systems.

Moore and Lacasse [45] further elaborated on the water entry characteristics and water
retention characteristics of the cladding system from water entry and drainage tests. They
developed a set of equations to derive the percentage of water retained in the cladding
cavity. Recently, Xiao et al. [46] introduced a novel wind-driven rain pressure index, which
allows one to calculate a series of weather-dependent water entry rates. Furthermore,
Xiao et al. [47] demonstrated the procedure of fitting a water entry equation based on the
water tightness test of a vinyl-clad wall.

In this paper, the water penetration was simulated by following the ASHRAE 160 ap-
proach, assuming a moisture source on the sheathing membrane; the moisture source
amount (percentage of wind-driven rain) was considered as a stochastic variable. The prob-
ability distributions of the moisture source were determined through the following steps:

1. The hourly wind-driven rain pressure index (WDRPI) was calculated based on
WDR and DRWP of 15 realisations of 31-year climatic data using Equation (7) [46]:

WDRPI = WDRα × DRWPβ (7)

where:

WDRPI—wind-driven rain pressure index
WDR—wind-driven rain, calculated based on ASHRAE wind-driven rain model
DRWP—driving-rain wind pressure, calculated by hourly wind velocity through
Bernoulli’s principle
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α, β—for different configurations of wall assemblies based on their response to the WDR
intensity and DRWP respectively during water tightness tests. For the brick wall, the value
of α is 0.9506 and β is 1.0442.

2. The hourly moisture source reaching the sheathing membrane was calculated based
on WDRPI and water entry Equation (8) [47]:

Moisture source = a × WDRPIb (8)

where:

Moisture source—the amount of water that reaches the sheathing membrane per unit time
(ml/min)
a, b—adjustment coefficients derived from fitting the measured moisture source to corre-
sponding values of WDRPIs. The details of the measurements and derivation of adjustment
coefficients have been demonstrated based on a vinyl-clad wall by Xiao et al. [47]. The
same procedure was also applied to the brick wall to obtain the two adjustment coefficients
where: a = 7.998 × 10−6 and b = 0.6737.

3. The hourly moisture source was calculated from hourly WDR and hourly DRWP
using steps 1 and step 2. The calculation was implemented for all the 15 climatic realisations
of 31-year climatic data in the historical period, from which 4,073,400 data points of
moisture source were generated.

A probability distribution of the moisture source was generated based on the hourly
moisture source dataset that is including 4,073,400 data points. The unit of the calculated
moisture source was converted to % of wind-driven rain by dividing the hourly wind-
driven rain deposited on the exterior wall surface. Eventually, this probability distribution
has a mean value of 0.56% and standard deviation of 0.35%, and the probability distribution
was truncated above zero. Although the future climatic data had different WDR and DRWP
from historical data, the calculated moisture source (percentage of wind-driven rain) for
the future climatic condition was very close to the historical condition. Therefore, the same
mean value and standard deviation were used for historical and future climatic conditions.

4. The water entry equation was developed based on a specific wall assembly with a
deterministic deficiency level. To consider the uncertainty amongst different wall assembly
types, another two probability distributions for moisture source were generated: one has a
mean value of 0.3% to represent a relative lower deficiency level and another one has a mean
value of 0.8% to represent a relative higher deficiency level. Both of these moisture sources
nonetheless have a standard deviation value of 0.35%, since the variability of the moisture
source under a specific deficiency level is primarily influenced by climatic conditions.

Figure 5 shows the three probability density functions, which were generated based on
the mean values and standard deviation values of different wall deficiency levels assumed
in steps 3 and step 4.
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2.2.3. Cladding Ventilation Rate

The cladding ventilation rate (i.e., Air Changes per Hour, ACH) is influenced by the
configuration of openings and local environmental conditions, i.e., wind-induced driving
pressure and buoyancy induced driving pressure. Some of the literature in which are
reported the ACH for brick assemblies is summarised in Table 6.

Table 6. Literature review on cladding ventilation rate.

Authors Year Cladding Cavity Depth (mm) Opening ACH

VanStraaten and
Straube [48] 2004 Brick 20

1600 mm2 at top and bottom
(2 of 10 × 80 at each position,

clear no screen)
0–90

Finch and Straube
[49] 2007 Brick 38

1300 mm2 at top & bottom
(2 of 10 × 65 at each position,

with bug screen)

0–9.6,
Average 2.2

Ying Simpson [50] 2010 Brick1: 2.44 m height;
Brick2: 4.88 m height 25

1560 mm2 on top (2 of 12 × 65
with bug screen);

1872 mm2 (2 of 12 × 78)
on bottom

Brick 1: 1–11, Average 6;
Brick 2: 1–6, Average 4.

Langmans et al. [14] 2016 Brick 40 1050 mm2 at top and bottom
(2 of 15 × 35 at each position)

1 opening, 1–10, 85% of the
time below 6; 2 openings,

ACH doubled

Vanpachtenbeke et al.
[51] 2020 Brick 40 1050 mm2 at top and bottom

(2 of 15 × 35 at each position)
In between 5 and 10

Although there is a variety of opening designs found in literature, in Canada the
most commonly used configuration for brick walls is two openings on the bottom and two
openings at the top of the wall for every 1.2 m length of the wall assembly, with opening
size varying between 600 to 900 mm2 [49,50]. Generally, an insect screen is installed at
the top openings, and the cavity depths are either 25 mm or 38 mm. This type of opening
design leads to a variation of ACH between 0 and 10. For example, Finch and Straube
reported the ACH of a brick wall with a 38 mm ventilated cavity, which was installed
in the BEGHut, a test facility at the University of Waterloo. The ACH value was in the
range of 0 to 9.6 with an average value of 2.2 for an entire year [49]. Simpson monitored
the hygrothermal performance of a brick wall with a 25 mm ventilated cavity, which was
located in the Burnaby campus of the British Columbia Institute of Technology (BCIT).
The derived ACH value ranged between 1 and 11 with an average of 6 from February
to June [50]. It is noted that the ACH can be increased up to 90 for a 20 mm deep cavity
when there is no insect screen; however, this type of wall was only used for the experiment,
walls 20 mm deep cavity without an insect screen is not a common construction practice in
Canada [48].

Another cladding design for the brick wall is a vented cavity wall, which has no
opening at the top but two openings on the bottom for every 1.2 m length of the wall.
However, there is a lack of studies reporting the ventilation rate for vented brick wall
cavity walls. Vanpachtenbeke et al. [51] investigated the non-ventilated brick wall where
both the top and bottom openings were blocked. They found that the simulation with an
ACH of 0 can produce similar vapour pressure in the cavity as that obtained from field
measurements. Therefore, they concluded that poor airtightness of the wall does not lead
to a significant drying potential and it can be ignored in hygrothermal simulations.

In this paper, the ACH for vented brick walls was calculated based on the procedure
developed by Straube and Burnett [52]. The bottom opening size and the cavity dimension
were assumed the same as in [50], and only one opening with blockage of insect screen
was assumed on the top to simulate the potential air circulation between the bottom
openings and small deficiencies on the façade. To explore the impact of increasing cladding
ventilation, the ACH for 4 openings was also calculated. The pressure differential between
the top and bottom was assumed to be varied from 0 to 5 Pa, with the highest frequency
at 1.5 Pa based on the pressure differential reported in [50,52]. In Figure 6, the calculated
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values for ACH of a 25-mm cavity is shown for vented (2 openings on the bottom, no
openings at the top), ventilated with 2 openings (2 openings on the bottom and top), and
ventilated with 4 openings (4 openings on bottom and top) for a 1.2 × 2.4 m (length ×
height) brick wall. Then, the ACH at 1.5 Pa pressure differential was set as the mean value
and the standard deviation values for different ventilation designs were quantified based
on the range of ACH, from which, three probability distributions of ACH representing
three cladding ventilation designs were generated, and the probability density functions
were presented in Figure 7. The probability functions were truncated from 1 since the air in
the cavity is less likely to be stagnant.
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2.2.4. Brick Properties

As mentioned in Section 2.1.1, the water absorption coefficient (A-value) and effective
saturation water content (θeff) of brick were considered as stochastic material properties.
The material properties of red matt clay brick were used from a baseline model [32]. To
quantify the range of these two brick properties, a literature review was conducted to
determine the A-value and θeff of similar types of brick. A summary of these values is
given in Table 7. The effective saturation water content, θeff, is that of the maximum degree
of saturation as may occur over the long-term immersion. However, the effective saturation
water content is subject to a large uncertainty depending on different test methods used
to assess this value, be this using the long-term with partial immersion in water, 5 h
boiling saturation, or vacuum saturation test methods. According to Mensinga [53], the
5 h boiling saturation water content is about 20% lower than that obtained using vacuum
saturation. Even using the same test method, the measurement uncertainty is quite high.
For example, the vacuum saturation is largely dependent on the vacuum pressure applied
to the specimen, and the uncertainty in applied vacuum pressure can result in ca. ±20%
of uncertainty for the θeff from vacuum saturation [53]. Furthermore, the properties
amongst different specimens in the same brick category have large uncertainties due to
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the manufacturing process. According to Kumaran [33], the uncertainty in the vacuum
saturation water content amongst 9 brick specimens is about ±40%. Zhao [54] measured
the effective saturation water content of 23 brick specimens within the same brick category
through 2 weeks of partial immersion; it was found that the uncertainty can be as high as
±37%. By considering the values for the effective saturation water content of clay brick and
the uncertainties reported from different literature, the range for the effective saturation
water content within one type of brick was set as ±40%. A normal probability distribution
was generated by assuming the mean value as 0.217 m3/m3, with a standard deviation of
0.043 m3/m3.

Table 7. Literature review on A-value and effective saturation water content of brick.

Authors Years Name of Brick Density (kg/m3) A-Value
(kg/m2s0.5) θeff (m3/m3)

Kumaran et al. [32] 2002
Red matt clay brick 1935 0.0268 0.217 (Vacuum)

Textured coated clay brick 1821 0.0322 0.333 (Vacuum)

Mensinga [53] 2009
Clay brick 1 2212 0.032 0.192 (5 h boiling)

0.228 (Vacuum)

Clay brick 2 2223 0.028 0.182 (5 h boiling)
0.219 (Vacuum)

Zhao [54] 2012
Old building brick Dresden1 1948 0.0219 0.179 (Partially immersed in

water for 2 weeks)

Old building brick Dresden2 1736 0.034 0.32 (Partially immersed in
water for 2 weeks)

Yousefi [55] 2019 Clay brick 2080 0.012 0.116 (Partially immersed in
water for 8 days)

Aldabibi [56] 2020
Reclaimed exterior brick 1968 N/A 0.242 (5 h boiling)

New exterior brick 1904 N/A 0.198 (5 h boiling)

For the A-value, the normal probability distribution was generated by assuming
the mean value as 0.0268 kg/m2s0.5, and standard deviation as 0.005 kg/m2s0.5; as such,
the uncertainty also falls within ±40%. According to the statistical analysis of 23 brick
specimens by Zhao et al. [57], the effective saturation water content is positively correlated
with the A-value with a correlation coefficient of 0.6. For this paper, then, the probability
distributions of effective saturation water content and A-value were assumed as positively
correlated with a coefficient of 0.6. Figure 8 shows the probability density functions of
the brick properties, the correlation between A-value and θeff, and the stochastic moisture
storage curves, liquid diffusivity curves derived from stochastic A-value and θeff.
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The stochastic θeff was used to scale the moisture storage curve, and the liquid diffusiv-
ity curve was calculated based the stochastic θeff and A-value through Equation (9) [58,59]:

Dw =

(
A
θeff

)2
× b2

2b − 1
× exp

(
b ×

(
θ

θeff
− 1
))

(9)

where

Dw—liquid diffusivity at unsaturated water content, m2/s
θeff—effective saturation water content, kg/m3, 103 · m3/m3

θ—unsaturated water content, kg/m3, 103 · m3/m3

A—water absorption coefficient, kg/m2s0.5

b—shape factor, determines the slope of the liquid diffusivity curve; value can be between
5 and 10; In this paper, b was assumed as 7.5.

In fact, the variation of the value of b from 5 to 10 will result in considerable uncertainty
in the simulation results although the value of b can be determined based on a wetting and
drying test; however, this was beyond the scope of the work reported in this paper. What
should be noted is that different researchers hold different opinions on which saturation
water content should be used for deriving the liquid diffusivity. Kunzel [60] suggested the
use of the free water saturation, which is the maximum moisture content achieved in a water
uptake experiment, the free water saturation water content corresponds to the capillary
saturation water content in Delphin [31]. Carmeliet et al. [61] have a similar opinion to
that of Kunzel, given that water absorption at a moisture content level above capillary
saturation is dominated by the diffusion of entrapped air. In this instance, the relationship
between liquid diffusivity and moisture content in the capillary range is not applicable
in the “over-capillary” range. Kumaran [58] used vacuum saturation water content to
estimate the averaged liquid diffusivity in capillary and over-capillary ranges of spruce,
and the estimated liquid diffusivity was in the same order of magnitude as the measured
liquid diffusivity. In Delphin, the effective saturation water content is used to scale the
moisture storage curve and liquid diffusivity curve when the measured sorption and liquid
diffusivity curves are not available, whereas, the capillary saturation water content is not
used in hygrothermal simulations [31]. Therefore, in this paper, the effective saturation
water content was used to derive the liquid diffusivity curve. In fact, the stochastic effective
saturation water content takes into consideration the measurement uncertainty as well as
the uncertainty amongst different specimens within the same category. Therefore, it also
covers the possible range of values for effective saturation water content from capillary
saturation to vacuum saturation.

2.3. Literature Review of Sampling Methods

The sampling method used for stochastic simulation largely determines the efficiency
and reliability of the stochastic simulation. The purpose of sampling design is to improve
the sampling efficiency, which can be described as the sample size required to achieve
results having an acceptable level of accuracy.

Table 8 lists sampling methods used for stochastic simulation of building energy or
hygrothermal performance, as well as the number of stochastic variables and sample size
in previous studies. Figure 9 illustrates the categorisation of different sampling methods
listed in Table 8. It can be seen that the sample size used for stochastic simulation varies
from several hundreds to a few thousands. Among the studies listed in Table 8, in refer-
ences [29,62,63] the random sampling methods (Monte Carlo: MC) have been compared
with methods for low discrepancy sampling (Quasi-Monte Carlo: QMC or Optimized Latin
Hypercube Sampling: OLHS). They all concluded that low-discrepancy sampling offered a
higher sampling efficiency than MC methods in many circumstances. As to the comparison
between different low-discrepancy sampling methods, both references [29,62] suggest
QMC based sampling performs better than either the Replicated Latin Hypercube Sam-
pling (RLHS) or Optimized Latin Hypercube Sampling (OLHS) methods. In reference [62],
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Burhenne et al. compared 100 sets of 256-run simulations using Latin Hypercube Sampling
with 100 sets of Sobol sequence-based sampling (one of the QMC methods). It was found
that the sampling based on the Sobol sequence had less variation in the 100 CDFs than
the Latin Hypercube Sampling method. Hou et al. [29] found a better performance for
QMC than for MC when predicting heat loss of a masonry wall assembly, however, the
superiority of QMC over MC becomes less significant when predicting freeze/thaw cycling
because the number of dominant stochastic variables in respect to freeze/thaw cycling
is more than that for heat loss. In a situation where the number of dominant stochastic
variables is not known, the performance of the QMC method will be better than or equal to
the MC method. Therefore, in this paper, the Sobol sequence-based sampling was used to
sample the stochastic discrete and continuous variables, as this sampling method allows a
robust and conservative error estimation.

Table 8. Literature review on sampling methods.

Authors Year Simulation
Objects

Sampling
Methods

Number of
Stochastic
Variables

Sample Size Convergence
Size

Lomas and Eppel [64] 1992 Whole building
energy model Random 70 100 100

Salonvaara et al. [17] 2001 Hygrothermal
model Random 16 100 N/A

Hyun et al. [65] 2007
A building
ventilation

model

Latin
Hypercube 13 30 N/A

Macdonald [66] 2009

Infiltration rate
as a function of
temperature &

wind speed

Random;
Stratified; Latin

Hypercube
2 100; repeated

100 times

100 for all three
sampling
methods

Zhao et al. [18] 2011 Hygrothermal
model Random 36 400 N/A

Burhenne et al. [62] 2011 Whole building
energy model

Random; Latin
Hypercube;
Stratified

sampling; Sobol
sequence-based

sampling

4
16, 32, 64, 128
256, 512; each
size repeated

100 times

Random
sampling: 256;

Other: 64

Defraeye et al. [67] 2013 Hygrothermal
model Random 6 2000 N/A

Janssen [63] 2013 Hygrothermal
model

Random;
Optimized

Latin
Hypercube

(OLHS)

4
10, 20, 50, 100,
250, 500; each

size repeated 10
times

OLHS
converged
faster than

random

Goffart et al. [68] 2015 Whole building
energy model

Latin
Hypercube 14 600 400

Hou et al. [29] 2019 Hygrothermal
model

Random;
OLHS; Sobol;
Neiderreiter-
Xing; lattice

sequence

7 80, 160, 320, 640,
1280

QMC
converged

faster than MC
for smooth
objective
functions

Bui et al. [69] 2020 Hygrothermal
model

Latin
Hypercube 5 1000 600



Buildings 2021, 11, 333 17 of 31

Buildings 2021, 11, x FOR PEER REVIEW 18 of 33 
 

sampling; Sobol se-
quence-based sam-

pling 

size repeated 
100 times 

Defraeye 
et al. [67] 2013 Hygrothermal 

model Random 6 2000 N/A 

Janssen 
[63]  2013 Hygrothermal 

model 

Random; Optimized 
Latin Hypercube 

(OLHS) 
4 

10, 20, 50, 100, 
250, 500; each 
size repeated 

10 times 

OLHS converged 
faster than random 

Goffart et 
al. [68] 2015 

Whole building en-
ergy model Latin Hypercube 14 600 400 

Hou et al. 
[29]  2019 

Hygrothermal 
model 

Random; OLHS; 
Sobol; Neiderreiter-

Xing; lattice sequence 
7 

80, 160, 320, 
640, 1280  

QMC converged 
faster than MC for 
smooth objective 

functions 
Bui et al. 

[69] 2020 
Hygrothermal 

model Latin Hypercube 5 1000 600 

 
Figure 9. Categorisation of different sampling methods. Note: The sampling points generated by the Quasi-Monte Carlo 
methods are deterministic points. To allow error estimation, the points from Quasi-Monte Carlo methods have to be ran-
domised. Thus, it is referred to as Randomized Quasi-Monte Carlo (RQMC). 

2.4. Implementation of Sobol Sequence-Based Sampling 
To implement the Sobol sequence-based sampling, 10 sets of 6-dimensional random-

ised Sobol sequences were generated, the randomisation was based on the scramble ap-
proach [70]. For continuous stochastic variables, they were mapped into the space of [0, 1] 
through their cumulative distribution, and the values at the percentiles which corre-
sponds to the Sobol points were then selected. For discrete variables, i.e., the climatic re-
alisations, the space of [0, 1] was divided into 15 equal intervals, i.e., [0, 1/15], [1/15, 2/15], 
……, [14/15, 15/15]. When the Sobol point falls into the first interval, then the first realisa-
tion (R01) will be selected; similarly, when the point falls into the second interval, R02 will 
be selected, and so on.  

For the rain leakage moisture source and cladding ventilation rate, there were three 
levels selected, with each level having a specific cumulative distribution. To guarantee 
that the cumulative distribution at each level is unchanged and the sample sizes at differ-
ent intervals are equal, the space of [0, 1] was divided into three intervals: [0, 1/3], [1/3, 
2/3] and [2/3, 1]. When the Sobol point falls into the first interval, then the low level will 
be selected, and the stochastic values at that level will be selected by mapping the percen-
tiles in the cumulative distribution to the interval of [0, 1/3]. Similarly, the values in the 
middle level and high level were also selected in the same way.  

Figure 9. Categorisation of different sampling methods. Note: The sampling points generated by the Quasi-Monte Carlo
methods are deterministic points. To allow error estimation, the points from Quasi-Monte Carlo methods have to be
randomised. Thus, it is referred to as Randomized Quasi-Monte Carlo (RQMC).

2.4. Implementation of Sobol Sequence-Based Sampling

To implement the Sobol sequence-based sampling, 10 sets of 6-dimensional ran-
domised Sobol sequences were generated, the randomisation was based on the scramble
approach [70]. For continuous stochastic variables, they were mapped into the space
of [0, 1] through their cumulative distribution, and the values at the percentiles which
corresponds to the Sobol points were then selected. For discrete variables, i.e., the climatic
realisations, the space of [0, 1] was divided into 15 equal intervals, i.e., [0, 1/15], [1/15,
2/15], . . . . . . , [14/15, 15/15]. When the Sobol point falls into the first interval, then the first
realisation (R01) will be selected; similarly, when the point falls into the second interval,
R02 will be selected, and so on.

For the rain leakage moisture source and cladding ventilation rate, there were three
levels selected, with each level having a specific cumulative distribution. To guarantee that
the cumulative distribution at each level is unchanged and the sample sizes at different
intervals are equal, the space of [0, 1] was divided into three intervals: [0, 1/3], [1/3, 2/3]
and [2/3, 1]. When the Sobol point falls into the first interval, then the low level will be
selected, and the stochastic values at that level will be selected by mapping the percentiles
in the cumulative distribution to the interval of [0, 1/3]. Similarly, the values in the middle
level and high level were also selected in the same way.

For the rain deposition factor, this was assumed to be uniformly distributed through
0.35 to 1; therefore, it was directly mapped to Sobol points through a uniform cumulative
distribution with the sampled values at each category of rain deposition factor being
also uniformly distributed. Similarly, the orientation was also assumed as a uniform
distribution, and divided into 16 equal intervals, and each interval is 22.5◦, for example,
11.25◦ to 33.75◦ represents NNE, 33.75◦ to 56.25◦ represents NE and so on. For North
orientation, it includes two sub-intervals with each has 11.25◦: 348.75◦ to 360◦ and 0◦

to 11.25◦.
Although there were 7 stochastic variables, the A-value and effective saturation water

content of brick were positively correlated with a correlation coefficient of 0.6; using two
columns of Sobol points to sample these two parameters would disrupt their correlation.
Therefore, the water penetration coefficient, which is defined as the ratio of A-value to
saturation water content [60], was used to map Sobol points. In this way, the two stochastic
brick properties can be sampled by one column of Sobol points, and their correlation can
be retained. In Table 9, a summary is given of the different stochastic variables, their ranges
as well as their respective distributions.
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Table 9. Stochastic variables.

Variables Distribution Range Intervals

Climatic realisation Discrete R01–R15 -

Orientation Uniform 0–360
16 Orientations, interval of N

348.75~11.25, NNE 11.25~33.75 and
so on . . .

Rain deposition factor Uniform 0.35–1; Low 0.35~0.56; Middle 0.56~0.78;
High 0.78~1.

Rain leakage moisture source (% of
wind-driven rain) Normal 0–2.0 Low 0.3 (0.35); Middle 0.56 (0.35);

High 0.8 (0.35)

Cladding ventilation rate (ACH) Normal 1–20 Low 3 (0.67); Middle 5.5 (1.4);
High 10.5 (3.5)

Water absorption coefficient (A-value)
of brick (kg/m2·s0.5) Normal 0.0161–0.0389 0.0268 (0.005)

Effective saturation water content of
brick (m3/m3) Normal 0.108–0.325 0.217 (0.043)

Note: For the variables having normal distribution, the values in the parenthesis are standard deviations. The distributions of rain leakage
moisture source are truncated above zero; the distributions of cladding ventilation rate are truncated above 1.

What should be noted is that the rain leakage moisture source and cladding ventilation
rate are dependent on micro-climatic conditions. Ideally, the climate-dependent time series
of these two variables can be used for hygrothermal simulation. However, in this study,
every stochastic value for the moisture source or ACH was assigned to a single stochastic
model, meaning that every single stochastic model has a constant moisture source or
ACH through a 2 year simulation period. The variations of the stochastic variables are
reflected from different stochastic models having different constant values of moisture
source and ACH.

2.5. Error Estimation and Risk Assessment

The mould growth index was calculated based on the use of the VTT model with a
decline factor of 0.3 [71]. The relative humidity and temperature of the exterior surface
of OSB were extracted for calculating the mould growth index. The averaged values for
mould growth indices over two years were calculated for error estimation and mould
growth risk assessment. The values for standard error of the mean and standard deviation
were calculated based on Equations (10) and (11), respectively [29]:

Qn,r( f ) =
1
r

r

∑
i=1

Q(i)
n ( f ) (10)

stderr
(
Qn,r

)
=

√
1

r(r − 1)

r

∑
i=1

(
Q(i)

n ( f )− Qn,r( f )
)2

(11)

where:

Q(i)
n ( f )—the estimator of mean or standard deviation of the ith randomised sequence

Qn,r( f )—the average of the estimators of r sets of randomised sequences
r—the number of randomised sequences; in this paper, r is 10

The error estimation was performed for the whole sample space and the sub-spaces
for different climatic realisations and orientations at different sample sizes. In this paper,
the error estimation for the whole sample space was performed at sizes of 23 × 10, 24 × 10
up to 28 × 10. For the sub-spaces, the error estimation started from a sample size of
25 × 10 ended up with 28 × 10, as the sample size of each sub-space is approximately
the total sample size divided by the number of intervals. The maximum sample size was
determined by considering the balance between the computational cost and the accuracy
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of the results. For the whole sample space, the sample size of 28 × 10 gave a standard error
in the magnitude of 10−3, whilst, for each sub-space, the sample size of 28 × 10 gave a
standard error in the magnitude of 10−2. According to Hou et al. [29], the standard errors
calculated from Equations (10) and (11) is roughly in the same order of magnitude as the
absolute error that was obtained by comparing the results at different sample sizes (23 × 10,
24 × 10 up to 27 × 10) with a very large reference sample size—40,960. The results of
standard error were discussed in Sections 3.1 and 3.2. Then the mould growth risk for
different climatic realisations and orientations were assessed based on the results from the
highest sample size.

To investigate the effect of mould growth risk mitigation strategies, the orientation
that has the highest mean value for the 2-year mould growth index was selected for further
stochastic simulation. Thereafter, the mould growth risk was assessed for different levels
of rain deposition factors, rain leakage moisture sources, and cladding ventilation rates for
the worst orientation. Figure 10 shows the overall procedure for low-discrepancy sampling,
stochastic simulation, error estimation and risk assessment.
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3. Results and Discussion
3.1. The Whole Sample Space

Figure 11 shows the standard error of the mean value and standard deviation of
the 2-year averaged mould growth index at different sample sizes of the whole sample
space, which means all the climatic realisations and orientations, as well as other stochastic
variables, were taken into account. It can be seen that the standard errors generally decrease
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with an increase in sample size, although the decreasing rates are different at different
sample size intervals, i.e., for the mean value of the historical period, the decreasing rate is
greater from 320 to 1280 than from 80 to 320. When the sample size is increased to 1280-run,
the standard error can be reduced to the magnitude of 10−3 for both historical and future
periods. As shown in Table 10, the future period has a higher mould growth index than
the historical period, but the standard deviation in the future is very similar to that in the
historical period. The standard error in the future period is slightly lower than that in the
historical period. The mould growth index listed in Table 10 reflects the overall mould
growth risk in the city of Ottawa, with all the climatic realisations, orientations and other
stochastic variables taken into account.
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Table 10. Mean value and standard deviation of 2-year averaged mould index at a 2560-run.

Historical Period Future Period

Mean value 1.06 1 SE 0.007 1.44 SE 0.004
Standard deviation 0.91 SE 0.007 1.08 SE 0.004

1 SE: standard error.

3.2. Different Climatic Realisations

Figure 12 shows the standard errors at different sample sizes for different climatic
realisations of historical and future periods. Each box represents the standard errors
of 15 climatic realisations in a climatological period. In general, the standard errors for
different climatic realisations are higher than those for the whole sample space, since the
sample size for each climatic realisation is roughly equal to the total sample size divided
by 15. It can be seen that there is a significant variation of the standard error for different
climatic realisations, and the standard errors for the future period are generally higher than
those for the historical period. The standard errors of mean values and standard deviation
values can be reduced to the magnitude of 10−2 after 1280 runs, except for the mean values
of the future period, which needs 2560 runs to ensure all the standard errors fall into the
magnitude of 10−2.



Buildings 2021, 11, 333 21 of 31

Buildings 2021, 11, x FOR PEER REVIEW 22 of 33 
 

  

(a) Mean value (b) Standard deviation 

Figure 11. Standard error at different sample sizes. 

Table 10. Mean value and standard deviation of 2-year averaged mould index at a 2560-run. 

 Historical Period Future Period 
Mean value 1.06 1 SE 0.007 1.44 SE 0.004 

Standard deviation 0.91 SE 0.007 1.08 SE 0.004 
1 SE: standard error. 

3.2. Different Climatic Realisations 
Figure 12 shows the standard errors at different sample sizes for different climatic 

realisations of historical and future periods. Each box represents the standard errors of 15 
climatic realisations in a climatological period. In general, the standard errors for different 
climatic realisations are higher than those for the whole sample space, since the sample 
size for each climatic realisation is roughly equal to the total sample size divided by 15. It 
can be seen that there is a significant variation of the standard error for different climatic 
realisations, and the standard errors for the future period are generally higher than those 
for the historical period. The standard errors of mean values and standard deviation val-
ues can be reduced to the magnitude of 10−2 after 1280 runs, except for the mean values of 
the future period, which needs 2560 runs to ensure all the standard errors fall into the 
magnitude of 10−2.  

  

(a) Mean value (b) Standard deviation 

Figure 12. Convergence rate for different climatic realisations. Note: there are 15 climatic realisations, therefore, the sample
size for each realisation is roughly equal to the total sample size divided by 15. The marks of “

1 
 

⧫ ” are outliers.

Figure 13 shows the mean value and standard deviation of the 2-year averaged mould
growth index for historical and future periods using 2560-run for which the standard error
for each climatic realisation is in the magnitude of 10−2. It can be seen that most of the
climatic realisations have a higher mould growth index in the future than in the historical
period. The future period also has a higher variability in the mould growth index than the
historical period given the higher standard deviation. The variation in mould growth index
among different climatic realisations is more significant than the variation in moisture
index as shown in Figure 2. As shown in Figure 14a,b, there is no clear relationship
between mould growth index and moisture index based on the stochastic simulation
results when all the orientations were taken into account. However, the significance of
the relationship was increased when the analysis only focused on the orientation that
receives the highest amount of WDR (The sample size was locally expanded for the worst
orientation to guarantee the standard errors were in an order of magnitude of 10−2).
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Figure 14. Mould growth index (mean value of 2-year’s average) as a function of moisture index.

3.3. Different Orientations

Figure 15 shows the standard errors of the mean value and standard deviation of
different orientations for historical and future periods (Each box represents the standard
errors for 16 orientations at each climatological period). It can be seen that the decreasing
rates of the standard errors for different orientations are lower than those for different
climatic realisations, particularly from 320-run to 640-run, and future period generally
has higher standard errors than historical period. The variation of standard error among
different orientations is significant; for example, the north orientation has a standard error
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of mean value close to 0.1 with 320 runs, but the standard error for south orientation cannot
be reduced to below 0.1 until 1280 runs. The standard errors of all the orientations can be
reduced to the magnitude of 10−2 after 1280 runs, which means for each orientation 80
runs can achieve a standard error lower than 0.1.
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Figure 16 shows the mean value and standard deviation of the 2-year averaged mould
growth index for different orientations using 2560 runs, which has a standard error of
around 0.05 for all orientations. It can be seen that the mean value and standard deviation
of the mould growth index for the future period are higher than those for the historical
period for all orientations. The orientation that had the highest mean value of mould
growth index was SSW, which is the same orientation that had the highest amount of
wind-driven rain (Figure 3). The orientation that has the highest standard deviation of
mould growth index (SSW) is different from that having the highest standard deviation of
wind-driven rain (N for historical, NW for future, Figure 3), this might be caused by the
influence of solar radiation.

Buildings 2021, 11, x FOR PEER REVIEW 25 of 33 
 

  

(a) Mean value (b) Standard deviation 

Figure 15. Convergence rate for different orientations. Note: there are 16 orientations, therefore, the sample size for each 
orientation is roughly equal to the total sample size divided by 16. The marks of “⧫” are outliers. 

  

(a) Mean value (b) Standard deviation 

Figure 16. Mould growth index (2-year’s average) for different orientations at 2560-run. 

3.4. Different Mould Growth Risk Mitigation Strategies 
To investigate different mould growth risk mitigation strategies, an additional 640-

run stochastic simulations were performed for the worst orientation selected in Section 
3.3. Figure 17 shows the stochastic 2-year averaged mould growth index within different 
levels of control for different mould growth risk variables, i.e., the rain deposition factor, 
rain leakage moisture source and cladding ventilation rate as described in Table 9. Each 
box represents the stochastic 2-year averaged mould growth index of one level of a spe-
cific mould control variable with all the other stochastic variables varying in their full 
range of values. For example, the green box in the case of FD represents the low level of 
rain deposition factor (0.35~0.56) with all the other stochastic variables (climatic realisa-
tions, rain leakage moisture source, cladding ventilation rate, and brick properties) vary-
ing in their full range of values. As such, if the mould growth index can nonetheless be 
reduced by controlling one specific variable in consideration of all the uncertainties, the 

Figure 16. Mould growth index (2-year’s average) for different orientations at 2560-run.



Buildings 2021, 11, 333 24 of 31

The SSW orientation was selected as the orientation for further stochastic simulations
and the one providing the most severe conditions to which to subject wall assemblies when
investigating the mould growth risk under different mitigation strategies.

3.4. Different Mould Growth Risk Mitigation Strategies

To investigate different mould growth risk mitigation strategies, an additional 640-run
stochastic simulations were performed for the worst orientation selected in Section 3.3.
Figure 17 shows the stochastic 2-year averaged mould growth index within different levels
of control for different mould growth risk variables, i.e., the rain deposition factor, rain
leakage moisture source and cladding ventilation rate as described in Table 9. Each box
represents the stochastic 2-year averaged mould growth index of one level of a specific
mould control variable with all the other stochastic variables varying in their full range
of values. For example, the green box in the case of FD represents the low level of rain
deposition factor (0.35~0.56) with all the other stochastic variables (climatic realisations,
rain leakage moisture source, cladding ventilation rate, and brick properties) varying in
their full range of values. As such, if the mould growth index can nonetheless be reduced
by controlling one specific variable in consideration of all the uncertainties, the influence
of this variable can be considered as a robust control strategy. The 640-run stochastic
simulation based on RQMC gave the standard error of mean value and standard deviation
of mould index for each level of each risk control variable of ca. 0.05.
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3.4.1. The Influence of Rain Deposition Factor and Cladding Ventilation Rate

In Figure 17, it can be seen that the reduction of the rain deposition factor and increase
of ventilation rate can significantly reduce the mould growth index, and the uncertainty at a
low level of rain deposition factor is lower than that at the high level of cladding ventilation
rate, particularly in the future period. This indicates that, under the climatic conditions of
Ottawa, controlling the rain deposition factor could be a more robust mitigation strategy
than increasing the cladding ventilation rate. The same stochastic simulations were also
implemented for Halifax, a coastal city in Canada. It was found that ACH plays a more
important role in controlling mould growth than the rain deposition factor. Therefore, the
most robust design or risk mitigation strategy varies depending on the climatic zone.

As was discussed in Section 2.2.1, a 0.1-m overhang can achieve, in the historical
period, a low-level rain deposition factor, which can reduce the 75 percentile mould growth
index to below 1, and 1.5 for the future period. On the other hand, the highest level of the
cladding ventilation rate (ventilated cavity with 4 openings as calculated in Section 2.2.3)
can, for the historical period, reduce the 75 percentile mould growth index to below 1.2
and for the future period to a value below 2. Since the 0.1-m overhang is the most robust
strategy in controlling mould growth, further simulations were performed for a 0.1-m
overhang with different levels of moisture source and ACH, for which the results are
presented in Figure 17c,d. It can be seen that for a building with a 0.1-m overhang and a
ventilation design having 4 openings, the mould growth index can be controlled within
the value of 1 for most of the stochastic cases in both historical and future climate periods,
although the mould growth index is higher in the future period than in historical period.

3.4.2. The Influence of Rain Leakage Moisture Source

There is no significant difference between different levels of rain leakage moisture
source, although the mould growth index for the low level of MS is slightly lower than that
for the middle and high levels of MS (Figure 17). This is because of the protection provided
by the water-resistive barrier. However, the uncertainty within each level of MS is very
high (Figure 17a,b), and the uncertainty was caused by other stochastic variables, i.e., rain
deposition factor, ACH, climatic realisations and brick properties. The uncertainties were
reduced within the low level of rain deposition factor (Figure 17c,d).

The rain leakage modelling approach was based on ASHRAE 160, which assumes
the moisture source on the exterior surface of the sheathing membrane. However, the
rainwater may penetrate through the sheathing membrane and reach the OSB sheathing if
there was a defect in the sheathing membrane. To consider this situation, an additional
set of simulations was performed with the moisture source assigned to the exterior layer
of OSB, which represent a higher mould growth risk scenario than the moisture source
assigned to the sheathing membrane for the future period (Figure 18a). As opposed to
the high-risk scenario, for comparison, another scenario without any rain leakage was
simulated based on the future period (Figure 18b).

When the moisture source was deposited on the exterior layer of the OSB (Figure 18a),
the difference between different levels of moisture source is more significant than the
scenario with the moisture source deposited on the exterior surface of the sheathing
membrane (Figure 17b). The overall mould growth indices increased for the low level
of rain deposition factor and high level of cladding ventilation rate, whilst, the increase
in the low level of rain deposition factor is lower than that in the high level of cladding
ventilation rate, i.e., the 75 percentile mould growth index at a low level of FD increased
from 1.5 to 1.8, and that at the high level of ACH increased from 2.0 to 2.7. (e.g., compare
results given in Figure 17b to those in Figure 18a).
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For the scenario without moisture source, the overall mould growth indices at different
levels of FD and ACH were reduced (Figure 18b). The 75 percentile mould growth index at
a low level of FD decreased from 1.5 to 1, and that for a high level of ACH decreased from
2 to 1.5 (Figure 17b compare to Figure 18b). Therefore, it can be said that improvements in
water tightness can reduce mould growth risk overall.

3.5. The Influence of Brick Properties

Figure 19 shows the scatter plots of the 2-year averaged mould growth index against
the brick properties. These plots are based on 640 runs using the most severe climate load
orientation (SSW), and the presence of a rain leakage moisture source on the sheathing
membrane. Both decreasing and increasing trends in mould growth index can be observed,
although the linear relationship between mould growth index and the brick properties is
very weak due to the disruption of other influential stochastic variables. Generally, the
mould growth index slightly decreases with an increase in the effective saturation water
content, and it increases with an increase of the water absorption coefficient (A-value) and
water penetration coefficient, the increasing trend being more significant for the water
penetration coefficient. For the effective saturation water content, there is no significant
difference in the decreasing rate between historical and future periods. For the A-value and
water penetration coefficient, the increasing trend is more significant for the future period
than the historical period, and the R2 value for the water penetration coefficient is higher
than that for A-value. Although the A-value and effective saturation water content are the
two properties that are measured from laboratory tests, the water penetration coefficient,
i.e., the ratio of A-value to effective saturation content, is a more useful parameter in
reflecting the water penetration capability of brick and assessing the influence on mould
growth performance of the wood sheathing in wood-frame wall assemblies.



Buildings 2021, 11, 333 27 of 31

Buildings 2021, 11, x FOR PEER REVIEW 28 of 33 
 

3.5. The Influence of Brick Properties 
Figure 19 shows the scatter plots of the 2-year averaged mould growth index against 

the brick properties. These plots are based on 640 runs using the most severe climate load 
orientation (SSW), and the presence of a rain leakage moisture source on the sheathing 
membrane. Both decreasing and increasing trends in mould growth index can be ob-
served, although the linear relationship between mould growth index and the brick prop-
erties is very weak due to the disruption of other influential stochastic variables. Gener-
ally, the mould growth index slightly decreases with an increase in the effective saturation 
water content, and it increases with an increase of the water absorption coefficient (A-
value) and water penetration coefficient, the increasing trend being more significant for 
the water penetration coefficient. For the effective saturation water content, there is no 
significant difference in the decreasing rate between historical and future periods. For the 
A-value and water penetration coefficient, the increasing trend is more significant for the 
future period than the historical period, and the R2 value for the water penetration coeffi-
cient is higher than that for A-value. Although the A-value and effective saturation water 
content are the two properties that are measured from laboratory tests, the water penetra-
tion coefficient, i.e., the ratio of A-value to effective saturation content, is a more useful 
parameter in reflecting the water penetration capability of brick and assessing the influ-
ence on mould growth performance of the wood sheathing in wood-frame wall assem-
blies.  

  
(a) Effective saturation water content_ Historical period (b) Effective saturation water content_ Future period 

  
(c) Water absorption coefficient_ Historical period (d) Water absorption coefficient_ Future period 

Buildings 2021, 11, x FOR PEER REVIEW 29 of 33 
 

  
(e) Water penetration coefficient_ Historical period (f) Water penetration coefficient_ Future period 

Figure 19. Scatter plots of 2-years’ averaged mould growth index against brick properties. 

4. Conclusions 
The use of a stochastic approach has been applied for assessing building performance 

from simulations now for a few decades, and it continues to show its usefulness in uncer-
tainty analysis and risk assessment given increasing in computational capacity, particu-
larly in the current setting where climate change brings more uncertainties to results from 
hygrothermal simulation. The results described in this paper have demonstrated the use 
of a stochastic hygrothermal simulation procedure to evaluate the mould growth risk of a 
wood-frame building envelope, considering various uncertainties such as climate realisa-
tions, wall orientations, material properties and the stochastic variables related to risk mit-
igation strategies that included: rain deposition factor, rain leakage moisture source and 
cladding ventilation rate. The stochastic simulation was based on the historical and future 
climatic conditions of Ottawa, a Canadian city located in a cold climate zone. A random-
ised Sobol sequence-based sampling, one of the Randomized Quasi-Monte Carlo (RQMC) 
methods, was used for sampling the stochastic variables, and error estimation was con-
ducted for different climatic realisations and wall orientations at different sample sizes. 
The main conclusions were: 

There were large variations in standard error among different climatic realisations 
and different wall orientations at the same sample size, nevertheless, the standard error 
can be reduced to the magnitude of 10−2 after 1280-runs for all 15 climatic realisations and 
16 wall orientations, which indicates for each climatic realisation or wall orientation, the 
standard error can be controlled at the magnitude of 10−2 after 80-runs.  

The mould growth rose map obtained from stochastic simulation has a similar shape 
to the wind-driven rain rose map obtained from the ASHRAE wind-driven rain model, 
which indicates that wind-driven rain might be a dominant parameter that influences 
mould growth in wall assemblies subjected to WDR. However, the mould growth index 
level of the 15 climatic realisations cannot be reflected by the moisture index level of the 
15 climatic realisations due to the disruptive effects of other stochastic variables.  

For the wall having red matt clay brick as cladding with material properties assumed 
in this paper, under climatic conditions of Ottawa, the deflection of wind-driven rain is 
the most robust mould growth risk control strategy as compared to improving the water 
tightness or improving cladding ventilation, particularly in future periods. The reduction 
of wind-driven rain can reduce both the rainwater absorbed by the brick and that pene-
trates the wall assembly. Improving water tightness can reduce overall mould growth risk 
at different levels of rain deposition factor and cladding ventilation rate.  

With the same cladding and climatic conditions stated above, improving cladding 
ventilation will significantly reduce the overall mould growth risk, however, the uncer-
tainty at a high cladding ventilation level (4-opening ventilated design) is higher than that 
at the low level of rain deposition factor (0.1 m overhang protection or steep-slope roof 
design), and the uncertainty is more significant in the future period.  

Figure 19. Scatter plots of 2-years’ averaged mould growth index against brick properties.

4. Conclusions

The use of a stochastic approach has been applied for assessing building performance
from simulations now for a few decades, and it continues to show its usefulness in uncer-
tainty analysis and risk assessment given increasing in computational capacity, particularly
in the current setting where climate change brings more uncertainties to results from hy-
grothermal simulation. The results described in this paper have demonstrated the use
of a stochastic hygrothermal simulation procedure to evaluate the mould growth risk
of a wood-frame building envelope, considering various uncertainties such as climate
realisations, wall orientations, material properties and the stochastic variables related to
risk mitigation strategies that included: rain deposition factor, rain leakage moisture source
and cladding ventilation rate. The stochastic simulation was based on the historical and
future climatic conditions of Ottawa, a Canadian city located in a cold climate zone. A
randomised Sobol sequence-based sampling, one of the Randomized Quasi-Monte Carlo
(RQMC) methods, was used for sampling the stochastic variables, and error estimation
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was conducted for different climatic realisations and wall orientations at different sample
sizes. The main conclusions were:

There were large variations in standard error among different climatic realisations
and different wall orientations at the same sample size, nevertheless, the standard error
can be reduced to the magnitude of 10−2 after 1280-runs for all 15 climatic realisations and
16 wall orientations, which indicates for each climatic realisation or wall orientation, the
standard error can be controlled at the magnitude of 10−2 after 80-runs.

The mould growth rose map obtained from stochastic simulation has a similar shape
to the wind-driven rain rose map obtained from the ASHRAE wind-driven rain model,
which indicates that wind-driven rain might be a dominant parameter that influences
mould growth in wall assemblies subjected to WDR. However, the mould growth index
level of the 15 climatic realisations cannot be reflected by the moisture index level of the 15
climatic realisations due to the disruptive effects of other stochastic variables.

For the wall having red matt clay brick as cladding with material properties assumed
in this paper, under climatic conditions of Ottawa, the deflection of wind-driven rain is
the most robust mould growth risk control strategy as compared to improving the water
tightness or improving cladding ventilation, particularly in future periods. The reduction of
wind-driven rain can reduce both the rainwater absorbed by the brick and that penetrates
the wall assembly. Improving water tightness can reduce overall mould growth risk at
different levels of rain deposition factor and cladding ventilation rate.

With the same cladding and climatic conditions stated above, improving cladding
ventilation will significantly reduce the overall mould growth risk, however, the uncertainty
at a high cladding ventilation level (4-opening ventilated design) is higher than that at the
low level of rain deposition factor (0.1 m overhang protection or steep-slope roof design),
and the uncertainty is more significant in the future period.

Although the relationship between the brick properties and the mould growth index
is very weak due to the interference of other stochastic variables, the decreasing trend of
mould growth index was observed with the increase of effective saturation water content,
whilst, the increasing trend was found with the increase of water absorption coefficient and
water penetration coefficient, and the trend is more significant for the water penetration
coefficient, particularly for the future period. The influence of the water penetration
coefficient, which is defined as the ratio of A-value and effective saturation water content,
is more significant than that of A-value and effective saturation water content.
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