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Abstract: Existing reinforced concrete (RC) members, designed in accordance with obsolete codes,
are often characterized by high stirrup spacing. The collapse mechanisms generated by high stirrup
spacing are typically related to the buckling of longitudinal reinforcement and can be accentuated
when corrosion takes place. In this paper, new refined material constitutive laws for steel, including
inelastic buckling and corrosion of reinforcement, are implemented in a fixed crack model suitable for
RC elements subjected to cyclic loadings called the PARC_CL 2.1 crack model. The effectiveness of
the proposed model is validated through comparison with available experimental data and analytical
predictions. Finally, the proposed model is used to calibrate correction coefficients to be applied to
current codes formulation for the ultimate rotational capacity prediction of non-conforming elements
subjected to buckling phenomena and characterized by corrosion of reinforcing bars.

Keywords: buckling; existing RC elements; energy dissipation; nonlinear finite element analysis

1. Introduction

It is estimated that 60% of the existing buildings in Italy were built in areas classified
as non-seismic at the time of construction [1]. A large part of these buildings date back
to the post-war period, so they were typically designed and built before seismic codes
came into force. Consequently, they are characterized by lack of details, poor material
characteristics, and/or corrosion of reinforcements.

The low percentage of transverse reinforcement and poor bond conditions determine
that dissipative regions, such as column ends, can exhibit brittle failure mechanisms.
Indeed, during loading inversions, the buckling of bars is avoided until the concrete cover
avoids the development of high compressive deformations in the steel bars. On the contrary,
when the concrete cover crushes, the compressive steel strains increase with the buckling of
the bars, determining the collapse of the member [2,3]. This type of failure mode involves,
in particular, columns of old buildings that are generally characterized by insufficient
transverse reinforcement (high stirrup spacing) and a sub-dimensioned cross-section. For
this reason, in existing reinforced concrete (RC) frame structures, the prediction of the
column deformation capacity is crucial for structural ductility assessment [4].

As suggested by current Codes [5], the seismic capacity of existing RC structures
can be evaluated by means of non-linear finite element analysis (NLFEA). However, such
methods of analysis require knowledge of the real post-elastic rotational capacities of the
structural element by defining yielding, peak resistance, and acceptable resistance decay.
In addition, in the case of non-linear cyclic analysis of strength and stiffness, degradation
models, as well as hysteretic rules, have to be defined. All these parameters can significantly
influence the assessment of the ultimate rotational capacity, generally evaluated referring
to a fixed resistance decay (usually assumed to be equal to 20%) with respect to the peak
resistance. This definition is strongly dependent on the complex phenomena influencing
the post-elastic deformation behavior, above all when structural elements are affected by
buckling phenomena or have suffered from corrosion processes. In particular, the energy
dissipation capacity of corroded RC structures might be overestimated when the buckling
of reinforcing bars is neglected, especially in the case of corrosion.
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In this framework, the likelihood of achieving a reliable prediction of the structural
behavior using NLFEA depends on the definition of an accurate theoretical model charac-
terized by realistic constitutive laws of materials and steel-to-concrete interaction.

In the literature, many authors have proposed constitutive laws for steel, including
buckling [6–17]. These formulations have recently been extended for corroded elements
and implemented in the NLFE program, specifically by adopting fiber models for beam
finite elements [18]. However, even if, in engineering practice, fiber models are widely
used, they can only consider flexural non-linearity but not non-linearity induced by shear
or torsion. Nevertheless, when the columns of existing buildings are subjected to lateral
displacements caused by earthquakes, they may experience formation of critical inclined
cracks followed by buckling of longitudinal rebars. Structural modelling by adopting solid
elements, such as membrane, shell, or brick finite elements, allows us to predict the shear
failure mode or the combined flexural—shear failure mode.

The purpose of the present paper is the definition of a reliable numerical model able to
assess the seismic capacity of non-conforming buildings and develop effective strengthen-
ing techniques. For this reason, a modelling approach based on multi-layered shell element
modelling is presented in this paper. The non-linear response of multi-layered shell ele-
ments is evaluated using a new version of the PARC_CL 2.1 crack model (where PARC_CL
2.1 stands for Physical Approach for Reinforced Concrete under Cyclic Loading) [19].
The PARC_CL 2.1 crack model is a user subroutine developed for Abaqus [20] code that
incorporates constitutive laws for steel that are able to take into account the buckling of
longitudinal rebars. It is the author’s opinion that this aspect represents a relevant novelty
in the available literature. In particular, two different constitutive laws for steel, which
have shown good performance in representing local buckling, have been implemented:
the Monti and Nuti model [6] and the Kashani et al. model [15]. The proposed model has
been successfully applied to the analysis of RC structures subjected to monotonic, cyclic,
and dynamic loading [21,22]. In addition, based on literature results and existing empirical
equations, formulations for corroded elements are also included [23,24].

For the first attempt, the proposed model is validated through comparison with
experimental tests carried out at the University of Bergamo on one corroded and one un-
corroded RC column that failed due to buckling of longitudinal reinforcement [25]. To this
end, the experimental cyclic load-drift curve, the dissipated energy, and the ultimate chord
rotation are compared with those obtained from NLFEA. Once validated, the proposed
PARC_CL 2.1 crack model is used to carry out a parametric analysis on RC columns by
varying the longitudinal reinforcement diameter and the stirrup spacing, and also includes
the corrosion of reinforcements.

In addition, the applicability of the formulation proposed in Eurocode 8-part 3 [5]
for the estimation of the ultimate chord rotation of non-conforming elements is evaluated
for corroded reinforcements. Because this formulation is not able to take into account the
severity of buckling and, most of all, the corrosion of reinforcement, a reductive coefficient
is proposed as a function of the mass loss of the longitudinal reinforcement.

Finally, some comparisons between analytical and NLFEA results are provided in
terms of resistance and ductility of un-corroded and corroded columns to highlight the
cases where the formulations provided by the codes for existing members require further
adjustment to allow reliable and safe structural verifications.

2. Materials and Methods
2.1. The PARC_CL 2.1 Crack Model for RC Elements

The PARC_CL 2.1 crack model is based on a total strain fixed crack approach and
assumes reinforcement smeared in the hosting concrete element. More information about
the modelise available in Belletti et al. [19]. The new release incorporates formulations for
corroded RC elements as well as constitutive laws for steel able to take into account the
buckling of reinforcing bars. In particular, three constitutive laws for the simulation of the
cyclic behavior of steel are implemented: the Menegotto and Pinto [26] model, the Monti
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and Nuti model [6] (successively modified [27]), and the Kashani et al. model [15]. The
latter two models have been recently implemented with the aim of extending the feasibility
of the PARC_CL 2.1 crack model to the analysis of existing RC members with high stirrup
spacing, in which the buckling of longitudinal reinforcement is expected. In this regard,
one of the main parameters governing the buckling phenomena is the slenderness ratio, λ,
i.e., the ratio between the stirrup spacing and the longitudinal bar diameter.

The Monti and Nuti [6] model incorporates a set of hardening rules, generated by the
plastic deformation of the bars after the achievement of the yield stress, into the widely
used stress-strain relationship of Menegotto and Pinto [26]. In particular, the Monti and
Nuti model [6] is characterized by a kinematic and an isotropic component, differently
from the Menegotto and Pinto formulation [26], which considers only the strain isotropic
hardening. The authors observed that the buckling occurs when λ exceeds a critical value,
λcr, equal to 5. Indeed, only when λ exceeds the critical value is he monotonic response
affected by the buckling effect. In this latter case, after the reaching of the yield stress
in compression, the absolute value of the compressive stress decreases with decreasing
deformations; Figure 1a.
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Figure 1. Constitutive law for steel including buckling: (a) Monti and Nuti model and (b) Kashani et al. model.

The yield stress, both in tension and in compression, referred to the n+1 half-cycle,
σn+1

0 , is defined in Equation (1):

σn+1
0 = fy·sign (−ξn

p) + ∆σn+1
KIM (1)

where fy is the initial value of the yield strength, ξn
p is the plastic excursion, and ∆σn+1

KIM
is the additional contribution due to the kinematic and isotropic hardening, defined as
in Equation (2):

∆σn+1
KIM = P∆σn

KM + (1− P)∆σn
I ·sign (−ξn

p) (2)

P is the weight attributed to each rule (isotropic ∆σn
I , kinematic and memory ∆σn

KM).
Its value ranges between 0 and 1 and can be calibrated based on the experimental results [6].
The kinematic rule is coupled with the memory rule to account for the capacity of the
material to memorize the plastic path followed.

The Monti and Nuti model [6] therefore presents the advantage of a simple and
continuous function for the definition of the stress; however, it was calibrated according
to the results obtained for a limited set of reinforcements. In particular, the parameters of
the model are calibrated for steel rebar Feb44 with a yield stress equal to 450 MPa, with
slenderness ratio until 11. However, existing RC structures characterized by inadequate
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stirrup spacing could reach a value of slenderness ratio higher than 11. This is the most
important limitation of the model.

Starting from the observation of bare bars with a yield strength between 400 and
500 MPa and 8 ≤ λ ≤ 30, Kashani et al. [15] proposed a new stress-strain model for steel
that was able to take into account the buckling of longitudinal rebar and low-cycle high
amplitude fatigue; Figure 1b. According to experimental [28] and parametric [29] studies,
the Kashani et al. model [15] considers that reinforcements do not buckle for λ < 6. In
this case, the compressive behavior can be assumed to be equal to the tensile one. For
6 < λ < 8, the sample buckles but the post-yield softening in compression is not influenced,
and for this reason it can be assumed as elastic perfectly plastic. Instead, when λ ≥ 8, a
compressive softening curve is observed.

In Figure 2 is shown a comparison between the experimental response of a bare bar
subjected to buckling phenomena [29] and the numerical results obtained using different
steel models. The yielding strength of the bare bar was equal to 540 MPa with a slenderness
ratio equal to 10. In general, it can be observed that the Menegotto and Pinto model is able
to estimate, with good approximation, the tensile stress values but, due to its formulation,
it is not able to simulate the softening behavior in compression caused by buckling. Indeed,
the stress–strain response is symmetric in tension and compression without showing cyclic
degradation. Instead, the Monti and Nuti [6] and the Kashani et al. [15] models are able
to approximate both the tensile and compressive stress. On the other hand, when large
strain values are reached, the Monti and Nuti model [6] tends to overestimate the results,
both in reloading from compression to tension and in the compression branch. Instead, the
Kashani et al. [15] model is able to simulate both the tensile and compressive response in
terms of achieved stress.
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Figure 2. Comparison between non-linear finite element (NLFE) analyses obtained using the
PARC_CL 2.1 crack model and experimental results.

2.2. The PARC_CL 2.1 Crack Model for RC Corroded Elements

It is not uncommon that existing buildings suffer corrosion of reinforcement. Corrosion
can cause premature concrete crushing, size reduction of reinforcements, degradation of
mechanical properties of steel and concrete, and degradation/breaking of the stirrups,
with consequence on the seismic response and the failure mode of the RC elements. For
this reason, new formulations for damaged concrete and corroded reinforcements have
been introduced in the PARC_CL 2.1 crack model to simulate the behavior of corroded
structural elements.

2.2.1. Reinforcing Bars

The most common approach to corrosion is the reduction of the cross-sectional area of
the corroded reinforcements. However, this simplified approach does not take ductility
reduction into account. For this reason, a variation of the stress-strain relationship of the
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corroded reinforcement is proposed in Kashani et al. [15] and implemented in the PARC_CL
2.1 crack model. The proposed formulations account for a reduction of mechanical prop-
erties due to pitting corrosion, decreasing both the capacity and the ductility developed
by reinforcements. In particular, the yield strength and the ultimate strain in tension of a
corroded bar can be evaluated according to Equations (3) and (4), respectively; Figure 3a.

f ′y = fy(1− βs·ψ) (3)

ε′u = εu(1− βe·ψ) (4)

where fy and f′y are the yield strength of the un-corroded and the corroded bar, respectively;
εu and ε′u are the ultimate strain of the un-corroded and the corroded bar, respectively; ψ is
the mass loss percentage; βs is a coefficient equal to 0.005; and βe is set equal to 0.05 for
bars in concrete.
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It is worth mentioning that the Kashani et al. [15] model also considers the effect
of corrosion on the cross section, considering an average reduced cross section diameter
(effective section), φ′; Equation (5).

φ′ = φ
√

1− ψ (5)

Finally, the compression response of reinforcing bars is modified according to Equation (6):

f ′yc = fy(1− β·ψ) (6)

where f′yc is the buckling strength of the corroded bar deduced by the mean sectional
area of the corroded bar (as a function of the mass loss) and fy is the yield strength of the
un-corroded bar; Figure 3a. β represents the influence of non-uniform pitting corrosion,
and its value is a function of the slenderness ratio, as reported in Prota et al. [14].

2.2.2. Concrete Elements

The greater volume of corroded steel can cause delamination and spalling of the
concrete cover, and consequently the strength of the concrete in compression can be
compromised. In this regard, Coronelli and Gambarova [30] provided a simple formulation
to reduce the compressive strength of the damaged concrete; Equation (7):

f ′c =
fc

1 + K·ε1/εc0
(7)
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where fc is the compressive strength of undamaged concrete; f′c is the compressive strength
of damaged concrete; K is a coefficient related to the bar roughness and diameter; εc0 is
the strain at the peak compressive strength, fc; and ε1 is the average strain in the cracked
concrete, which can be obtained from Equation (8):

ε1 =
πnφ(vrs − 1)

(
1− 0.1

√
100− ψ

)
b0

(8)

where n is the number of bars in compression; vrs is the ratio of volumetric expansion of the
oxides with respect to the un-corroded material, which can be taken to be equal to 2 [31];
and b0 is the section width in the un-corroded state.

Finally, Figure 3b shows the compressive behavior of damaged and undamaged
concrete elements.

3. Results
3.1. Validation of the PARC_CL 2.1 Crack Model

To validate the proposed PARC_CL 2.1 crack model, a set of two experimental RC
columns, cyclically tested by Meda et al. [25], have been selected. The columns were
1.80 m in height with a square 300 mm × 300 mm section and were reinforced with
4Ø16 longitudinal steel bars. They were characterized by poor material characteristics,
Table 1, and large stirrup spacing (ϕ8@300 mm at the column base). In particular, one
column was subjected to artificial corrosion of the longitudinal reinforcement until there
was a mass loss of about 20%, while stirrups were protected from corrosion. An axial load
of 400 kN was applied and, finally, a cyclic horizontal displacement history was imposed
at a height of 1.5 m from the column foundation connection.

Table 1. Mechanical properties of columns adopted in NLFEA.

Concrete Longitudinal Reinforcement

fc
[MPa]

fct
[MPa]

Ec
[MPa] λ

fy
[MPa]

fyc
[MPa]

fu
[MPa]

Es
[MPa]

Un-corroded 19.0 1.5 25,000 19 520.0 −520.0 620.0 210,000

Corroded 9.40 1.5 25,000 21 468.0 −391.0 500.6 210,000

The numerical model is shown in Figure 4. For evaluating the proper and stable
mesh size, a mesh sensitivity analysis has been performed [32]. The columns have been
modelled using four-node shell elements (S4, [20]) with full integration and three Simpson
integration points for each layer along the thickness. The element thickness has been
subdivided into seven layers to properly describe the reinforcement layout. An elastic
material has been adopted for the foundation, while different materials have been used for
the columns to distinguish the slenderness ratios of longitudinal rebars and reinforcement
ratios of stirrups.

With reference to the x-y-z system of Figure 4, the displacements at the base in the z
direction, the displacements of the extreme nodes of the foundation in the x direction, and
the displacements of all the nodes of the column in the y direction have been prevented.

More details of the mechanical properties adopted in NLFEA for the selected columns
are provided in Table 1. For the corroded column, because the stirrups were protected in
the experimental test, they have been modelled with reference to the mechanical properties
of un-corroded rebars. The concrete cover elements have been modelled using damaged
properties, as shown in Table 1, while the concrete core elements have been assumed to be
undamaged. Finally, the corroded properties of the longitudinal reinforcement have been
evaluated in accordance with the formulations presented in Section 2.2.
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The NLFEA has been performed using displacement control method. A regular type
Newton–Raphson incremental iterative method has been applied.

Because the spacing between stirrups was inadequate, both the columns developed
the instability of the longitudinal reinforcement at the column base. In order to highlight
the differences between considering and disregarding the buckling phenomena in the
prediction of the nonlinear behavior of RC elements, the nonlinear analysis have been per-
formed using the three constitutive laws for steel implemented in the PARC_CL 2.1 model:
the Menegotto and Pinto model, the Monti and Nuti model, and the Kashani et al. model.
In this regard, the actual slenderness ratio has been adopted for the numerical analysis
conducted using the Kashani et al. model for steel, while the maximum acceptable value of
slenderness (equal to 11) has been used for the Monti and Nuti analysis. On the contrary,
since the Menegotto and Pinto model is not dependent on the slenderness ratio’s values of
the longitudinal bars, the buckling phenomena has been neglected.

Figure 5 shows the comparison between the load-drift curves obtained by NLFE
analysis, carried out with the PARC_CL 2.1 crack model, and the experimental one, both
for the corroded and the un-corroded column.

Observing Figure 5a, until a drift equal to 2% (corresponding to the beginning of
the softening behavior), the results of the NLFE analyses are similar because the concrete
controls the behavior of the column and the steel does not exhibit buckling. Instead, for
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drifts larger than 2%, the concrete starts to crush in compression and consequently the
longitudinal reinforcements start to work in compression. Starting from this point, the
experimental curve shows a softening behavior, while the NLFE analysis conducted with
the Menegotto and Pinto model keeps on growing. Similarly, the Monti and Nuti model
does not catch the peak load and overestimates the ultimate capacity. Furthermore, the
stiffness in the unloading and reloading branches is also overestimated, highlighting the
inability of an accurate simulation of the hysteretic cycles. On the contrary, the Kashani
et al. model exhibits a more pronounced softening behavior, closer to the experimental one
in respect of the Monti and Nuti one. Furthermore, the Kashani et al. model permits us to
predict with better accuracy the hysteretic behavior of the cycles, both for low and high
levels of drift. Certainly, the fitting of results obtained using the Monti and Nuti model is
affected by the difference between the actual slenderness of the longitudinal reinforcing
bars with respect to the intrinsic limit of the model. For other case studies characterized
by slenderness ratio lower or equal to 11, the Monti and Nuti model can provide good
response prediction, as can the Kashani et al. model. In that case, the Monti and Nuti
model could be easier to implement and could provide a more stable convergence thanks
to the simplicity of its formulation.
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Figure 5. Comparison between the experimental and numerical responses in terms of load-drift curve: (a) un-corroded
column, (b) corroded column.

Figure 5b shows the results obtained for the corroded column, where the same trend
of the un-corroded column is observed. Indeed, once again, the Kashani et al. model
returns the most realistic result in terms of maximum peak load and stiffness during the
unloading-reloading cycles.

Observing Figure 5, it is possible to conclude that any steel model not including
buckling is unable to capture the actual ultimate resistance of an RC member characterized
by high stirrup spacing.

It is commonly recognized that, in predictive numerical simulations, the estimation of
dissipated work is a matter of interest and its prevision is highly dependent on realistic
modelling of possible structural damages under cyclic loadings. In this regard, Figure 6
shows the normalized cumulative work, i.e., the cumulative work of each half cycle
divided by the total cumulative work of the experimental column. The cumulative energy
dissipation is defined as the sum of the energy dissipated in each cycle, while the half cycle
number corresponds to the change of the drift sign.
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Figure 6. Comparison between the experimental and numerical responses in terms of energy dissipation capacity: (a)
un-corroded column, (b) corroded column.

Figure 6b demonstrates that disregarding the inelastic buckling of reinforcing bars
can lead to significant overestimation of the energy dissipation capacity of deteriorated
RC structures. However, it is worth noting that this criterion is not sufficient to highlight
the potentiality of adopting steel models that include buckling. Indeed, all the NLFEA
results obtained for the un-corroded column are similar and are in good agreement with the
experimental one, Figure 6a. This is due to the fact that both the load-drift curves obtained
using the Menegotto and Pinto model and the Monti and Nuti model overestimate the load
and at the same time underestimate the stiffness during the unloading-reloading cycle.

3.2. Parametric Analysis on Buckling Effects in Existing Un-Corroded Columns

Once validated, the numerical model has been extended to further case studies with
the aim of studying the influence of the longitudinal reinforcement diameter, φ, the stir-
rup spacing, s, and corrosion of longitudinal reinforcement on the cyclic behavior of
the columns.

Starting from the reference un-corroded column tested by Meda et al. [25], columns
with longitudinal bar diameters equal to 14 mm, 16 mm (reference), 18 mm, 20 mm, 22 mm,
and 24 mm have been studied, keeping the other properties unchanged. In addition, the
cases in which the stirrup spacing is 100 mm, 150 mm, 200 mm, 300 mm (reference), and
400 mm have been analyzed. Finally, the reference column has been analyzed considering
mass losses for longitudinal reinforcement equal to 10%, 20% (reference), and 30, with
and without corrosion of the stirrups. The study of the corroded columns has also been
extended to the cases with a longitudinal reinforcement diameter equal to 20 and 24 mm.

The columns have been modelled by adopting the same modelling strategies presented
in the previous paragraph and by using the three constitutive laws for steel available in the
PARC_CL 2.1 crack model. Furthermore, the NLFEA have been carried out up to failure,
in order to highlight the potentiality of adopting models able to consider the buckling
phenomenon of longitudinal rebars, when necessary.

A critical evaluation of the ability of the proposed models to catch the ductility of an
existing RC column can be made through the evaluation of the ultimate chord rotation
capacity. Generally, the rotational capacity, θu, corresponds to a 20% strength decay on the
envelope curve. The envelope curve includes extreme points of imposed displacement
cycles and in-cycle softening branches, if present, as shown in Figure 7.
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Figure 7. Reaction moment-chord rotation curve obtained from NLFEA: (a) column s150, (b) column ϕ22.

For the sake of brevity, only two examples will be reported in order to explain the
adopted procedure. The first analyzed case study refers to the column with stirrup spacing
equal to 150 mm (column s150); Figure 7a. The second case study refers to the column
characterized by longitudinal reinforcement equal to 4ϕ22 (column ϕ22); Figure 7b. As
shown in Figure 7, the ultimate chord rotation obtained by using the Menegotto and Pinto
model is much higher than those obtained by using the Kashani et al. model. This is due to
the fact that the strain field developed by the Kashani et al. model, as well as the Monti
and Nuti model, reaches the buckling of the longitudinal reinforcement and the crushing
of the concrete cover, resulting in a more pronounced softening behavior.

Figure 8 summarizes the ultimate chord rotation values obtained for all the analyzed
case studies. As expected, the ultimate chord rotation of the un-corroded reference column
(longitudinal bars diameter equal to ϕ16 and stirrup spacing equal to 300 mm) is predicted
with high accuracy using the Kashani et al. model. The variation of the longitudinal
reinforcement diameter, as well as the stirrup spacing, causes a variation of the slenderness
ratio, up to values equal to 25. With the increase of the slenderness ratio, the differences
between the ultimate chord rotation prediction obtained using the Kashani et al. model
and the Monti and Nuti model increases while, for a slenderness ratio less than 11, the
chord rotations are comparable.

Figure 8 also reports the ultimate chord rotation obtained using the formulation
proposed for an existing building in EN 1008-3:2005 [5] in Section A.3.2.2 (Limit state of
near collapse); Equation (9):

θu =
1

γel
0.016·(0.3ν)·

[
max(0.01; ω′)

max(0.01; ω)
fc

]0.225( Lv

h

)0.35
25(αρsx

fyw
fc

)
(

1.25100ρd
)

(9)

where γel is equal to 1.5 for primary seismic elements and to 1 for secondary seismic
elements; h is the depth of cross-section; Lv is the ratio moment/shear at the end section; υ =
N/(Ac fc), where N is the axial load and Ac is the concrete gross area; ω, ω’ is the mechanical
reinforcement ratio of the tension (including the web reinforcement) and compression,
respectively, longitudinal reinforcement; fc and fyw are the concrete compressive strength
(MPa) and the stirrup yield strength (MPa), respectively, directly obtained as mean values
from in-situ tests and from the additional sources of information, appropriately divided
by the confidence factors; ρsx is the ratio of transverse steel parallel to the direction x of
loading; ρd is the steel ratio of diagonal reinforcement (if any) in each diagonal direction;
and α is the confinement effectiveness factor.
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The values of chord rotation calculated according to Equation (9) apply to elements
with ribbed bars, seismically detailed and without the lapping of longitudinal bars in
the vicinity of the end region, where yielding is expected (plastic hinge region). The
correction coefficient applied to members with ribbed bars without seismic detailing is
equal to 0.825. This latter constant coefficient does not take into account the severity of the
buckling phenomena, which may degrade the cyclic response of columns, as demonstrated
in Figure 8.
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Figure 8. Comparison of ultimate chord rotation for different values of: (a) longitudinal bars diameter, ϕ, (b) stirrups
spacing, s.

Figure 8 shows that neglecting the buckling of rebars in NLFEA can cause an overesti-
mation of the ultimate chord rotation. Comparing the analytical value of the chord rotation
with the experimental result of the un-corroded column, it emerges that Equation (9) is
on the safe side. Indeed, Equation (9) was calibrated on the basis of a large database of
representative specimens and extended to poorly detailed members, so it also implicitly
considers the case of existing members that exhibited buckling of longitudinal rebars [33].
On the other hand, Equation (9) is not affected by the variation of the longitudinal reinforce-
ment diameter because, in the examined case studies, the reinforcement in compression
and tension are symmetric, meaning that symmetric sections with different amounts of
longitudinal reinforcement have the same ductility. It is also independent of the stirrup
spacing because, in Equation (9), the ratio of transverse steel is multiplied by the confine-
ment effectiveness factor, α, which, for stirrups with inadequate anchorage (usually with
135-degree hook along the length of the member), can be assumed to be equal to 0.

The prediction of the ultimate chord rotation evaluated by NLFEA by adopting the
Menegotto–Pinto model or the Monti–Nuti model give the results of being unsafe because
the capacity, in terms of ductility, is higher than the capacity obtained by considering the
buckling of longitudinal reinforcement.

Figure 8b shows that, in the case of columns with a low value of stirrup spacing (s100),
where buckling phenomena are not affecting the column cyclic response, the ultimate chord
rotation evaluated with the Menegotto–Pinto, Monti–Nuti, and Kashani et al. models result
the same. Furthermore, Figure 8b shows that, in the case of columns with a low value of
stirrup spacing (s100, s150), Equation (9) provides a too conservative estimation of the
ultimate rotation capacity.

Figure 8b shows that, in the case of high stirrup spacing (s200, s300, s400), the para-
metric analysis on un-corroded RC columns highlights the need to adopt more refined
constitutive laws in order to obtain more realistic predictions. Indeed, for high stirrup
spacing (s300, s400) Equation (9) could display an unsafe result that is lower than the
ductility capacity evaluated by considering buckling phenomena.
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3.3. Parametric Analysis on Buckling Effects in Existing Corroded Columns

The parametric study has been extended to the analysis of corroded RC columns.
In particular, the reference column (longitudinal reinforcement equal to ϕ16) has been
analyzed considering different scenarios of mass loss; Figure 9a. Because it is demon-
strated that the Monti–Nuti model is not able to return a reliable result for a high value of
slenderness ratio, the parametric analysis has been conducted using the Menegotto and
Pinto model and the Kahani et al. one. As expected, the Kashani et al. model is able to
provide more realistic results in respect of the Menegotto and Pinto model, which widely
overestimates the chord rotation at failure.
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Figure 9. Comparison of ultimate chord rotation in the function of the mass loss for different values of longitudinal
reinforcement diameter: (a) ϕ16, (b) ϕ20, and (c) ϕ24.

In addition, the study is extended to longitudinal reinforcement diameters equal to
20 and 24 mm, also considering the corrosion of stirrups; Figure 9. Indeed, stirrups are
typically corroded in real structures and are generally exposed to higher aggression of
corrosion than longitudinal reinforcement, compromising the shear capacity and causing a
reduction of the compressive capacity and ductility of RC columns.

In the case of corroded stirrups, the NLFEA have been carried out by assuming the cor-
rosion of stirrups equal to 3.5 times the corrosion of longitudinal reinforcements, according to
experimental evidences [34]. In particular, for the case study with a mass loss of the longitudinal
reinforcement equal to 30%, stirrups have not been considered. The yield strength and the ultimate
tensile strain have been modified according to Equations (3) and (4), respectively. In addition, the
influence of stirrup corrosion on the behavior of longitudinal reinforcement has been taken into
account by assuming the buckling length as twice the case of un-corroded stirrups.

Because the stirrup spacing for the analyzed case studies is high (equal to 300 mm), the
corrosion of stirrups does not significantly affect the ultimate chord rotation. However, the
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ultimate strain of corroded stirrups has been reduced, and for this reason stirrup rupture
has been observed in NLFEA for mass loss higher than 20% [23].

The predicted ultimate chord rotations obtained from NLFEA are compared with
Equation (9). As shown in Figure 9, the ultimate chord rotation provided by NLFEA is
in good agreement with the results obtained using Equation (9) for un-corroded columns
(mass loss equal to 0%), while it diminishes with the increase of the mass loss differently
to Equation (9). It is worth mentioning that Equation (9) does not provide any suggestion
for corroded elements and for this reason a constant value for all the considered corrosion
levels is obtained. This constant value overestimates the ductility of the reference corroded
RC column by about 75%.

Finally, the ultimate chord rotations obtained using the Kashani et al. model is
compared with Equation (9) for columns with longitudinal reinforcement equal to 16 mm,
20 mm, and 24 mm, subjected to different corrosion levels (0%, 10%, 20%, and 30%);
Figure 10a. The ultimate chord rotation provided by NLFEA diminishes with the increase
of the mass loss and the longitudinal reinforcement parameter, while Equation (9) is not
affected by these parameters. This explains the large scatter between the numerical and
analytical chord rotation obtained for high values of mass loss.
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Figure 10. Normalized chord rotation in the function of the mass loss: (a) for different longitudinal reinforcement diameters.
Proposed formulation for: (b) ϕ16, (c) ϕ20, and (d) ϕ24.

With the aim of extending Equation (9) to the study of existing corroded RC elements,
a reductive coefficient value, αCOR, to be multiplied by Equation (9), is proposed. For this
reason, in Figure 10 the ratio between the ultimate chord rotation obtained from NLFEA
(adopting the Kashani et al. model) and those obtained from Equation (9) is plotted in
the function of the mass loss. As shown, the reductive coefficient, αCOR, varies with the
corrosion level and with the tendency of longitudinal bars to buckle.
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On the basis of the obtained results, the following bi-linear expression is proposed:

αCOR =

{
a− b·ψ i f 0 < ψ ≤ ψlim

ψlim·α− c·(ψ− ψlim) i f ψlim < ψ
(10)

where ψlim is equal to 10%, while a, b, c, are parameters reported in Table 2 for the analyzed
case studies.

Table 2. Parameter values for the proposed formulation.

ϕ16 ϕ20 ϕ24

a 1 0.95 0.82

b 0.03 0.03 0.023904

c 0.0075 0.012 0.007806

3.4. Comparison between Analytical and NLFEA Capacity Prediction

The capacity prediction, both in terms of resistance and ductility obtained by analytical
and NLFEA are compared in this section. Furthermore, the ductile or brittle failure mode
exhibited by the analyzed columns is evaluated. This is of particular interest because, in
existing buildings, the possible onset of a brittle failure of the RC column represents the
crisis of the whole structure.

According to CNR-DT 212/2013 [35], ductile and the brittle behavior can be evaluated
by adopting analytical methods at the intersection of the resistance versus chord rotation
relationships that describe the flexural and the shear non-linear response; Figure 11. The
shear failure in the elastic field (Case A) is achieved when this intersection occurs before
flexural-yielding, determining a brittle failure. The shear failure in the plastic field (Case
B) is achieved when the intersection occurs after flexural yielding. Finally, ductile failure
(Case C) is achieved when the ultimate chord rotation is reached before the intersection.
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Figure 11. Shear-bending interaction and failure modes.

The flexural capacity of a corroded column can be evaluated from the equilibrium
conditions of internal forces in the cross section, considering the corroded properties of
reinforcements. Furthermore, because it has been observed that the concrete cover of
longitudinal bars spalled off due to corrosion, a reduced cross section is considered.
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According to Biskinis et al. [36], the nominal shear strength is calculated as the sum of
the contribution of concrete, VC, the contribution of transversal reinforcement, VW, and of
the axial load, VN. The concrete contribution can be evaluated as:

VC =
[
1− 0.05min

(
5; µ

pl
∆

)]
·
{

0.16max(0.5; 100ρtot)·
[

1− 0.16min
(

5;
LV
h

)]
·
√

fc·Ac

}
(11)

The contribution of transversal reinforcement is given by:

VW =
[
1− 0.05min

(
5; µ

pl
∆

)]
·ρw·bw·z· fyw (12)

and the axial load contribution is given by:

VN =
h− x
2·LV

min(N; 0.55Ac· fc) (13)

where h is the depth of the cross-section, x is the compression zone depth, ρtot is the total
longitudinal reinforcement ratio, ρw is the transverse reinforcement ratio, and z is the length
of the internal lever arm.

The plastic part of the displacement ductility factor can be estimated following Equation (14):

µ
pl
∆ =

θu − θy

θy
(14)

where θu and θy are the ultimate chord rotation and the yielding rotation, respectively. θy
is the chord rotation at yield, as defined by Equation (15) for RC columns:

θy= Φy
Lv

3
+ 0.0013·

(
1+1.5

h
Lv

)
+ 0.13·Φy·

dbL· fy√
fc

(15)

Table 3 reports the comparison between the failure mode obtained by analytical
calculation and by NLFEA. As expected, the analytical predictions are on the safe side,
providing lower capacities than the NLFEA ones.

In the case of corroded stirrups or in the case of un-corroded columns with ϕ24 longi-
tudinal rebar, brittle failure modes are expected by adopting analytical methods. On the
contrary, flexural failures are detected by NLFEA, except for column ϕ16 with mass loss
equal to 20 and 30% in the case of the corrosion of stirrups. In those cases, the NLFEA
exhibited a shear failure with the rupture of the stirrups at the column base. This aspect
confirms that too conservative shear resistance formulations can lead to failure modes’
predictions not respecting the actual column behavior. Therefore, in future studies a new
model recently provided by Biskinis and Fardis [37] will be adopted for a more accurate
analytical prediction of the shear capacity of columns subjected to cyclic degradation.

According to the definition of the ductility factor provided in Equation (14), the com-
parison between the numerical and analytical prevision are reported in Table 3. As expected,
because the ductility factor depends on the ultimate chord rotation capacity experienced
by the structural element, the ductility factor obtained from NLFEA diminishes with the
increase of the mass loss. Finally, Figure 12 reports the ductility factors obtained from
NLFEA and analytical calculations. Once again, the results demonstrate that disregarding
buckling in RC elements with high stirrup spacing causes an incorrect evaluation of the
available ductility.
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Table 3. Comparison between failure modes and ductility factor obtained from analytical calculations and NLFEA.

Manual Calculation NLFEA

Corrosion
Level [%]

Failure
Mode

V
[kN] µ

pl
∆

Failure
Mode

Vmax
[kN]

Vu
[kN] µ

pl
∆

ϕ16

Un-corroded
stirrups

0 F 60.21 1.36 F 62.90 50.32 1.94
10 F 46.94 1.26 F 54.09 43.27 1.48
20 F 42.89 1.44 F 45.54 36.43 1.50
30 F 39.12 1.62 F 40.89 32.71 1.27

Corroded stirrups
10 S-F 46.94 1.26 F 52.52 42.02 1.50
20 S 35.39 1.44 Stirrups rupture 42.48 33.99 1.44
30 S 28.08 1.62 Stirrups rupture 38.43 30.74 1.18

ϕ20

Un-corroded stirrups

0 F 78.03 1.22 F 78.65 62.92 1.92
10 F 61.39 1.10 F 67.79 54.23 1.14
20 F 55.11 1.27 F 56.13 44.90 1.00
30 F 49.26 1.47 F 49.15 39.32 0.53

Corroded stirrups
10 S 52.34 1.10 F 64.34 51.47 0.81
20 S 40.12 1.27 F 49.85 39.88 0.94
30 S 32.28 1.47 F 45.03 36.03 1.02

ϕ24

Un-corroded stirrups

0 S 87.96 1.03 F 99.72 79.78 0.96
10 S 72.86 0.95 F 84.63 67.70 0.55
20 S-F 70.26 1.13 F 68.81 55.05 0.52
30 F 61.65 1.32 F 58.88 47.11 0.50

Corroded stirrups
10 S 58.66 0.95 F 78.85 63.08 0.50
20 S 45.86 1.13 F 59.31 47.45 0.50
30 S 37.37 1.32 F 51.26 41.01 0.49

F = flexural failure, S-F = shear-flexural failure, S = pure shear failure, Vmax is the maximum load reached by NLFEA, and Vu is the load
corresponding to failure.
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4. Conclusions

The most diffused reinforcing steel material models, frequently adopted in the design
practice, can simulate the non-linear behavior of RC columns before the buckling failure
but not the degradation effects caused by severe buckling of vertical reinforcement [38],
overestimating the capacity in terms of strength and ductility. However, the buckling of
longitudinal reinforcement substantially influences the response of RC existing structural
elements. For this reason, a numerical crack model able to take into account the buckling
failure is developed and applied to RC columns. The proposed crack model is also able to
consider the corrosion effects on RC elements subjected to cyclic loadings. Based on the
obtained results, the following remarks can be drawn:

• Efficient models able to take into account more realistic behavior of the materials as
well as the failure mode are needed. Models for steel that include buckling avoid
overestimation of the strength, energy dissipation, and ultimate capacity of the existing
structure, most of all when corrosion of reinforcement occurs. Indeed, when the
Menegotto and Pinto model is adopted, an overestimation of the ultimate resistance
of about 10% for the un-corroded column and of about 18% for the corroded column
is obtained, while an ultimate chord rotation twice the value of the experimental one
is found.

• Steel models that neglect the buckling of rebars are not able to capture the reduction
of the resistance and ductility.

• Multi-layered shell elements could be a powerful tool for providing a more refined
moment-curvature or rotation relationship that can be applied to simplified modelling
techniques as lumped plasticity models or modelling with beam elements (more
suitable in the case of large structures with many degrees of freedom).

• The global behavior of existing RC elements subjected to cyclic loading could also
be affected by material degradation. Corrosion of reinforcement is one of the main
causes of deterioration of RC structures that can anticipate the buckling phenomena,
drastically reducing the ductility of the structural element.

• Current Codes do not provide indications for the assessment of corroded RC structures,
causing an overestimation of the ultimate chord rotation prediction. In this framework,
once validated, numerical analysis could be useful to calibrate analytical formulation
provided by codes.
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