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Abstract: The development of artillery in Europe at the end of the Middle Ages brought a necessary
change in military architecture. This change was a radical rethinking of the entire geometry and
architectural design of city walls which required an increase in thickness to resist repeated artillery
strikes. The damage due to the impact loads on Middle Age fortification walls is analyzed herein
with explicit dynamic analyses. This study was developed both with finite element models and an
innovative rigid body-spring model with diagonal springs (RBSM), showing the different peculiarities
of these two different approaches and how their results can be integrated. The numerical models
clearly showed that the presence of an inner core of softer material tends to modify the impact effects
by reducing the degree of damage at the expense of an extension of the damaged area.
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1. Introduction

At the end of the Middle Ages, there was a widespread development in artillery.
During the Hundred Year War (1337–1453), cannons became an integral part of European
warfare. By the 16th century, cannons were made in a great variety and in several sizes,
continuously improving maneuverability, power and range, and proving to be far more
effective than previous weapons of previous ages in terms of attacking fortresses. Machi-
avelli, in l’Arte della guerra (The Art of War (1521)), wrote: “there is no wall, whatever its
thickness that artillery will not destroy in only a few days”.

Artillery then led to a significant change in military architecture. As reported by
Galileo Galilei in “Breve istruzione all’architettura militare” (Brief Instructions in Military
Architecture, (1593)) [1], before the spread of artillery, the efficiency of fortifications was
principally related to their height, which prevented enemies climbing and helped overlook
the lands outside the fortification. During the second half of the 15th century, the fortifica-
tions were completely reinvented. In some cases, the existing fortifications were modified,
reducing their height and building the embankment behind them, as it happened in Pisa
in 1500 [2]. Instead, the new walls were built with ditches, great embankments, and were
especially shaped in order to prevent having undefended points. These elements were
characteristics of the bastion forts or Italian fortifications.

Typical Middle Age fortifications were high vertical thick stone walls. Their height
and their vertical front, which were strong points against climbing, became weak points as
soon as the walls started to be damaged by the artillery strikes because they easily collapsed
due to instability. Furthermore, masonry, for its reduced tensile strength, is particularly
vulnerable to impact loads, as has been widely proven by experimental and numerical
studies [3–12]. The majority of studies considered new masonry thin walls subjected to low
velocity impacts or explosions. Instead, the fortification walls were usually decisively more
massive and made of three leaves with an inner core of poor mechanical properties, as can
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be widely observed in our historical heritage [13,14]. As such, they were more resistant
to impact loads, as proven by Lewtas et al. in their study of one of the greatest bombards
ever made [15]. In fact, the fortifications already had to resist the strikes of trebuchets and
catapults before the birth the artillery, but these had only one fourth of the energy of an
early cannon [16]. Moreover, the increase in power of the cannons soon overturned the
superiority of the defense in siege warfare, requiring a change in defensive architectures.
Some studies have already reconstructed the fortification vulnerability [17], and Kakaliagos
and Ninis [18] were able to evaluate in greater detail, through accurate historical research
and a simplified limit analysis, that, in 1453, two bombard shots were sufficient to open
a breach in the Constantinopolitan walls, which is in agreement with the results of the
dynamic analysis.

In this study, after brief historical research, the geometry of a typical medieval for-
tification and the characteristics of a common cannon shot at the end of the Middle Age
were reconstructed. The dynamic response of a typical medieval fortification to an artillery
attack was investigated through some explicit dynamic analyses. These were executed
on a 3D finite element model (FEM) and a simplified innovative rigid body-spring model
with diagonal springs (RBSM) developed from the RBSM proposed by Casolo [19–22],
which has been widely adopted for the seismic analyses of masonry structures. Since the
RBSM is a plane model, in the hypothesis of a gun battery attack, a plane strain model of
the cross-section of the wall was considered for the analyses, conveniently defining the
model thickness.

2. Middle Age Fortification Geometry

The purpose of fortifications has always been “to provide a shield that would afford the
defender an advantage and allow them to utilize available weapons to reduce the advantage of the
attackers” [23]. Considering the possible threats, during the Middle Age, well-maintained
stone walls, thick enough to resist to catapult and trebuchet shots (up to 5 m), secured
against climbers with a vertical curtain and flanking towers to kill any climber and provided
an almost invincible defense against attacks. This equilibrium was first threatened and
then overturned by artillery. In fact, although the first cannons were not able to damage the
walls and were only used to hit structures inside the walls [16], they were, already in 1400,
stronger than the trabuchets and they were quickly developed in more powerful and more
maneuverable models, ultimately becoming “a machine of infinite importance” (1592, Luis
Collado royal engineer of His Catholic Majesty’s Army in Lombardy and Piedmont) [24].
In 1500, during the attack of the Florentine and French armies, the Pisans, seeing their walls
collapsing under French cannon fire, constructed an earthen rampart behind the threatened
sector. They observed that this wall was more resistant to the cannon fires than the more
common vertical stone walls. Following this experience, the walls’ design was radically
changed with the development of the trace italianne to respond to the increasing power of
artillery [2].

Despite suffering attacks during the 16th century, Pisa preserved its medieval walls
and today they are among the oldest examples of preserved city walls in Italy. Mainly
built between 1154 and 1261 [25], considering their geometry, they are a perfect example of
Middle Age fortifications. They are three-leaf masonry walls with a core of poor mechanical
properties, 2.2 m thick, 11 m height, on average, [26] and plumbed against climbing. In
terms of materials, according to the annals [25], almost half of the height was completed
by 1161 using gray calcareous stones from San Giuliano, and the remaining part was built
using pink-gray sedimentary square stones from Asciano between 1161 and 1261. The
merlons are now made of clay bricks but no information has been found regarding their
original construction or the use of a different material (Figure 1).
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(a) (b)

Figure 1. A photo of the Pisa fortification, reprinted with permission from ref. [27]. Licensed under the Creative Commons
Attribution-Share Alike 4.0 International license. (a) and a reconstruction of the wall cross-section (b)—measured in meters.

3. Middle Age Cannons

To simulate the effects of a cannon ball strike, it is necessary to know the ball size, its
weight and its velocity. However, most of the data available for that period are related
to the stories of observers narrating about the distance traveled by the cannon ball and
the damage caused. Only after the first cannon classifications did cannon specificities
start to appear in some documents. With regard to artillery characteristics, first of all, it
is possible to distinguish between bombards and cannons, even though this distinction is
also not univocal as most of the classification of the time [28]. The bombards were used
to launch huge balls, mainly stone balls, against fortifications to destroy them. Several
bombards are famous and their names alone used to install fear in the enemy, such as
the Mons Meg of Edinburgh with balls of 19.5-inch caliber (almost 50 cm) which used
to destroy the castles of rebellious nobles [15]. The cannons, instead, were lighter and
more maneuverable thanks to the technical improvements and more efficient gun powder
mixes. They progressively replaced the big bombards from the end of XV century, with
smaller calibers of approximately 8 inches (20 cm diameter), exploiting the velocity of a
bigger muzzle and consequently a more force to damage the fortification walls with. The
Ottomans were known for using both cannons and bombards: the cannons to damage and
weaken the walls and the bombards to beat the walls down after the cannons attack [2]. In
conclusion, depending on the artillery attack, the cannon ball might be a large stone ball or
a smaller iron ball.

With regard to the velocity of the cannon ball, the science of ballistics actually begun
in 1537 when Niccolo Tartaglia published the first scientific treatise on gunnery in the
attempt to solve the problem of cannon accuracy [29]. However, its procedure was only
based on geometry considering the fact that he was unable to gauge the velocity of the
cannon ball leaving the barrel. Only in the 1700s, when Benjamin Robins invented the
ballistic pendulum, was it possible to measure muzzle velocity [23].

The muzzle velocity of the first cannon was estimated to be equal to 130 m/s according
the facts recorded during a demonstration in Tournai (Belgium) in 1346 [16]. In general,
the first estimation of muzzle velocity V0 is possible considering the following formula
for the traveled distance (R) in the vacuum by a projectile shot with an angle φ on the
horizontal line:

R =
V2

0 sin 2φ

g
(1)
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where g is the gravity acceleration.
In contrast to muzzle velocity, many authors have reported indications of the artillery

range also considering that this aspect influenced the position of the troops during sieges.
For example, already before the 1400s, the range of the huge bombards used to launch
big stone balls against fortification walls was larger than 1280 m [16,24] and the guns
manufactured in the 16th century had a range larger than 3000 m. Considering the fact that
the inclination over the horizon cannot be bigger than 12° for constructive reasons and the
gun recoil, for a range of 3000 m, the muzzle velocity has to be at least 268 m/s according
to Equation (1). Anyway, these were only theoretical values, as reported by the same
authors, and the real range might be even one third of the theoretical one. Furthermore, it
is important to highlight that there is a lack of agreement in the data of the classifications
of the period and every army had different artillery pieces.

4. Cannon Ball Ballistic in Air

In the previous section, a reasonable muzzle velocity was obtained from the cannon
range and the range formula for motion in vacuum. However, in reality, the motion is in
the air and which exerts a drag force FD on the cannon ball in the opposite direction of
the motion:

FD =
1
2

ρaCDv2 A (2)

where ρa is the air density assumed to be equal to 1.225 kg/m3 for standard conditions;
CD is the drag coefficient function of the type of flow and consequently of the Reynolds
number [30]; v is the cannon ball velocity assuming that the air flow is null and A is the
cannon ball cross-section.

To obtain the cannon ball’s trajectory, its motion is discretized in time steps of 0.001 s.
In each time step, the motion is supposed to be uniformly accelerated and the acceleration
is equal to the ratio of the sum of forces applied at the beginning of the step to the ball mass
(m). Considering the fact that one of the applied forces is the drag force, i.e., the function
of the ball’s velocity, this was approximated with the value at the beginning of the step
tv. The position of the cannon ball at the end of each time step (t + ∆t) is consequently
obtained as 

t+∆tx = tx + tvx∆t−
t FD

tvx
m tv

∆t2

2

t+∆ty = ty + tvy∆t +
(
−

t FD
tvy

m tv − g
)

∆t2

2

(3)

In contrast to the motion in the vacuum, the ball caliber and its mass influence the
trajectory and the range. Hence, to have a range bigger than 3000 m with an initial angle of
12°, for a stone ball with a diameter of 70 cm, typical of big bombards, the muzzle velocity
has to be 295 m/s; for a stone ball with a diameter of 40 cm, typical of smaller bombards,
the muzzle velocity has to be bigger than 315 m/s; and for an iron ball with a diameter of
20 cm, typical of cannons, the muzzle velocity has to be bigger than 300 m/s (Figure 2).

Figure 2. Comparison of the trajectories computed considering or neglecting the drag force. The
computed graphs consider an iron ball (7800 kg/m3) with the diameter D equal to 20 cm, a muzzle
velocity of 300 m/s, and an initial angle of 12°
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In the end, assuming a muzzle velocity of approximately 300 m/s and in agreement
with the historical data and the reconstructions reported by other authors for specific
bombards [15,18], an approximate impact velocity of 200 m/s was assumed for the analyses,
considering the effects of the drag force that progressively reduces the horizontal velocity
of cannon ball.

5. Material Properties

The masonry properties were obtained from the Italian building code which reports
the Young’s modules and compression strength for different masonry typologies [31].
The tensile strengths were assumed to be equal to 1/10 of the compression strengths
considering the common values adopted in the literature. In further detail, considering the
three-leaf wall structure and the masonry textures, the values reported by the Italian code
for masonry with split stones with a good texture (“muratura in pietre a spacco di buona
tessitura”) were considered for the lower part of the walls. Instead, the values for masonry
with squared blocks (“muratura a blocchi lapidei squadrati”) were considered for the upper
part, increasing them by 50% assuming good transversal connections. Instead, the masonry
properties for messy stones (“muratura in pietrame disordinata”) were considered for the
wall inner core and the ones for masonry with bricks and mortar (“Muratura in mattoni
pieni e malta di calce”) for the wall merlons and top.

In agreement with the code indication, an average value of the ones reported was
considered for the Young’s moduli and a minimum value for the compressive strength. As
regards the tensile response, the mode I fracture energies (G f ) were assumed to be approxi-
mately 20 N/m in agreement with the literature values [32–34], reasonably increasing or
decreasing the value depending on the masonry typology. Table 1 summarizes the material
parameters assumed.

Table 1. Masonry’s assumed static material properties.

Masonry E (MPa) fc (MPa) ft (MPa) G f (N/m)

Split stones with good
texture 1740 2.6 0.26 20

Squared stones 2850 5.8 0.58 25
Messy stones 870 1.0 0.10 15

Bricks and mortar 1500 2.6 0.26 20

When studying a dynamic problem such as an impact problem with high strain rates, it
is important to consider the strain rate’s effects on the masonry properties. Several authors
have experimentally evaluated how the strain rate affects the compression behavior of
mortar and bricks [35,36] and consequently of masonry [37]. As regards the tensile response,
Burnett et al. [35] evaluated how the tensile response of the masonry joints changes with
the strain rate. Anyway, this study can be considered representative of the tensile masonry
response considering the fact that the observations of Van Der Pluijm state that the masonry
tensile response is mainly associated to the joint response [32].

In general, considering the strain rate effect, the static parameters have been multiplied
by a dynamic increase factor (DIF) function of the strain rate ε̇. Equations (4)–(6) reported
the DIFs’ laws obtained by Pereira and Lourenço [37] for the compressive strength ( fc), the
corresponding inelastic strain (εc1), and the compressive fracture energy (Gc). These laws
were adopted to consider the strain rate effect on the compressive response:

DIFfc =

{
1 i f ε̇ ≤ 3 s−1

0.2798 ln(ε̇) + 0.6863 i f 3 s−1 < ε̇ ≤ 200 s−1 (4)

DIFεc1 =

{
1 i f ε̇ ≤ 4 s−1

0.0678 ln(ε̇) + 0.9036 i f 4 s−1 < ε̇ ≤ 200 s−1 (5)
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DIFGc =

{
1 i f ε̇ ≤ 2 s−1

0.4716 ln(ε̇) + 0.5968 i f 2 s−1 < ε̇ ≤ 200 s−1 (6)

As regards the tensile response, the laws obtained by Hao and Tarasov [36] for mortar
compressive response were considered assuming a DIF equal for compression and tension
in mortar and the masonry tensile response ruled by the mortar properties. Equation (7)
was adopted for both the masonry tensile strength ( ft) and the mode I fracture energy (G f ).

DIFft = DIFGF

{
0.0463 ln(ε̇) + 1.501 i f 2× 10−5 ≤ ε̇ ≤ 16 s−1

0.4377 ln(ε̇) + 0.3966 i f 16 s−1 < ε̇ < 200 s−1 (7)

6. Finite Element Model

An explicit dynamic analysis on a 3D finite element model [38] was performed to
evaluate the 3D effects of a cannon ball’s impact and the portion of wall affected by it.

6.1. Numerical Model

A portion of 20 m wall was considered, according to Pisa’s fortification geometry. The
wall was constrained with rollers on the vertical edges and with continuous hinges at the
bottom. Considering the symmetry of the problem, only one 10 m-long half was modeled
(Figure 3) to reduce the computational effort. According to the symmetrical condition, the
displacements in the direction perpendicular to the symmetry plane were constrained for
the points on the same plane. Furthermore, as regards the cannon ball, only half of it was
modeled and the displacements in the direction perpendicular to the plane of symmetry
were constrained for the points on the same plane. The cannon ball was positioned in
contact with the wall in the hitting point, fixed at 7.5 m from the ground. A uniform
distribution of velocity 200 m/s, in the direction perpendicular to the wall, was assigned to
all the cannon ball points.

The wall was discretized with quadratic tetrahedron (C3D10M) which was 0.5 m wide
on average, in order to reduce the computational effort considering the fact that most of
the wall remained elastic and almost undeformed through the entire analysis. Instead,
an area which was 0.625 m wide around the impact point for the entire wall depth was
discretized with elements that were 10 times smaller (Figure 3) in order to be smaller than
the impacted area and obtain the high strain gradients near the impact point. The cannon
ball was instead discretized with elements that were 3 cm wide, which was coherent with
its geometry.

(a) (b)
Figure 3. Finite element model mesh: (a) front view and (b) side view.

6.2. Material Constitutive Behavior

As regards the material’s constitutive behaviors, the Concrete Damage Plasticity
Model was adopted for the inelastic behavior of masonry ([39,40]), available in Abaqus,
whose the parameters are reported in Table 2, in agreement with the ABAQUS manual [38]
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and the corresponding literature values [41–43]. This model allows one to consider the
two main failure mechanisms of masonry: cracking under tension and crushing under
compression. Table 3 reports the parameters necessary to define the uni-axial compressive
and tensile static responses assigned (Figure 4). The tensile response was defined in terms
of cracking displacements to overcome the mesh sensitivity of the fracture energy. The
damage parameters for both compression and tension were monotonically increased from
0 to 0.9 with the inelastic strains. The tensile and compressive responses were modified
in function of the strain rate according to Equations (4)–(7). For the ball, an elastic–plastic
behavior was defined with a yielding stress of 420 MPa.

Table 2. Parameters of the concrete damage plasticity constitutive model.

Dilatation Angle Eccentricity fb0/ fbc K Viscosity Parameter

15° 0.1 1.16 0.667 1 × 10−5

Table 3. Uniaxial compressive and tensile static responses for different masonry typologies.

Material εc1 εcu ut1 (mm) utu (mm)

Split stones with good texture 0.134 × 10−3 2.660 × 10−3 0.064 0.449
Squared stones 0.183 × 10−3 2.170 × 10−3 0.022 0.151
Erratic stones 0.103 × 10−3 2.970 × 10−3 - 0.500

Bricks and mortar 0.156 × 10−3 2.440 × 10−3 0.064 0.449

Figure 4. Shape of the uni-axial post-elastic responses for traction and compression defined for
the masonry materials. For graphical reasons, the compressive stress–strain values are plotted
as positives.

6.3. FEM Results

The analysis stopped at 2.2 ms because some elements were excessively distorted
during deformation.

Figures 5–7 show, respectively, the maps of the tensile damage (dt) of the compressive
damage (dc) and of the displacements in the direction perpendicular to the wall (U1).
Considering the damage maps, two failure mechanisms coherently affected the wall with
the concrete damage plasticity’s constitutive behavior. A crushing mechanism progressively
affects the entire wall thickness, affecting an increasingly wider area in all three directions
starting from the impact point. The damaged volume is a hemisphere with a discontinuity
at the interface between the wall layers. The hemisphere damaged volume isotropically
extends itself in the three directions with a compressive wave. This wave was distorted after
it reached the wall’s inner core and the radius of the damaged volume instantly increased.

Figure 5 instead shows a cracking mechanism which at the beginning only affects the
exterior wall face. Subsequently, the tensile damage also extends to the depth of the wall’s
external curtain starting from the extreme point of the external damaged circle and slowly
involving points closer to the impact point.

Regarding the displacements (Figure 7), coherently with the damage maps, the exterior
face of the wall moves in the direction opposite to that of the cannon ball. Instead, from
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the impact point, a sphere-shaped volume extends that is pushed by the cannon ball. This
volume tends to deform as soon as the displacements reach the inner core.

(Avg: 75%)
DAMAGET

  0.000
+7.500 x10-2
+1.500 x10-1
+2.250 x10-1
+3.000 x10-1
+3.750 x10-1
+4.500 x10-1
+5.250 x10-1
+6.000 x10-1
+6.750 x10-1
+7.500 x10-1
+8.250 x10-1
+9.000 x10-1
+2.094

X

Y

Z

(a) 2.2 ms

(b) 0.5 ms (c) 1.0 ms

(d) 1.5 ms (e) 2.0 ms
Figure 5. Maps of the tensile damage (dt) and zoom on the impact point at different instants of time.

(Avg: 75%)
DAMAGEC

  0.000
+8.333 x10-3
+1.667 x10-2
+2.500 x10-2
+3.333 x10-2
+4.167 x10-2
+5.000 x10-2
+5.833 x10-2
+6.667 x10-2
+7.500 x10-2
+8.333 x10-2
+9.167 x10-2
+1.000 x10-1
+2.172 x10-1

X

Y

Z

(a) 2.2 ms

(b) 0.5 ms (c) 1.0 ms

(d) 1.5 ms (e) 2.0 ms
Figure 6. Maps of the compressive damage (dc) and zoom on the impact point at different instants of time.
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U, U1

−1.000 x10-3
−8.333 x10-4
−6.667 x10-4
−5.000 x10-4
−3.333 x10-4
−1.667 x10-4
  0.000
+1.667 x10-4
+3.333 x10-4
+5.000 x10-4
+6.667 x10-4
+8.333 x10-4
+1.000 x10-3

−3.234 x10-1

+1.874 x10-1

X

Y

Z

(a) 2.2 ms

(b) 0.5 ms (c) 1.0 ms

(d) 1.5 ms (e) 2.0 ms
Figure 7. Maps of the displacements in the direction of motion of the ball and zoom on the impact point at different instants
of time.

7. Rigid Body-Spring Model

The problem was also studied with a plane rigid body-spring model (RBSM). This
model belongs to the family of discrete approaches and more specifically to those based
on a square “heuristic molecule” constituting an assemblage of four rigid bodies [44]. In
agreement with these approaches, a solid is discretized in quadrilateral rigid elements
interacting through elastic–plastic springs. This way, the material non-linearities are
concentrated in the springs whose behavior is generally independent.

7.1. Fundamental Unit of the Model

The RBSM adopted herein was developed from the quadrilateral RBSM proposed by
Casolo in 2004 [19] that has been widely applied to the study of masonry structures [45].
The fundamental cell differs from the original heuristic molecula proposed by Casolo [46]
for the addition of diagonal springs. These diagonal springs allow one to model isotropic
materials with a Poisson’s ratio other than zero. Furthermore, the addition of the diagonal
springs reduces the model failure anisotropy which is a common issue of these discrete
approaches. Hence, any element is connected to the adjacent one (through two eccentric
normal and shear springs) and to the one on the diagonal (through an axial spring between
the element centers of gravity) (Figure 8).

The spring state is defined in function of a strain parameter ε(b) that measures the
spring deformation in agreement with the hypothesis of small displacements. Hence, it
is defined as the ratio between the difference of displacements, in the spring direction, of
the spring fixing points and the distance between the elements’ centers of gravity. In the
code, the spring strain is related to the elements’ degrees of freedoms {U} through a [B]
matrix. For example, Equation (8) reports the spring strain calculation for a normal spring
according to Figure 9:

ε(nij) =
l′nij − lnij

dij
= [B]{U} (8)
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Figure 8. Fundamental cell of the RBSM with diagonal springs.

Figure 9. Strain measure of the model springs.

7.2. Numerical Model

The RBSM was applied to the study of a wall slice under the hypothesis of a plane
strain condition, imagining the wall hit by the battery of cannons. As for the resistance, it
was assigned a thickness of 5 m to the elements, also considering the results obtained with
the 3D FEM and the wall volume affected by the cannon ball impact. The wall cross-section
was discretized with a regular grid of square elements 0.1 m wide (Figure 10). The cannon
ball was also modeled with two discrete elements which were 0.1 m wide (in black in
Figure 10). These elements were connected to the wall elements in the impact point through
springs with a null tensile strength, in order to reproduce a contact interaction.

An initial velocity of 200 m/s was applied to the cannon ball elements. The problem
was studied with an explicit solver based on the central difference method, implemented
in the specific FORTRAN code.

7.3. Spring Behavior

The model spring response was defined by assigning piece-wise laws according to the
different materials that compose the three-leaf masonry. Only the initial phases after the
impact were studied, hence, the strain rate effects were taken into account modifying the
material properties according to Equations (4)–(7) for a strain rate of 200 s−1.

The spring elastic moduli k(b)E were obtained by imposing the equivalence of the stored
strain energy in the fundamental cell volume between the RBSM and the continuum for an
isotropic material under the hypothesis of a plane strain state.

For the tensile spring response, a law with a linear softening was adopted and cali-
brated on the material mode I fracture energy G f . Instead, for the compressive response,
the spring stress–strain curve at first shows a stiffness reduction in agreement with a
damage mechanism for crushing, and after, the stiffness increases again (Figure 11). The
increase in stiffness accounts for what happens when the masonry modeled by the spring
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is completely crushed, in agreement with other discrete models [47,48]. In this way, when
an element is crushed, it keeps transferring the forces to the elements behind it that can
resist. Coherently with the different material parameters the spring constitutive behaviors
have been obtained (Table 4).

Brick and mortar              

Erratic stones                

Squarred stones               

Split stones with good texture  

Figure 10. RBSM discretization and materials.

Figure 11. Spring stress–strain curves defined for traction and compression. For graphic reasons, the
compressive stress–strain values are plotted as positives.
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Table 4. RBSM spring constitutive behaviors for the different materials.

Split stones with good Texture

Normal Diagonal
Points ε× 1000 ς (MPa) ε× 1000 ς (MPa)

Compressive

E 2.39 3.70 2.39 3.70
S 13.00 4.11 26.00 4.11

Tensile

E 0.36 0.56 0.36 0.56
S 0.58 0.00 1.15 0.00

Squared stones

Normal Diagonal
Points ε× 1000 ς (MPa) ε× 1000 ς (MPa)

Compressive

E 1.84 8.25 1.84 8.25
S 13.00 9.16 26.00 9.16

Tensile

E 0.49 1.24 0.49 1.24
S 0.19 0.00 0.39 0.00

Erratic stones

Normal Diagonal
Points ε× 1000 ς (MPa) ε× 1000 ς (MPa)

Compressive

E 1.84 1.42 1.84 1.42
S 13.00 1.58 26.00 1.58

Tensile

E 0.28 0.21 0.28 0.21
S 1.88 0.00 3.75 0.00

Bricks and mortar

Normal Diagonal
Points ε× 1000 ς (MPa) ε× 1000 ς (MPa)

Compressive

E 2.77 3.70 2.77 3.70
S 13.00 4.11 26.00 4.11

Tensile

E 0.42 0.59 0.42 0.59
S 0.58 0.00 1.15 0.00

7.4. RBSM Results

The results are presented in terms of damage and displacement maps as were those
for the FEM. The degree of damage of a spring was evaluated both for compression and
tension according to the following formula, opportunely changing the parameters for
tension and the compression:

d =
ε
(b)
L − ε

(b)
E

ε
(b)
S − ε

(b)
E

(9)

where ε
(b)
L is the maximum average spring strain reached by the spring during its history

and its initial value is ε
(b)
E . According to Equation (9), a spring is completely damaged
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when it reaches the S point average spring strain, both in traction and in compression. In
the plot, a line perpendicular to the spring is plotted for any spring that has overcome the
elastic limit, reproducing the forming crack. The color and thickness of the line depends on
the spring degree of damage.

Figure 12 shows the maps of the displacements in the horizontal direction. The maps
at different instants of time seem coherent with the FEM ones (Figure 7). The impact
progressively affects the entire thickness of the wall. After 3 ms, all the points around the
height of the impact point have been affected by the impact and as is the case in FEM, on
the surface of the external leaves, some points are moving in the direction to that of the
cannon ball. As such, there is an evident area whose displacement is considerably higher
than in the rest of the wall.

(a) 3.0 ms

(b) 3.0 ms

(c) 0.5 ms (d) 1.0 ms

(e) 1.5 ms (f) 2.0 ms
Figure 12. Deformed shape and maps of the displacements in the horizontal direction and zoom on the impact point at
different instants of time.

Figure 13 shows the springs damaged in compression. The damage is at first concen-
trated at the impact point, and a damaged area in the inner core subsequently appears,
whilst the affected area progressively extends into two triangles. At 3.0 ms, there is also a
wide number of diagonal springs damaged at the interface between the inner core and the
external leaf.

Figure 14 shows the springs damaged in tension. The damage from the impact point
progressively involves the entire thickness of the external leaf with some diagonal cracks
starting from the impact point. Once the impact affects the interface between the two walls,
in agreement with the displacement maps, a much wider area of the inner core is damaged
with some consistent damage also at the interface between the leaves. Furthermore, this
map, as was the case of the previous one, shows that many springs on the interface between
the two leaves are damaged, and this can be explained by imagining a sliding mechanism
at the interface between the two materials.
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(a) 3.0 ms

(b) 0.5 ms (c) 1.0 ms

(d) 1.5 ms (e) 2.0 ms
Figure 13. Maps of the compressive spring damage (dc) and zoom on the impact point at different points in time.

(a) 3.0 ms

(b) 0.5 ms (c) 1.0 ms

(d) 1.5 ms (e) 2.0 ms
Figure 14. Maps of the tensile spring damage (dt) and zoom on the impact point at different points in time.

8. Conclusions

The paper presents an investigation into the effects of a cannon ball shot into a typical
Middle Age fortification wall. The numerical results clearly show the vulnerability of this
type of fortification to artillery strikes which led to the development of the bastion forts
typical of the Renaissance period.

After an introduction which presents an historic reconstruction of the cannon shot
and the fortification wall geometry and materials, the computations were carried out with
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both an FEM and an RBSM by adopting explicit dynamic solvers. The 3D FEM allowed to
evaluate the amount of volume of the model that should be involved to obtain reasonable
confidence in the results that can obtained by a plane RBSM.

Both the approaches proved that an iron ball impacting the wall at 200 m/s severely
damages the external leaf of a three-leaf masonry. Clearly, the 3D FEM model provided a
description of the impact effects in terms of the global shape of the involved damaged vol-
ume, while the RBSM allowed a better description of the damage in terms of the typology of
damage thanks to the topology of the springs and a more specific material model for brittle
materials. This also allowed giving a first description in terms of crack propagation. In fact,
from the results, the FEM mostly associates the damage to diffuse crushing mechanisms,
while instead, in the RBSM, the masonry mostly tends to be damaged for a recognizable
diagonal cracking or shear sliding at the interface between the masonry leaves.

Both the models showed how the presence of a soft material such as the inner core
tends to modify the impact effects, both in terms of displacement maps and in terms of
damage. The affected area becomes larger and this allows one to reduce the degree of
damage. This is probably the reason for the success of the embankments of the trace
italianne which were built to face artillery strikes.
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