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Abstract: Uncertainty quantification is an important issue in the seismic fragility analysis of bridge
type structures. However, the influence of different sources of uncertainty on the seismic fragility of
the system is commonly overlooked due to the costly re-evaluation of numerical model simulations.
This paper aims to present a framework for the seismic fragility analysis of reinforced concrete high-
way bridges, where a data-driven metamodel is developed to approximate the structural response to
structural and ground motion uncertainties. The proposed framework to generate fragility curves
shows its efficiency while using a few finite element simulations and accounting for various modeling
uncertainties influencing the bridge seismic fragility. In this respect, a class of single-bent bridges
available in the literature is taken as a case study, whose three-dimensional finite element model
is established by the OpenSees software framework. Twenty near-source records from different
sources are selected and the Latin hypercube method is applied for generating the random samples
of modeling and ground motion parameters. The Kriging metamodel is then driven on the structural
response obtained from nonlinear time history analyses. Component fragility curves of the reinforced
concrete pier column are derived for different damage states using the Kriging metamodel whose
parameters are established considering different modeling parameters generated by Monte Carlo
simulations. The results demonstrate the efficiency of the proposed framework in interpolating the
structural response and deriving the fragility curve of the case study with any input conditions of
the random variables.

Keywords: fragility analysis; kriging metamodel; reinforced concrete bridge; nonlinear time history
analysis; Monte Carlo simulation

1. Introduction

Seismic vulnerability is often represented in the form of fragility curve, which is an
important decision support tool to identify the potential seismic risk in the framework of
performance-based earthquake engineering (PBEE). These curves represent the conditional
probability of exceeding a limit state for a given seismic intensity. In recent decades, owing
to the development of the computer’s hardware and numerical modeling techniques,
different methods of the seismic fragility evaluation for bridge structures in highway
networks, especially reinforced concrete (RC) bridges, have been extensively developed
also in a parametric form in the case of bridge classes [1]. Innovative numerical models and
computational techniques help to simulate and analyze complex and large structures with
high accuracy; however, they are computationally expensive [2–4]. In addition, one of the
challenges in the development of seismic fragility functions is to include various sources of
uncertainties, e.g., ground motion and modeling parameters, into the probabilistic seismic
demand model. Therefore, the fragility function may hardly be presented in closed-form,
which is typically assumed as lognormal and calibrated using fitting methods or by Monte
Carlo simulations.
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Traditional seismic fragility assessment methods consider the record-to-record vari-
ation only to obtain component and system fragility curves [1]; this may result in an
inaccurate estimation due to a deterministic assumption of input parameters such as mate-
rial and geometry properties of the model. Considering different sources of uncertainty
into a complex numerical model or a class of structures is commonly a hard task due to
the time-consuming re-construction and re-evaluation of the numerical model. Therefore,
implementing interpolation or regression techniques to accurately predict the seismic
response of structural elements that only use a few numbers of dynamic analyses is an
alternative in the seismic vulnerability assessment step [2–4].

With the development of the computer science industry, machine learning has evolved
rapidly over recent years and widely applied to the earthquake engineering field [5]. The
substantial computational time of complex finite element (FE) models can be reduced
by building a surrogate model or metamodel, i.e., from the subset of machine learning
techniques. This approximation modeling approach is adopted when the outcome cannot
be directly measured; thus, an interpolation model of the outcome is used instead [6].
Different types of surrogate models have been previously presented, which are commonly
classified into three categories, i.e., data-driven surrogates, projection-based methods, and
multi-fidelity-based surrogates. The proper application of these models to different fields
of engineering has also been demonstrated [7–10].

Kriging or Gaussian modeling regression is one of the data-driven surrogate models
which has been widely adopted in engineering problems. The idea of this regression
approach is that the value of a function at a given point can be predicted by taking
a weighted average of known values of the neighborhood points, and the function of
interest is treated as a realization of a Gaussian random process, whose parameters are
estimated from available inputs and computer outputs [11]. The application of surrogate
modeling techniques for generating seismic fragility curves has recently been used for
bridges (e.g., [12,13]). Kriging metamodel has also been adopted in a few recent studies
for the seismic vulnerability analysis of bridges. The possibility of the application of a
Kriging metamodel to the seismic fragility evaluation of an RC bridge was presented by
Zhang and Wu [14]. The performance of the Kriging metamodel in generating seismic
fragility curves is verified with the conventional Latin hypercube method using a simple
nonlinear spring-mass single-degree-of-freedom system. Most recently, Gidaris et al. [15]
discussed the computational efficiency for fragility and resilience analyses of bridges
incorporating aftershock effects. In this case, the nonlinear mainshock and aftershock
bridge responses are approximately obtained using the Kriging model established from
uncertain hazard and structural model parameters. In the above studies, the influence of
trend and covariance models forming the metamodel has not been clarified that may have
a significant effect on the predicted response. There is also the lack of detailed discussions
on cross-validation methods to estimate the prediction error of a given metamodel; this is
an important indicator that should be considered for assessing the model performance.

Thus, this study aims to discuss in detail a computationally efficient framework for
the seismic fragility evaluation of a class of RC highway bridges based on a Kriging-
based surrogate model and its flexibility in generating fragility curves for different input
conditions of the modeling parameters. To reach this goal, a class of typical single-column
bent RC highway bridge is selected, whose material and geometry properties are considered
to be random variables. Based on a suitable design of the experiments (DOE) method,
several samples are generated and corresponding three-dimensional FE models are then
properly developed using the OpenSees software. The Kriging metamodel is built based on
nonlinear time history responses of the FE models, in which the influence of different trend
functions that form the metamodel are evaluated. Consequently, component fragility curves
associated with failure modes of the column bent considering different input conditions of
the modeling parameters are obtained using Monte Carlo simulations.
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This paper is organized as follows. In Section 2, a description of the Kriging metamodel-
based seismic fragility analysis framework of RC bridges is presented. The application
of the methodology to a case study of single-bent RC highway bridges is presented in
Section 3. Section 4 finishes with conclusions.

2. Kriging-Based Metamodeling
2.1. Kriging Formulation

Kriging or Gaussian process regression is a commonly used interpolation method that
uses a set of observed data to predict spatially correlated data. One of the advantages of
the Kriging model is its flexibility to represent a variety of complex models using a limited
number of observed data. Differently from other kinds of data-driven methods (e.g., linear
regression, artificial neural networks, or polynomial chaos), the Kriging model provides a
function that is independent of the probabilistic model for the input data.

The Kriging model is formulated by two terms including the mean of the Gaussian
process and the zero mean covariance stationary Gaussian process that is a combination of
a regression model and departure [16],

Y(x) = βTf(x) + Z(x), (1)

where Y(x) is the unknown function of interest, f(x) is the known regression function
vector, β is the unknown regression coefficient vector. The team βTf(x) in Equation (1)
refers to the mean of a Kriging metamodel known as the trend. The most commonly used
trends based on a polynomial basis are listed such as simple, ordinary, linear, quadratic,
and polynomial, etc. [17]. The function Z(x) is the realisation of the Gaussian process with
zero mean and nonzero covariance; Z(x) is expressed as

cov
(
Z(xi), Z

(
xj
))

= σ2R
(

xi − xj
∣∣θ), (2)

where σ2 is the process variance and R
(

xi − xj
∣∣θ) is the spatial correlation function with

known or unknown correlation parameters θ. The Gaussian process assumes that the
correlation between Z(xi) and Z

(
xj
)

is a function of the distance between xi and xj. Several
correlation functions can be used in the Kriging model, e.g., linear, exponential, squared
exponential, and Matérn, etc. [17].

It should be noticed from Equation (1) that the first term βTf(x) provides a global
model which is represented by various basic functions, and the second term Z(x) creates a
localized deviation between the global model and the exact model. Therefore, the Kriging
model can successfully interpolate the n data points and this method is flexible due to
various basic and correlation functions.

The output Y(x0), where x0 is a new input point, can be predicted based on the
input points X = (x1, x2, . . . , xn) and the corresponding computer output Yn = (Y(x1),
Y(x2), . . . , Y(xn))

T , given as(
Y(x0)

Yn

)
∼ Nn+1

((
fT

0
F

)
β, σ2

(
1 rT

0
r0 R

))
, (3)

where f0 = f (x0) and F = f j(xi) are the regression function vector of the predicted data
and the regression function matrix of the training data, respectively, r0 is the correlation
function vector of among Yn and Y(x0), R is the correlation matrix of among Yn. Then,
the conditional mean and the conditional variance of the Gaussian process of Y(x0) are
extracted from Equation (3), i.e.,
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µY(x0)
=

(
fT

0
^
β+ rT

0 R−1(Yn − F
^
β)

)
and (4)

σ2
Y(x0)

= σ2(1− rT
0 R−1r0 + (FTR−1r0 − f0)

T
(FTR−1F)

−1
(FTR−1r0 − f0)), (5)

with
^
β = (FTR−1F)

−1
FTR−1Yn. (6)

Because the hyperparameter vector θ is unknown, an estimation method needs to be
used to obtain a Kriging model and the estimation. The estimation is obtained by solving
an optimization problem. In this paper, the maximum likelihood estimation is adopted to
identify the vectors β, σ2, and θ, given as

L(β, σ2,θ|Yn) =
(detR)

1
2

(2πσ2)
n
2

exp (− 1
2σ2 (Yn − Fβ)TR−1(Yn − Fβ)). (7)

By maximizing the quantity in Equation (3), the analytical estimates of β and σ2 that
are functions of θ can be are obtained [16,17].

2.2. Metamodel Validation

The predictive performance of the Kriging model can be evaluated by the error
between observed and predicted responses. The leave-one-out (LOO) cross-validation
method is the most commonly used, in which one point is randomly selected for the
validating purpose while the other points are used for training the metamodel. This
procedure is repeated until all the points are used as a test dataset. Therefore, to perform the

LOO cross-validation, one point xk from the DOE is removed and the metamodel
^
Y(−k)(xk)

is subsequently built from the remaining points of the DOE. The root mean square error
(RMSE) quantifying the difference between the predictive and observed responses from
the cross-validation and the coefficient of determination R2 are calculated as

RMSE =

√√√√√∑n
k=1

[
Y(xk)−

^
Y(−k)(xk)

]2

n
and (8)

R2 = 1− 1
n

∑n
k=1

[
Y(xk)−

^
Y(−k)(xk)

]2

Var (Yn)
, (9)

where Var(Yn) is the estimated variance of the actual responses. In addition, the relative
maximum absolute error (RMAE) can be also determined, which measures the extent of
the local fitting error, given as

RMAE =

max
∣∣∣∣Y(xk)−

^
Y(−k)(xk)

∣∣∣∣
Std(Yn)

, (10)

where Std(Yn) is the standard deviation of the actual responses.

2.3. Fragility Analysis Procedure

The entire procedure for evaluating fragility functions of RC bridges based on Kriging
metamodel is described in Figure 1. The steps are summarized as the following:
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Figure 1. Kriging metamodel-based fragility evaluation procedure.

1. Design variables are first defined. In the case of RC bridges, uncertainties of material
and geometry parameters are commonly defined by a range of design values. The
ground motion uncertainty is also considered by a range of peak ground acceleration
(PGA). To reduce the computational cost, a screening study is often conducted to
define which modeling parameters are significant [18]. However, this step is ignored
in this study; the sensitivity of some modeling parameters will be assessed after the
metamodeling has been built.

2. The next step of the framework is the generation of samples of input random variables
using a proper DOE technique. Among different sampling methods, Latin hypercube
sampling (LHS) is often suggested for Kriging metamodeling [19] and is selected in
this study.

3. In the subsequent step, nonlinear time history dynamic analyses are performed on
the FE model of generated bridges subjected to different levels of ground motions.
Peak responses are then measured for each simulation. Because each ground motion
is scaled with respect to the PGA values in the DOE, hence the total of observed
responses from the time history analyses is (nsample x nground motion). To be a suitable
input for the metamodel, a deterministic observed response for each sample is need;
therefore, statistics in terms of the mean and standard deviation (Std) of the responses
are calculated for each sample of the DOE, where the Std represents the variation of
the response due to the frequency content. With emphasizing on the damage of the
column bent, in this study, the column drift ratio will be recorded from the analyses.

4. Two Kriging metamodels are built for the mean and Std of the observed responses,
and then a composed Kriging metamodel is then developed assuming a lognormal
distribution [14,15].

5. Seismic fragility curves are finally derived by Monte Carlo simulations, given an engi-
neering demand parameter (EDP) and its limit state (LS) that are conducted based on a
close-formed Kriging metamodel. The flexibility of the Kriging model allows deriving
fragility curves with any DOEs of any input conditions of the random variables.
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3. Seismic Fragility Analysis of Case Study
3.1. Description of Case Study, Input Variables and Numerical Modeling

A class of single-bent RC highway bridges with a box girder is selected as a case
study, as shown in Figure 2. This is a typical overpass bridge in California and has been
evaluated by numerous studies, e.g., [20–23]. Analyses are performed on the DOE of
six modeling parameters involving bridge material and geometry properties, detailed
in Table 1 along with ranges assigned to each of the parameters. In the later DOE, all
the parameters are assumed to follow the uniform distribution. The superstructure is a
multiple-cell box girder, its width B and depth Ds are deterministic (i.e., 11.9 and 1.83 m,
respectively). The span length L, the column height H, and the column diameter Dc
are varied. Furthermore, material properties for both the concrete and reinforcing steel,
including the reinforcement nominal yield strength fy, the concrete nominal strength f ′c ,
and the longitudinal reinforcement ratio ρl , are also varied, making in total 60 experimental
designs of the input random variables. It should be noticed that the ranges of the parameters
listed in Table 1 are chosen according to Mackie and Stojadinovic [20] and Huang et al. [21].
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Figure 2. Two-span, single-bent RC bridge model.

Table 1. Ranges of the design parameters for single-bent RC highway bridges.

Input Variable Range

Span length (L) 18–55 m
Deck width (B) 11.9 m
Deck depth (Ds) 1.83 m

Colum height (H) 5–11 m
Column diameter (Dc) 1–2 m

Longitudinal reinforcement ratio (ρl) 1–4%
Steel strength ( fy) 470–655 MPa

Concrete strength ( f ′c) 20–55 MPa
Steel weight 76,973 N/m3

Concrete weight 23,563 N/m3
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The base bridge is modeled using the FE OpenSees software [24]. The discrete FE
model is also shown in Figure 2. The detail of the modeling approach is as follows:

1. Deck: The deck is modeled using elastic beam-column elements discretized into five
separate elements along each clear span. Elastic material properties are assigned to all
the elements with the assumption is that the deck behavior under the seismic event
falls in the elastic range. The material and section properties used to modeled the RC
deck with the elastic behavior are is shown in Table 2; in this study, these parameters
are set as deterministic.

Table 2. Deck properties.

Deck Property Value

Young modulus 28,000 MPa
Shear modulus 11,500 MPa

Unit weight 23.571 kN/m3

Area cross-section 6.328 m2

Moment of inertia about the horizontal axis 3.073 m4

Moment of inertia about the horizontal axis 71.823 m4

Torsion constant 8.444
Weight per unit length 149.152 kN/m

2. Pier: The circular column pier is modeled as nonlinear beam-column elements with
the fiber section, where the Concrete-02 and Steel-02 uniaxial materials are used to
model the nonlinear behavior of the concrete and steel of the column (see fiber section
model in Figure 2). Concrete-02 is a uniaxial material with linear tension softening,
while Steel-02 is a uniaxial Giuffré-Menegotto-Pinto material that allows for isotropic
strain hardening. The material parameters of Concrete-02 are obtained from the
Mander constitutive relationships [25] for confined and unconfined concretes. In
detail, for cover concrete, the concrete unconfined strength is equal to f ′c, the concrete
strain at maximum strength equals 0.002, the concrete crushing strength is zero, and
the concrete strain at crushing strength equals 0.006. For core concrete of circular
column cross-sections, the modeling parameters are defined according to the Mander
model. As boundary conditions, the column ends are connected to the superstructure
and the footing by rigid link elements. The footing is supported by translational
and rotational springs as recommended by Nielson and DesRoches [26] that can be
considered the stiffness of an individual pile and the stiffness of the pile group. In
this study, the springs are modelled to be very stiff, neglecting the soil-structure
interaction (SSI) effect. Influencing the SSI into the numerical model considering
the interaction between the pile group and soil will enhance considerably the model
accuracy [22,23]; however, this is out of scope within the study since the focusing is
on the fragility analysis framework.

3. Abutment: A simplified abutment model is used with the general scheme presented
in Figure 2. This abutment model consists of a rigid element connected through a
rigid joint to the superstructure, with defined longitudinal, transverse, and vertical
behaviors at each end. The calculation of these spring behaviors for the abutment
model has followed the work by Mackie et al. [20,27].

The Rayleigh damping is employed in the model, which takes form as

C = amM + akK, (11)

where M is the mass matrix, C is the damping matrix, and K is the initial stiffness matrix.
Damping coefficients am and ak can be determined from the relationship

ξ =
am

4π f
+ akπ f , (12)
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where ξ is the damping ratio and f is the frequency. From Equation (12), damping coeffi-
cients are defined by specifying two frequencies and damping ratio values. In this study,
the first two-frequency range with 1 and 6 Hz, and 2% damping ratio are assumed.

The LHS method is used to generate samples of the random variables in Table 1. This
method has been demonstrated as the most suitable with the Kriging model in constructing
surrogate models [19]. A total of 60 bridge samples is generated; this number of samples is
chosen according to the work of Huang et al. [21]. The modal analysis is first performed
for the sample set. Longitudinal behavior is described by the first two natural periods, i.e.,
T1 = 0.181-0.830 s and T2 = 0.167-0.603 s. In later nonlinear structural dynamic analyses,
the governing equations of the system are discretized by Newmark time integration and
then is solved via the KrylovNewton algorithm [24].

3.2. Ground Motion Selection

The selection of a suite of ground motions to be used as input for nonlinear dynamic
analysis is also a challenge within the PBEE framework. The number of suitable ground
motions depends on which fragility analysis method to be adopted. Usually, a large
number of records is used for the structural dynamic analysis to build an appropriate
probabilistic seismic demand model, and in the context of a surrogate model, there is no
specific standard for the ground motion selection.

In this paper, unscaled ground motion records are selected, which have been demon-
strated as a suitable input for analytical fragility assessments [28]. For a Kriging-based
metamodel, a limited number of records can be used [4], hence in this study, a set of
20 records is selected from the PEER ground motion database [29]. The characteristics
of the records are summarized in Table 3; these records are mainshock free-field record-
ings. The soil of the record stations is characterized by stiff soil conditions, which has
average shear wave velocities of the top 30 m of soil (Vs,30) from 360 to 760 m/s. The set of
records covers a wide range of the moment magnitudes (MW) between 5.1 and 6.9. The
Joyner-Boore distances (Rjb) are limited under 20 km for near-source records. The response
spectra of all selected records along with their mean spectrum and the range of the bridge
fundamental periods are shown in Figure 3.

Table 3. Selected PEER ground motion records.

ID Earthquake Name Year Station MW
Rjb

(km)
Vs,30

(m/sec)

1 Irpinia Italy-01 1980 Bagnoli Irpinio 6.9 8.14 649.67
2 Irpinia Italy-01 1980 Sturno 6.9 6.78 382
3 Irpinia Italy-02 1980 Calitri 6.2 8.81 455.93
4 Corinth Greece 1981 Corinth 6.6 10.27 361.4
5 Northridge-01 1994 Sunland—Mt Gleason A 6.69 12.38 402.16
6 Chi-Chi Taiwan-03 1999 TCU084 6.2 3.68 665.2
7 Tottori Japan 2000 SMNH01 6.61 5.83 446.34
8 Parkfield-02 CA 2004 Parkfield—Upsar 03 6 9.49 440.59
9 Parkfield-02 CA 2004 Parkfield—Upsar 05 6 9.14 440.59
10 Parkfield-02 CA 2004 Parkfield—Upsar 06 6 9.14 440.59
11 Parkfield-02 CA 2004 Parkfield—Upsar 08 6 8.93 440.59
12 Parkfield-02 CA 2004 Parkfield—Upsar 09 6 8.86 466.12
13 Parkfield-02 CA 2004 Parkfield—Upsar 12 6 9 466.12
14 Parkfield-02 CA 2004 Parkfield—Upsar 13 6 9 466.12
15 Chuetsu-oki Japan 2007 Joetsu K. Kakizaki 6.8 9.43 383.43
16 Chuetsu-oki Japan 2007 Tani Kozima Nagaoka 6.8 5 561.59
17 Iwate Japan 2008 IWTH24 6.9 3.1 486.41
18 Iwate Japan 2008 MYG005 6.9 10.71 361.24
19 Iwate Japan 2008 Mizusawaku Interior 6.9 7.82 413.04
20 Iwate Japan 2008 Kurihara City 6.9 12.83 512.26
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3.3. Construction of the Kriging Metamodel Using Nonlinear Time History Analyses

As a result of the LHS, 60 samples with different combinations of the modeling
parameter and PGA are generated. Each sample is modeled using the three-dimensional
FE model presented in Section 3.1 and subjected to 20 selected records in Section 3.2. The
records are respectively scaled to PGA values in the DOE. Therefore, 1200 simulations are
carried out. An example of the time history data in terms of the drift ratio of the column
top and its drift ratio-shear force hysteretic behavior is shown in Figure 4. The response
quantities are measured from the analysis of Sample 1 and Sample 60 subjected to Record 1;
where Sample 1 is comprised by H = 6.730 m, L = 34.315 m; Dc = 1.150 m, f ′c = 299.310 MPa;
fy = 475.369 MPa; ρl = 3.009; PGA = 0.540 and Sample 60 is comprised by H = 7.563 m,
L = 45.776 m; Dc = 1.035 m, f ′c = 205.263 MPa, fy = 545.532 MPa; ρl = 2.186; PGA = 0.693.
It can be seen that Sample 60 is more vulnerable to seismic action because of the weak
column and high seismic intensity. The peak drift ratio measured for Sample 60 is about
2.7% while that of Sample 1 is about 0.8%.

Similarly, the peak seismic responses in terms of the drift ratio are measured for all the
samples, as shown in Figure 5. The analyses consider the variation of the frequency content
by scaling each ground motion record to different PGA values from the DOE. At each PGA
value, the responses vary due to the effect of the frequency content from different ground
motions. Therefore, the transient analysis results are not able to use as training data for
the Kriging model; thus, the mean and Std values of the responses at each PGA level are
used instead.

Kriging metamodels are built for the mean and Std responses using the Matlab-based
UQLAB software framework [17]. To select the best suitable trend (or basic function) for the
model, a parametric study on the effectiveness of different trends is first conducted, where
the correlation function is set as the default. The leave-one-out (LOO) cross-validation
method is used to evaluate the error of the model. The results in terms of RMSE, R2, and
RMAE are shown in Table 4. It can be seen from the table that all the trends show their abil-
ity in predicting the mean of the structural response with low error and high determination
coefficient (R2 > 0.96). A careful reader can see that the 2nd-degree polynomial function
shows its best performance. Hence in the following evaluation, the 2nd-degree polynomial
function is chosen. The correlation type and the correlation family are given by the Separa-
ble correlation function and the Matern 3/2 kernel function, respectively. The maximum
likelihood estimation in Equation (7) is adopted to estimate the hyperparameters. Once
the two Kriging models for both mean and Std of the responses are built, the composed
Kriging model is then obtained that is assumed to follow a lognormal distribution [4].
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Figure 4. Example of nonlinear time history analysis results: (a) Time history data of column top
drift ratio and (b) Hysteretic behavior in terms of column top drift ratio and base shear.
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3.4. Fragility Analysis

With a particular focus on the performance of the column, its EDP is quantified in
terms of the maximum drift ratio. The damage states according to the drift ratio EDP are
damage with initial cracking (DS1), cover concrete spalling (DS2) and column failure (DS3).
For this typical reinforced concrete column with a circular cross-section, three damage
states and their median drift ratios for the LS are defined [20], as shown in Table 5.
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Table 4. Basic function comparison by the LOO error estimation.

Basic Function RMSE R2 RMAE

Ordinary 0.124 0.965 0.778
Linear 0.117 0.969 0.649

Quadratic 0.090 0.981 0.981
1st-degree polynomial 0.119 0.968 0.679
2nd-degree polynomial 0.087 0.983 0.357

Table 5. Damage states and corresponding limit states for the column drift EDP.

Damage
State Damage State Limit Description Median Drift Ratio for

the Limit State (%)

DS1 Negligible damage with initial cracking 0.23
DS2 Cover concrete spalling 1.64
DS3 Column failure 6.72

Given the limit states, the fragility curves of the corresponding failure modes are
derived based on Monte Carlo simulations which are performed on the composed Kriging
metamodel. Given a range of PGA values varying from 0.01 g to 1.5 g with a step size
of 0.01, the simulated are repeated for each PGA in the range which incorporates the
modeling parameters to generate a new DOE. The post-processing of the data on a large
number of samples, i.e., 10,000 samples for each PGA, results in fragility curves of the three
failure modes of the column, as shown in Figure 6. To ensure a smooth curve and a reliable
result, a large number of samples must be used; this is only possible in the context of an
available metamodel. The fragility curves presented in Figure 6 show the probabilities of
exceeding the drift limits of the column. For DS1, the 50% probability of failure corresponds
to a PGA value of around 0.15 g, while this figure for DS2 is about 1.3 g. The probability of
occurrence of DS3 is very limited.

1 
 

 

Figure 6 
 
 

 

Figure 7  
 
 

 

Figure 8 
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Figure 6. Fragility curves for different damage states of the column considering the range of the
input random variables in Table 1.

In addition, the advance of the metamodel is its flexibility to rapidly draw fragility
curves for different input conditions. For examples, it can easily assess the effect of
one input variable on the seismic fragility of the column without re-construction and
re-evaluation of the model. For example, by considering the lower and upper values of one
of the geometry variables, i.e., the column height, the span length, or the column diameter,
corresponding fragility curves for the DS1 and DS2 are respectively obtained as shown in
Figures 7–9. It is noticed that the remaining variables are kept in the range illustrated in
Table 1.
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Figure 7. Fragility curves for DS1 and DS2 of the column with the lower and upper values of the
column height.
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Figure 8. Fragility curves for DS1 and DS2 of the column with the lower and upper values of the
span length.
 

2 

 

Figure 9 Figure 9. Fragility curves for DS1 and DS2 of the column with the lower and upper values of the
column diameter.

The findings from the analysis show that the geometry parameters are much sensitive
to the fragility curves of the two damage states. In Figure 7, the 50% probability of the
column damage with initial cracking (i.e., DS1) corresponding for Dc = 1 and 2 m are 0.1 g
and 0.3 g, respectively. This observation is similar to the case in which two different span
lengths (i.e., 18 and 55 m) are considered (see Figure 8), whereas the increase of the column
diameter from 1 m to 2 m significantly reduces the probability of the column failure, as
shown in Figure 9. Also of note is that there is a remarkable change in the fragility curve of
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the cover concrete spalling (i.e., DS2) for the lower and upper span lengths. This difference
is considerable in the cases of the column diameter, especially for the column height cases,
the fragility curves of the lower and upper bound are quite close. The sensitivity analysis
can be further expanded to the material parameters by setting one of the parameters as
deterministic and performing similarly the analysis based on the developed metamodel.

4. Conclusions

This paper presented a computationally efficient framework for the seismic fragility
evaluation of a class of RC highway bridges. The framework used a probabilistic meta-
model that is built based on the Kriging approach. By application to a case study of
typical single-bent RC highway bridges, this framework offered a limited of simulations
to obtain seismic fragility curves of the bridge class and showed its capacity in rapidly
predicting fragility curves for different input conditions of the random variables without
re-construction and re-evaluation of the numerical model simulation.

The metamodel was developed based on the LHS DOE of seven input random vari-
ables and the output responses obtained from time history analyses of the resulting 60 FE
models subjected to 20 near-source natural records; this led to a total of 1200 simulations.
Fragility curves of three damage states of the column were obtained using Monte Carlo
simulations carried out on the closed-form of the Kriging metamodel. Results of the analy-
sis showed the good seismic performance of the column bent of this highway bridge class
that was recognized a low probability of failure.

In addition, using a cross-validation method, a comparative study on the selection of
the trend function in the performance of the metamodel was performed. The 2nd-degree
polynomial function showed the best performance among others by comparing three
predictive error indicators, i.e., RMSE, R2, and RMAE.

The capability of the present procedure of obtaining fragility curves for different input
conditions was also demonstrated. By setting one of the input variables as deterministic
with its lower and upper bound, fragility curves of different damage stages could be rapidly
built without re-construction and re-evaluation of the numerical model. Therefore, the
fragility sensitivity of some geometry modeling parameters was assessed. The findings
from the analysis showed significant effects of the geometry parameters, such as the
column height, the span length, and the column diameter, on the seismic fragility curves of
the column.

The fragility curves were generated for the specific bridge class, i.e., single-bent RC
highway bridges with a circular column; however, the finding framework can further apply
to any type of bridges considering different sources of uncertainty.
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