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Abstract: The inadequate seismic performance of existing masonry buildings is often linked to the
excessively low in-plane stiffness of timber diaphragms and the poor quality of their connections to
the walls. However, relevant past studies and seismic events have also shown that rigid diaphragms
could be detrimental for existing buildings and do not necessarily lead to an increase in their
seismic performance. Therefore, this work explores the opportunity of optimizing the retrofitting of
existing timber floors by means of a dissipative strengthening option, consisting of a plywood panel
overlay. On the basis of past experimental tests and previously formulated analytical and numerical
models for simulating the in-plane response of these retrofitted diaphragms, in this work nonlinear
incremental dynamic analyses were performed on three case–study buildings. For each structure
three configurations were analyzed: an as-built one, one having floors retrofitted with concrete slabs
and one having dissipative diaphragms strengthened with plywood panels. The results showed that
the additional beneficial hysteretic energy dissipation of the optimized diaphragms is relevant and
can largely increase the seismic performance of the analyzed buildings, while rigid floors only localize
the dissipation in the walls. These outcomes can contribute to an efficient seismic retrofitting of
existing masonry buildings, demonstrating once more the great potential of wood-based techniques
in comparison to the use of reinforced concrete for creating rigid diaphragms.

Keywords: seismic retrofitting; timber diaphragms; masonry buildings; reversible strengthening;
energy dissipation

1. Introduction

Existing unreinforced masonry (URM) constructions featuring timber diaphragms as
floors and roofs often constitute a large part of the building stock and architectural heritage
for several seismic-prone countries. The vulnerability of such buildings to earthquakes
has been highlighted by numerous seismic events, mainly due to poor-quality masonry,
excessive in-plane flexibility of timber floors, and the absence of effective connections
among structural elements.

In this framework, several retrofitting methods for timber diaphragms [1–12] and
timber–masonry connections [13–16] have been developed in the recent years, progressively
focusing on more reversible techniques [17]. With regard to the floors, the main proposed
and tested retrofitting methods consisted of the traditional cast of a concrete slab on the
existing floor, a widely adopted retrofitting in the last decades [1–4]; the superposition of
a second layer of planks arranged at 45◦ [1,2,5,6] or 90◦ [4,7] with respect to the existing
sheathing; the bracing of the floors with steel plates [1,2,5,6,9] or fiber-reinforced polymer
(FRP) laminae [1,2,4]; and the superposition of cross-laminated timber (CLT) [7,8], oriented
strand board (OSB) [8], or plywood panels [9–12]. The aim of all the techniques was to
improve the in-plane stiffness of the floors, so that they could act as diaphragms and, along
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with timber–masonry joints retrofitted for properly transferring seismic loads, enhance the
box behavior of the whole building.

Yet, experimental [18–20] and numerical studies [21–24], as well as evidence from
recent seismic events in Italy [25–28], Greece [29], Croatia [30], and Albania [31], besides
highlighting the essential role of timber–masonry joints, have proven that excessively stiff
floors can also be detrimental for masonry buildings, and they may not necessarily increase
their seismic performance, because the in-plane strength of the walls is immediately
brought into play. Yet, it is also well-known that floors too flexible in their plane may lead
to out-of-plane collapses of masonry walls during an earthquake. Therefore, in between the
existing flexible floors and their transformation into rigid diaphragms (often by means of
concrete slabs), a reversible, wood-based retrofitting intervention designed for optimizing
the seismic performance of a whole URM building could be realized.

This work examines the aforementioned opportunity, starting from the specific context
of the Groningen region in the northern part of the Netherlands. In that area, very frequent,
human-induced earthquakes caused by gas extractions have taken place in recent years [32].
The local building stock, composed for more than 50% of masonry buildings with timber
diaphragms [33], was not designed or realized by accounting for seismic events, since the
Province of Groningen has never been a (tectonic) seismic area before. Therefore, extensive
seismic characterizations have taken place since 2015 [34] for both masonry [35,36] and
timber [37–41] structural components.

With reference to timber diaphragms, given the poor seismic performance of the
as-built floors, a retrofitting method enhancing the in-plane strength, stiffness, and energy
dissipation was developed [37]. The strengthening technique consisted of an overlay of
plywood panels screwed along their perimeter to the existing floor sheathing (Figure 1).
The experimental results confirmed the great potential of this retrofitting method, whose
efficient design was enabled by formulating a detailed analytical model [38]. With the
developed procedure, the whole in-plane cyclic response of the strengthened floors can
be predicted, including peak strength, energy dissipation, and pinching phenomena [38].
Considering the tested floors of Figure 1, the designed strengthening option with plywood
panels is able to activate an equivalent hysteretic damping ratio of 15% [40], a value that
was also confirmed by the analytical model [38].

This dissipative role of timber diaphragms could, therefore, be introduced in URM
buildings to optimize their seismic performance. Yet, for assessing the beneficial effects of
retrofitted floors, a detailed modeling of their in-plane response was necessary. Since, in
numerical models, timber diaphragms are often considered as linear elastic orthotropic
slabs [42] or as rigid elements after retrofitting [43], a macro-element modeling strategy
was developed [41] featuring the implementation of a user-supplied subroutine in finite
element software DIANA FEA version 10.4 (DIANA FEA BV, Delft, The Netherlands) [44]
and enabling the accurate, global modeling of the nonlinear, dissipative in-plane response
of the retrofitted floors [41] (Figure 2).

In this work, all former experimental and analytical results are combined in the anal-
ysis of three case–study URM buildings with timber diaphragms. The objective of the
research study is to show how it is possible to optimize the seismic response of URM
constructions with a dissipative, wood-based retrofitting technique applied to the floors
in comparison to the traditional use of concrete slabs. To this end, nonlinear incremental
dynamic analyses were conducted on each case–study building, considering the as-built
condition, a configuration having floors strengthened with concrete slabs, and a configura-
tion featuring plywood panel retrofitting. The performance of the buildings was quantified
in terms of the peak ground acceleration (PGA) at collapse, base shear-top roof displace-
ment curves, and hysteretic energy dissipation. In connection to this latter aspect, the
impact of the strengthened diaphragms on the seismic capacity of the buildings was evalu-
ated in terms of an equivalent damping ratio and, for the purpose of comparisons between
retrofitted configurations, in terms of a behavior factor range. It should be noticed that
the energy dissipation that can be activated by the diaphragms retrofitted with plywood
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panels depends on the design of their strengthened configurations, and namely, by the size
of the panels and the number of fasteners [38,41]; in this case, the strengthening solutions
activating the maximum energy dissipation within masonry drift limits were designed
and modeled.

Figure 1. Main characteristics and cyclic in-plane response of the timber diaphragms; floors tested parallel (a) and
perpendicular to the joists (b) and roof pitch (c). More details on the retrofitting technique can be found in References [37,38].
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Figure 2. Validation of the macro-element modeling strategy for timber diaphragms with the user-supplied subroutine
based on the formulated analytical model [38,41]: (a) experimental and (b) numerical responses of a sample tested parallel
to the joists; (c) experimental and (d) numerical responses of a sample tested perpendicular to the joists; (e) experimental
and (f) numerical responses of a sample representing a roof pitch.
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Section 2 provides an overview of the examined configurations of the case–study
buildings, as well as the methodology followed for analyzing their seismic response and
quantifying the dissipative role of the timber diaphragms. In Section 3, the results of
the time–history analyses are reported in detail, and the performance of the case–study
buildings is examined. Subsequently, Section 4 discusses these outcomes, with a specific
focus on the role of the (retrofitted) floors. Finally, the conclusions of this study are reported
in Section 5.

2. Analyzed URM Buildings Configurations and Adopted Methodology
2.1. Overview of the Case–Study Buildings and Main Properties

In order to prove the dissipative, beneficial effects of efficiently retrofitted timber
diaphragms on the seismic performance of existing buildings, several configurations and
multiple contexts and earthquake types were covered in the numerical analyses (Figure 3).
Due to the aforementioned specific situation of the Groningen region, two case–study
buildings presented characteristics typical of the Dutch context; therefore, both a detached
house and a more monumental building located in that area were modeled. In order to
generalize and extend the conclusions obtained for the Dutch framework, a third case–
study building was considered—namely, an Italian country house typical of Po Valley and
the Venetian Plain (Province of Padua).

For all URM buildings, three configurations were considered: an as-built one with
flexible timber diaphragms, a configuration having floors retrofitted with a concrete slab
(widely applied until recently [1–4]), and a configuration featuring diaphragms strength-
ened with a plywood panel overlay, designed considering the optimization of the seismic
capacity of the whole building. All case–study buildings were modeled in finite element
software DIANA FEA [44], adopting the strategies presented in the following section.

2.2. Modeling Strategies

For all case–study buildings, the nonlinear seismic response of masonry was simulated
by means of the Engineering Masonry Model [45], assigned to the eight-node flat shell
elements representing the walls.

As-built timber floors were modeled with linear elastic, orthotropic, eight-node flat
shell elements following the modeling strategy already presented and validated in Refer-
ence [41]; the properties of the shell elements were derived by considering separately the
in-plane and out-of-plane properties of the floors. More specifically, the in-plane properties
were represented by means of a (low) shear modulus Gxy derived from the equivalent
shear stiffness (Gd = Gxy·t, with t thickness of the sheathing [37,39,41]) of the diaphragms.
The out-of-plane properties were determined through an equivalence in the flexural prop-
erties between the joists and the shell slab, defining an equivalent elastic modulus as
Eeq = EtimberIjoists/Islab, with Etimber = 10,000 MPa. The moment of inertia of the joists Ijoists
depends on their total number in the floor and their cross-section, whereas the moment of
inertia of the equivalent slab Islab depends on its thickness (equal to that of the sheathing)
and the length of its supported side. This implies that Eeq can result in very large values,
because it represents a fictitious material concentrating the flexural properties of the joists
within the small thickness of the shell elements. Then, similar to an actual timber-based
material, the out-of-plane shear moduli were determined as Gxz = Gyz = Eeq/16 [41]. This
modeling strategy involving equivalent properties had the advantage of representing the
behaviors of the diaphragms under both out-of-plane (e.g., vertical or static) and in-plane
(e.g., seismic) loads, using only shell elements. Furthermore, the seismic masses pertaining
to the floors could also be modeled in a more realistic, distributed way, as was the case
with the masonry.
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Figure 3. Overview of the three analyzed case–study URM buildings and their configurations.

Concrete slabs were modeled with linear elastic isotropic eight-node plates, featuring
the material properties of reinforced concrete.

Diaphragms retrofitted with plywood panels were simulated by combining linear elas-
tic, orthotropic, eight-node flat shell elements for their out-of-plane response and nonlinear
macro-elements for their in-plane, dissipative response (Figures 4 and 5), according to the
modeling strategy reported in Reference [41]. The out-of-plane behavior was modeled
in the same way as the as-built floors, yet considering the thickness of the slabs as the
sum of that of the sheathing and that of the plywood panels [41]. Besides, the in-plane
shear modulus Gxy of the shell elements was set to 0.1, since this type of response was
modeled with macro-elements. These were composed of quadrilaterals of rigid truss
elements surrounding two nonlinear diagonal truss elements, simulating the in-plane
dissipative response of the floor (see Figures 4 and 5 and Reference [41]). The diagonal
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elements had constitutive laws determined on the basis of the strength and stiffness of the
retrofitted floors and the geometry of the macro-element mesh. More specifically, once the
retrofitting intervention is designed and the strength and stiffness of the floor are known, in
the model, the macro-element mesh can be arbitrarily chosen, and the load–slip response of
the diagonal elements can be determined accordingly. In fact, the user-supplied subroutine
for creating the constitutive law of the nonlinear diagonal trusses requires three input
parameters [41]: the strain εmax at the peak stress σmax, the peak stress σmax itself, and
the initial elastic modulus K0. With reference to Figure 5, starting from the whole floor
deflection δ, the displacement u of a single truss is given by u = (δ cosα)/m, with the α angle
between the truss and the loading direction and the m number of macro-elements rows
parallel to the applied load in half of the floor (in the case of Figure 5, m = 2). The shear force
F/2 is then subdivided among the s trusses in one macro-elements row and transformed
into an axial force N on a single one with the equivalence N = F/(2scosα) [38,41]. From
the knowledge of the geometrical relations for N and u, the initial stiffness of the diagonal
trusses can also be calculated. For convenience, a unitary cross-section was adopted for
the truss elements, so that the force and stress could be coincident in their values, whereas
the strains (and εmax in particular) were calculated according to the length of the diagonal
elements. For further details, the reader is referred to Reference [41], where a calculation
and validation example is reported.

Figure 4. Adopted strategy for modeling in-plane response (macro-elements featuring the imple-
mentation of the analytical model presented in Reference [38]) and out-of-plane behaviors (flexural
equivalent shell elements) of timber diaphragms (Reprinted from Reference [41]).

Figure 5. Example of model of a retrofitted diaphragm created for validating the modeling strategy
presented in Reference [41] (Reprinted from Reference [41]).
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With reference to the last retrofitting method, in all the buildings, the diaphragms were
designed to activate energy dissipation with a limited in-plane deflection while keeping the
desired structural box behavior, similar to the preliminary analyses already presented in
Reference [41]. More specifically, after evaluating the base shear of each building by means
of a pushover analysis (considering rigid diaphragms), the horizontal loads at the floor and
roof levels were estimated through the lateral force method; the strength of each diaphragm
was thus designed in agreement with these floor shear forces, so that the in-plane strength
of the wall could be brought into play. At the same time, since the dissipative contribution
of the retrofitting method is activated through the in-plane deflection of the floors, this was
limited, not to cause premature out-of-plane collapses in the masonry walls; therefore, the
diaphragms were designed to reach their strength at an in-plane displacement equal to
2% of the out-of-plane walls’ height. This drift refers to the near-collapse limit state and is
compatible with the wall thickness of each case–study building, since it always corresponds
to a displacement value lower than half of the thickness itself [46,47]. An example of this
design strategy was also presented in Reference [41]. On the basis of the aforementioned
configurations and retrofitting methods, the following sections will provide geometrical
and material properties separately for each case–study building.

2.3. Properties of Building B1

A detached house typical of the Groningen area was selected as the first case–study
building (Figure 6). This URM low-rise house had a relatively simple structure, but some
irregularities were present, such as the position and shape of the wall openings and the
thickness of the walls, not constant along the height, with gables featuring a single-leaf wall
(100 mm thick) instead of the ground floor double-wythe walls (210 mm thick). Besides,
one more single-leaf wall was present, supporting one of the floors approximately at the
midspan in correspondence to the staircase. This first building was already modeled and
preliminarily analyzed in Reference [41].

The properties of masonry, reported in Table 1, were assumed to be the same for all the
three analyzed configurations: B1-AB (as-built), B1-RC (diaphragms retrofitted with con-
crete slabs), and B1-PP (diaphragms retrofitted with plywood panels). The 300 × 300-mm
shell elements with the implemented DIANA FEA (version 10.4) Engineering Masonry
Model were used for modeling the masonry. While, for the walls, a density of 2000 kg/m3

was assumed, for the diaphragms, the density values included the self-weight of the
structural elements; a dead load of 1.00 kN/m2 (accounting for further elements such as
nonstructural walls, finishes, plants, and pipes); and 30% of the live load (0.3 × 1.75 kN/m2

for Dutch residential buildings [48]).

Table 1. Properties of the shell elements simulating masonry walls in buildings B1 and B2. Reprinted
from Reference [41].

Property Value

Young modulus Ex parallel to the bed joint (MPa) 1500
Young modulus Ey perpendicular to the bed joint (MPa) 2000

Shear modulus Gxy (MPa) 800
Mass density ρ (kg/m3) 2000

Bed joint tensile strength ft (MPa) 0.15
Fracture energy in tension GF1 (N/mm) 0.01

Compressive strength fc (MPa) 14.0
Fracture energy in compression Gc (N/mm) 30

Friction angle (◦) 34
Cohesion (MPa) 0.2

Fracture energy in shear (N/mm) 0.1
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Figure 6. Main properties and geometry of the first case–study building B1 (dimensions in mm).

Configuration B1-AB featured flexible diaphragms, having the following characteris-
tics with reference to Figure 6:

• the 4.0 × 4.6-m floor presented 75 × 180-mm joists at 800-mm spacing;
• the 4.6 × 6.8-m floor had 60 × 160-mm joists arranged at 750-mm spacing;
• the roof presented 50 × 105-mm rafters at 900-mm spacing; on the rafters, purlins

were arranged, supporting, in turn, the planks;
• all diaphragms featured 18-mm-thick planks.

These structural properties of the diaphragms were translated in the numerical model
by following the aforementioned modeling strategy for as-built floors [41]; the diaphragms
were modeled with linear elastic orthotropic shell elements whose properties are reported in
Table 2. The elastic moduli of the diaphragms were derived by considering the (equivalent)
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in-plane and out-of-plane flexural properties of the planks or the joists [41]. Due to the
already good floor-to-wall joints, a continuous, hinged connection at the floor supports
was assumed for all cases; good interlocking among the masonry walls was considered
as well.

Table 2. Properties of the shell elements (thickness = 18 mm) representing the flexible diaphragms in
configuration B1-AB. Reprinted from Reference [41].

Property
Value

4.0 × 4.6-m Floor 4.6 × 6.8-m Floor Roof

Equivalent Young modulus Eeq (MPa) 978,000 620,000 405,000
In-plane shear modulus Gxy (MPa) 12 7 6

Out-of-plane equivalent shear moduli Gxz,
Gzy (MPa) 61,125 38,750 25,312

Mass density ρ (kg/m3) 9440 9270 6170

In configuration B1-RC, featuring diaphragms retrofitted by casting a concrete slab
on them, the floors were modeled with linear elastic isotropic shell elements, having the
properties of structural reinforced concrete (Table 3). The thickness of the slab was 50 mm,
as it would commonly be in practice [1–4].

Table 3. Properties of the shell elements (thickness = 68 mm) representing the concrete slabs in
configuration B1-RC. Reprinted from Reference [41].

Property
Value

4.0 × 4.6-m Floor 4.6 × 6.8-m Floor Roof

Young modulus (MPa) 30,000 30,000 30,000
Shear modulus (MPa) 12,500 12,500 12,500

Mass density ρ (kg/m3) 4336 4290 4250

For configuration B1-PP, having floors retrofitted with plywood panels, the mod-
eling strategy presented and discussed in Reference [41] was adopted: linear elastic or-
thotropic shell elements simulated the out-of-plane response of the diaphragms, while
macro-elements were used to represent their nonlinear, dissipative, in-plane response. The
macro-elements featured a user-implemented subroutine for DIANA FEA, able to capture
the pinching response of the floors, as presented in References [38,41]. Table 4 reports
the properties of the macro- and shell elements simulating the retrofitted diaphragms.
The strengthening interventions on the floors were designed on the basis of an estimated
base shear of ≈450 kN; this corresponded to the following characteristics for the single
diaphragms, on which the properties reported in Table 4 are based:

• the 4.0 × 4.6-m floor had a strength of 130 kN reached at 54-mm in-plane deflection
and was meshed with 4 × 4 macro-elements;

• the 4.6 × 6.8-m floor had a strength of 200 kN reached at 60-mm in-plane deflection
and was meshed with 4 × 6 macro-elements;

• each roof pitch had a strength of 150 kN reached at 40-mm in-plane deflection and
was meshed with 3 × 8 macro-elements.
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Table 4. Properties of the shell elements (thickness = 36 mm) and macro-elements representing the
diaphragms retrofitted with plywood panels in configuration B1-PP. Reprinted from Reference [41].

Property
Value

4.0 × 4.6-m Floor 4.6 × 6.8-m Floor Roof

Macro-elements (in-plane response)
Young modulus of rigid trusses Et (MPa) 1010 1010 1010

Diagonal trusses max. strain εmax 0.027 0.019 0.012
Diagonal trusses max. stress σmax (MPa) 12,700 21,200 13,700

Diagonal trusses initial stiffness K0 (MPa) 2,490,000 5,980,000 5,980,000

Shell elements (out-of-plane response)
Equivalent Young modulus Eeq (MPa) 122,000 77,500 50,700

In-plane shear modulus Gxy (MPa) 0.1 0.1 0.1
Out-of-plane equivalent shear moduli Gxz,

Gzy (MPa) 7640 4840 3170

Mass density ρ (kg/m3) 4940 4860 3310

2.4. Properties of Building B2

As the second case–study structure, a larger building was chosen, having some
monumental features and resembling the former post office building of Loppersum, NL
(Figure 7). This URM building was overall quite regular and presented double-wythe
clay brick masonry walls (210 mm thick). The properties of the masonry were assumed to
be identical for all configurations and were the same as adopted for the first case–study
building (Table 1); 400 × 400-mm shell elements were used. Similar to the previous case,
for the walls, a density of 2000 kg/m3 was assumed, while, for the diaphragms, the
density values included, once more, the self-weight of the structural elements, a dead
load of 1.00 kN/m2, and 30% of the live load (0.3 × 1.75 kN/m2 for Dutch residential
buildings [48]).

The first- and second-floor diaphragms presented 80 × 200-mm joists at 500-mm
spacing and 18 × 165-mm planks. These structural properties of the diaphragms were
also, in this case, inserted into the numerical model by following the modeling strategy
presented in Reference [41]; the linear elastic orthotropic shell elements simulating the
as-built floors had the properties reported in Table 5. In the as-built state, the floors were
connected at their supports, with a frictional interface (friction coefficient equal to 0.7) to
simulate the mortar pocket joint.

Table 5. Properties of the shell elements (thickness = 18 mm) representing the flexible diaphragms in
configuration B2-AB.

Property
Value

First Floor Top Floor

Equivalent Young modulus Eeq (MPa) 2,294,544 2,294,544
In-plane shear modulus Gxy (MPa) 2 2

Out-of-plane equivalent shear moduli Gxz, Gzy (MPa) 143,409 143,409
Mass density ρ (kg/m3) 9760 6840
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Figure 7. Main properties and geometry of the second case–study building B2 (dimensions in mm).

In the configurations featuring diaphragms retrofitted by casting a concrete slab
on them, the floors were modeled with linear elastic isotropic shell elements, having
the properties of structural reinforced concrete (Table 6). The thickness of the slab was
once more 50 mm, and a continuous, hinged connection to the walls was assumed after
retrofitting.
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Table 6. Properties of the shell elements (thickness = 68 mm) representing the concrete slabs in
configuration B2-RC.

Property
Value

First Floor Top Floor

Young modulus (MPa) 30,000 30,000
Shear modulus (MPa) 12,500 12,500

Mass density ρ (kg/m3) 4420 4420

For the configurations having floors retrofitted with plywood panels, the model-
ing strategy discussed in Reference [41] was also adopted for this case. Linear elastic
orthotropic shell elements simulated the out-of-plane response of the floors, while the non-
linear macro-elements (1 × 1-m mesh), featuring the constitutive laws of the implemented
user-supplied subroutine (Table 7), represented their in-plane behavior. The retrofitting
interventions on the diaphragms were designed according to an estimated base shear of
≈650 kN, corresponding to a strength of 330 kN for both the first floor (reached at 70-mm
in-plane deflection) and roof (reached at 140-mm in-plane deflection). Additionally, in this
case, a continuous hinged connection at the floor supports was assumed.

Table 7. Properties of the shell elements (thickness = 36 mm) and macro-elements representing the
diaphragms retrofitted with plywood panels in configuration B2-PP.

Property
Value

First Floor Top Floor

Macro-elements (in-plane response)
Young modulus of rigid trusses Et (MPa) 1010 1010

Diagonal trusses max. strain εmax 0.0129 0.0258
Diagonal trusses max. stress σmax (MPa) 8870 8880

Diagonal trusses initial stiffness K0 (MPa) 3,380,000 1,690,000

Shell elements (out-of-plane response)
Equivalent Young modulus Eeq (MPa) 287,000 287,000

In-plane shear modulus Gxy (MPa) 0.1 0.1
Out-of-plane equivalent shear moduli Gxz, Gzy (MPa) 17,900 17,900

Mass density ρ (kg/m3) 5100 3650

2.5. Properties of Building B3

The third case–study building was selected to generalize even more the obtained
results by considering another architectural context. Therefore, an Italian country house
typical of Po Valley and located in the Province of Padua (Veneto) was chosen (Figure 8).
This URM building had a regular structure and consisted of two units. In this case, the
thickness of the walls was constant alongside the height and was equal to 380 mm, in
agreement with past research studies on typical ancient Italian masonry [49,50]. Three
configurations were once more studied: one represented the as-built house with flexible
diaphragms (B3-AB); in the other two, the floors were retrofitted with plywood panels
(B3-PP) or with a concrete slab (B3-RC).

The properties of the masonry reported in Table 8 were assumed to be the same
for the three configurations; the adopted values were retrieved from References [49,50],
where they were identified as material properties of a medium-quality masonry. The
400 × 400-mm shell elements were used for modeling the masonry. While, for the walls, a
density of 2000 kg/m3 was assumed, for the diaphragms, the density values included the
self-weight of the structural elements, a dead load of 1.00 kN/m2, and 30% of the live load
(0.3 × 2.00 kN/m2 for Italian residential buildings [51]).

All timber diaphragms presented 120 × 180-mm joists at 500-mm spacing and
20 × 200-mm planks. The structural properties of the diaphragms were also, in this case,
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translated in the numerical model by following the modeling strategy for as-built floors
previously described in Reference [41]. The as-built diaphragms were modeled with linear
elastic orthotropic shell elements whose properties are reported in Table 9.

In the configurations featuring diaphragms retrofitted by casting a concrete slab on
them, the floors were modeled with linear elastic isotropic shell elements having the
properties of structural reinforced concrete (Table 10). The thickness of the slab was 50 mm.

Table 8. Properties of the shell elements representing masonry walls in building B3 based on the
experimental studies reported in [49,50].

Property Value

Young modulus Ex parallel to the bed joint (MPa) 1875
Young modulus Ey perpendicular to the bed joint (MPa) 2500

Shear modulus Gxy (MPa) 1000
Mass density ρ (kg/m3) 2000

Bed joint tensile strength ft (MPa) 0.15
Fracture energy in tension GF1 (N/mm) 0.01

Compressive strength fc (MPa) 8.0
Fracture energy in compression Gc (N/mm) 35

Friction angle (◦) 34
Cohesion (MPa) 0.2

Fracture energy in shear (N/mm) 0.1

Table 9. Properties of the shell elements (thickness = 18 mm) representing the flexible diaphragms in
configuration B3-AB.

Property
Value

First Floor Second Floor Roof

Equivalent Young modulus Eeq (MPa) 1,874,571 1,874,571 4,557,380
In-plane shear modulus Gxy (MPa) 2 2 2

Out-of-plane equivalent shear moduli Gxz, Gzy (MPa) 117,161 117,161 284,836
Mass density ρ (kg/m3) 9490 9490 6480

Table 10. Properties of the shell elements (thickness = 68 mm) representing the concrete slabs in
configuration B3-RC.

Property
Value

First Floor Second Floor Roof

Young modulus (MPa) 30,000 30,000 30,000
Shear modulus (MPa) 12,500 12,500 12,500

Mass density ρ (kg/m3) 4500 4500 4390

For the configurations having floors retrofitted with plywood panels, the modeling
strategy discussed in Reference [41] was also, for this case, adopted; besides the linear elastic
orthotropic shell elements, nonlinear macro-elements (1 × 1-m mesh) were also present
(Table 11), featuring the constitutive laws of the implemented user-supplied subroutine.
The retrofitting interventions on the diaphragms were designed according to an estimated
base shear of ≈1000 kN, corresponding to a strength of 230 kN for the first floor (reached
at 60-mm in-plane deflection), 450 kN for the second floor (reached at 120-mm in-plane
deflection), and 330 kN for the roof (reached at 180-mm in-plane deflection).
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Figure 8. Main properties and geometry of the third case–study building B3 (dimensions in mm).

In all configurations, continuous, hinged connections at the floor supports were
assumed, as, in the as-built case, adequate floor-to-wall joints were also present.
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Table 11. Properties of the shell elements (thickness = 36 mm) and macro-elements representing the
diaphragms retrofitted with plywood panels in configurations B3-PP.

Property
Value

First Floor Second Floor Roof

Macro-elements (in-plane response)
Young modulus of rigid trusses Et (MPa) 1010 1010 1010

Diagonal trusses max. strain εmax 0.0186 0.0353 0.046
Diagonal trusses max. stress σmax (MPa) 9870 19,600 11,800

Diagonal trusses initial stiffness K0 (MPa) 2,780,000 2,730,000 1,350,000

Shell elements (out-of-plane response)
Equivalent Young modulus Eeq (MPa) 273,000 273,000 664,000

In-plane shear modulus Gxy (MPa) 0.1 0.1 0.1
Out-of-plane equivalent shear moduli Gxz, Gzy (MPa) 17,100 17,100 41,500

Mass density ρ (kg/m3) 5210 5210 3620

2.6. Methodology Adopted for the Seismic Analysis
2.6.1. Adopted Seismic Signals and Performance Indicators

For all case–study buildings, to retrieve a detailed picture of the seismic responses
of the analyzed configurations, nonlinear incremental dynamic analyses were performed
separately for the two plane directions: x and y (see Figures 6–8); an intrinsic Rayleigh
damping of 2% was considered to account for the viscous dissipation additional to the
hysteretic energy activated by the cyclic response of the structural components. The first
two case–study buildings, having Dutch features, were subjected to seven induced signals
recorded in the Groningen area [52] and shown in Figure 9; for the third building, instead,
seven recorded tectonic signals retrieved from REXEL version 3.5 [53] were used (Figure 10).
Both signal types had a reference PGA of 0.17g.

The near-collapse seismic capacity of all the configurations was characterized by
means of the following parameters:

• PGA at collapse, obtained when the in-plane shear or flexural failure of masonry piers
is reached, when an out-of-plane failure occurs, or when the out-of-plane drift limit of
2.0% of the wall height is reached. As the fundamental periods of the analyzed build-
ings fell within the constant acceleration branch (plateau) of the response spectrum, if
the spectral acceleration at the first mode period was also used as the performance
indicator, this would approximately correspond to the PGA amplified by a factor
of 2.5;

• Base shear-top floor (or roof) displacement responses, along with damage in terms of
cracks opening in the masonry walls. The control nodes for all the curves corresponded
to the center of mass of each building at the roof level, but also, other relevant reference
nodes were considered for highlighting the role of the (retrofitted) floors in the seismic
response of the analyzed buildings (Section 4);

• For the retrofitted cases, hysteretic energy was also considered, so that the dissipative
contribution of the diaphragms strengthened with plywood panels in the analyzed
buildings could be quantified in detail with respect to that of rigid concrete slabs.

Both PGA at collapse and hysteretic energy were adopted for assessing the energy
dissipation activated by the wood-based retrofitting: PGA for quantifying the damping
produced by the diaphragms and hysteretic energy for determining the behavior factor
ranges, as presented in the following sections.
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Figure 9. Induced seismic signals (a–g) and their average response spectrum (h, depicted in black) [41,52] adopted for the
numerical analyses on buildings B1 and B2.
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Figure 10. Tectonic seismic signals (a–g) and their average response spectrum (h, depicted in black) [53] adopted for the
numerical analyses on building B3.
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2.6.2. Equivalent Hysteretic Damping Ratio of the Floors Retrofitted with Plywood Panels

The values of PGA at collapse, besides identifying the seismic performance of the
buildings, were also used to assess the additional damping induced by the dissipative
diaphragms retrofitted with plywood panels. More specifically, in References [38,40,41], an
equivalent damping ratio ξ of 15% was quantified for these diaphragms when designed for
their pertaining floor seismic shear and a maximum in-plane deflection within the masonry
drift limits. To assess whether this value was also activated in the analyzed URM buildings,
the ratio was calculated between the average PGA at the collapse of the configurations
having floors retrofitted with plywood panels and that of the cases with rigid diaphragms.
In fact, if the floors were retrofitted with plywood panels, for a simplified modeling
(e.g., a pushover analysis), they were assumed as stiff; their dissipative contribution
could be taken into account by considering an overdamped spectrum reduced by factor
η = [10/(5 + ξ)]1/2 [54]. Since η can also be estimated by the aforementioned PGAs ratio,
the corresponding value of ξ can be retrieved.

2.6.3. Hysteretic Energy and Quantification of Behavior Factors

The use of hysteretic energy as the performance indicator allowed us to compare in
terms of behavior factor values the results among the retrofitted configurations having rigid
or dissipative diaphragms. More specifically, a procedure involving hysteretic energy and
ductility was adopted for characterizing the retrofitted buildings. First of all, at least for
sufficiently regular buildings that could be treated as (equivalent) single-degree-of-freedom
(SDOF) systems, the hysteretic energy Ed that is dissipated during ground motion can be
expressed as [55]:

Ed = ξmωn∆tr
eS2

v(α
2 + β2) (1)

In the former equation, ξ is the damping ratio of the system, m its mass, ωn its (natural)
frequency, ∆tr

e the effective ground motion duration (in which 90% of the energy imparted
to the system is dissipated [55]), Sv the spectral velocity, and (α2 + β2) a factor denoting
the mean value of the squares of the response displacement amplitudes [55]. Following
Reference [55], two simplified equations were proposed to evaluate ∆tr

e and (α2 + β2),
depending on the (natural) period of the system Tn and on the seismic strong motion
duration ∆te [55–58], reported for all the signals in Figures 9 and 10:

∆tr
e = ∆te + 3.3

Tn

6ξ
(2)

α2 + β2 = 0.25T1/3
n (3)

It should be noticed that Equation (1) has the advantage of being damping-insensitive,
because an increase in damping would correspond to a decrease in the pseudo-velocity
and effective duration [55]. This is an advantage when predicting the hysteretic energy
dissipated by the system, because this can be quantified by adopting directly the usual
design response spectrum at ξ = 5% for a specific location [55]. Furthermore, since ∆tr

e
refers to 90% of the dissipated energy, the derived expression should be multiplied by a
factor of 10/9 [55].

For buildings sufficiently regular in plan and elevation [54], the combination of Equa-
tions (1)–(3) enables the prediction of the dissipated hysteretic energy once the effective
earthquake duration is known and an equivalent period for the system is defined, repre-
senting the evolution from elastic to plastic or the damaged state. The equivalent period
Tn,eff was calculated according to FEMA 440 [59,60], as a function of the ductility µ of the
system and its initial period Tn and independently of the type of hysteretic behavior.

• For 1 < µ < 4:

Tn,eff =
[
0.167(µ − 1)2−0.031(µ − 1)3+1

]
Tn (4)
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• For 4 ≤ µ ≤ 6.5:
Tn,eff = [0.283 + 0.129(µ − 1) + 1]Tn (5)

• For µ > 6.5:

Tn,eff =

{
0.89

[√
µ − 1

1 + 0.05(µ − 2)
−1

]
+1

}
Tn (6)

The ductility was evaluated by means of the equation that relates it to the behavior
factor q [54]:

q =
√

2µ − 1 (7)

Thus, in this work, for the analyzed buildings with stiff diaphragms, the values of
µ were referred to as the usual range of q = 1.5–2.5 [54], since the dissipation was, in
this case, localized only in the masonry walls. Instead, to account for the additional
dissipative contribution of the floors strengthened with plywood panels in comparison to
rigid concrete diaphragms, the range could be increased and validated up to q = 2.5–3.5
for the configurations featuring the wood-based retrofitting. It should be noticed that both
adopted ranges refer to very regular buildings featuring well-connected and homogeneous
clay brick masonry. Yet, although the obtained results refer to almost ideal conditions
for the existing buildings, they are still able to show the great potential and increased
dissipation of the wood-based retrofitting technique with respect to rigid floors.

By fixing the behavior factor ranges, the corresponding ductility values allowed to
calculate the relevant Tn,eff values, starting from the knowledge of the natural periods
along the x and y directions, as determined by means of an eigenvalue analysis. Table 12
reports the natural periods of the as-built configurations and Table 13 the obtained Tn,eff
values for the retrofitted configurations. Once Tn,eff was determined, this was used to
predict the total hysteretic energy dissipated by the building, calculated with Equations
(1)–(3) after determining the Sv from each signal’s response spectrum and inputting the
pertaining strong motion duration ∆te. This procedure, novel for regular masonry buildings
(but based on past analytical and empirical studies), allowed us to determine a range of
hysteretic energy values, which were then compared to the single value of hysteretic energy
computed by the numerical model. In this way, the use of both behavior factor ranges
could be validated, as will be shown in the following sections.

Table 12. Values of the natural period for the as-built configurations.

As-Built Configuration Excited Seismic Mass (kg) Direction of the Seismic Action Tn (s)

B1-AB 41,355 x 0.25
y 0.14

B2-AB 106,847 x 0.68
y 0.26

B3-AB 140,579 x 0.24
y 0.12

Table 13. Values of the equivalent period for the retrofitted configurations as a function of the behavior factor range.

Retrofitted Configuration Excited Seismic Mass (kg) Direction of the Seismic Action Tn,eff (s)

Concrete floors: q = 1.5 q = 2.0 q = 2.5

B1-RC 55,577 x 0.11 0.13 0.16
y 0.06 0.07 0.09

B2-RC 131,302 x 0.18 0.22 0.27
y 0.13 0.16 0.20

B3-RC 158,909 x 0.16 0.19 0.23
y 0.13 0.15 0.19

Plywood floors: q = 2.5 q = 3.0 q = 3.5

B1-PP 43,267 x 0.22 0.25 0.28
y 0.16 0.18 0.20

B2-PP 108,010 x 0.52 0.58 0.65
y 0.22 0.25 0.28

B3-PP 141,485 x 0.32 0.36 0.41
y 0.19 0.22 0.24
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3. Results from the Analyses
3.1. Results in Terms of PGA, Base Shear-Top Roof Displacement Graphs, and Crack Pattern

The seismic performance of the three analyzed case–study buildings was firstly char-
acterized in terms of PGA at collapse for both loading directions. Figure 11 shows this
parameter for all the configurations, with both reference to each signal and on average.

Figure 11. PGA at collapse, displayed for each signal and on average, recorded for the three case–study buildings.

Starting from building B1, it can be noticed that as-built configuration B1-AB already
collapsed at a low level of intensity (average PGA = 0.18 g in the weakest loading direction)
due to the out-of-plane failure of (portion of) walls or gables. On the contrary, with floors
stiffened with a concrete slab (configuration B1-RC), a great improvement in the capacity of
the building was obtained (average PGA = 0.53 g in the weakest direction), mainly because
of the enhanced box behavior, leading to the in-plane collapse of masonry walls. Yet, the
best performance was retrieved with the plywood panel overlay in both loading directions
(configuration B1-PP, average PGA = 0.81 g in the weakest direction); the box behavior
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and collapse of the in-plane walls were again activated but with the additional, beneficial
contribution of the dissipative retrofitting.

Similar outcomes were observed for building B2 but with a better performance of the
as-built configuration; despite causing, once more, the out-of-plane collapse of masonry
walls, the average collapse PGA of 0.34 g in the weakest direction was now closer to that of
retrofitted building B2-RC (0.46 g), mainly because the flexible floors increased the period
of configuration B2-AB, resulting in lower accelerations transferred to the walls. Once
more, configuration B2-PP provided the highest capacity among the three (0.73 g).

Building B3 confirmed these results but also showed that, interestingly, there was no
radical improvement in the capacity between configurations B3-AB and B3-RC (average
PGA ≈ 0.5 g for both). The massive size of the walls, with respect to the other two buildings,
contributed to in-plane collapses even in the as-built cases, yet with extensive damage on
the gables; thus, no premature out-of-plane collapse occurred. This seems to confirm a
number of past studies [18–24], highlighting that as-built floors might already be sufficient
to retrieve the total base shear of the building, provided that the diaphragms are well-
connected to the walls, and the seismic shear transfer is fully enabled. However, if the
floors are retrofitted in a dissipative way, as in configuration B3-PP, the seismic performance
can be increased even further (PGA = 0.73 g) because of the additional damping effect.

Besides the PGA at collapse, for a more detailed characterization of the seismic
response of the analyzed buildings, their base shear-top roof displacement curves and
corresponding crack pattern and damage to the walls (in terms of the principal crack
opening) are presented for all configurations in Figures 12–14 in the weakest loading
direction and with reference to seismic signal 1 as an example. It should be noticed that the
principal crack opening contour was reported to show (through heavily cracked elements)
which piers were the most damaged and their types of failure.

Starting from building B1, configuration B1-AB showed a very flexible response: the
floors underwent large displacements at an already limited signal amplitude, and the in-
plane walls were not brought into play, with the exception of the very slender pier next to
the staircase. Besides, the crack pattern (Figure 12a) showed a partial out-of-plane collapse
of the 100-mm-thick central wall and of the north gable, probably due to torsional effects.
A very different situation was noticeable in configuration B1-RC. In this case, the failure
of the building was fully related to the in-plane walls, and a beneficial redistribution of
the horizontal loads was achieved among the various walls; the force–displacement graph
also confirms a typical shear-related in-plane failure of the masonry (Figure 12b). A hybrid
response between the first two configurations was obtained with the floors retrofitted with
plywood panels: a larger displacement capacity of the diaphragms, along with an in-plane
failure of the walls, was noticeable (Figure 12c). The crack pattern was similar to that
observed for the concrete slab configuration, with a slightly larger amount of damage in
the out-of-plane walls because of the lower stiffness of the floors.

With regards to building B2, configuration B2-AB displayed a very flexible behavior,
and the strength of in-plane walls was not involved. Besides, extensive damage of the
out-of-plane walls was noticeable due to their out-of-phase oscillation induced by the
poorly connected, flexible floors (Figure 13a). On the contrary, the strengthened floors were
able to guarantee a better redistribution of the seismic loads among the walls, leading to an
in-plane global failure. Additionally, while, with concrete slabs (Figure 13b), the collapse
was mainly caused by the failure of the ground floor walls, with the floors strengthened
with plywood panels (Figure 13c), the damage involved both story piers and spandrels,
thus retrieving even more energy dissipation from the structure. In any case, the governing
in-plane failure appeared to be shear diagonal cracking of the squat pier at the ground floor.

Building B3 showed an interesting difference compared to the previous case–study
buildings: the in-plane strength of the wall was also brought into play in the as-built configu-
ration, even if the gables experienced extensive out-of-plane damage at their bottom as well
(Figure 14a). This means that, in this specific case, the thick walls, as well as the regularity
and compactness of the structure, allowed the floors of configuration B3-AB to appropriately
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transfer shear loads because of the well-realized connections with masonry components. The
fact that the stiffness of the as-built diaphragms could already be sufficient for the building to
retrieve its whole base shear was confirmed by the similar capacity of configuration B3-RC
(Figure 14b), although the stiff floors enhanced the box behavior of the building. An optimal
performance was obtained with the designed light retrofitting intervention, which provided
the floors with an increased energy dissipation more than an enhancement in stiffness, as can
be noticed from the base shear–roof displacement curve (Figure 14c).

Figure 12. Base shear vs. top roof displacement response and damage level in terms of the principal crack opening (Ecw1)
for the three configurations: B1-AB (a), B1-RC (b), and B1-PP (c) at a near-collapse state.
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Figure 13. Base shear vs. top roof displacement response and damage level in terms of the principal crack opening (Ecw1)
for the three configurations: B2-AB (a), B2-RC (b), and B2-PP (c) at a near-collapse state.
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Figure 14. Base shear vs. top roof displacement response and damage level in terms of the principal crack opening (Ecw1)
for the three configurations: B3-AB (a), B3-RC (b), and B3-PP (c) at a near-collapse state.
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3.2. Results in Terms of Hysteretic Energy for the Retrofitted Configurations

As mentioned in Section 2.5, the retrofitted configurations of the three analyzed
buildings were also characterized in terms of the dissipated hysteretic energy and behavior
factor ranges. Figure 15 shows the comparison between the hysteretic energy recorded
from the numerical models and that predicted as a function of the assumed behavior factor
range for all configurations with rigid diaphragms and in both loading directions. As can
be noticed, the usual behavior factor range of 1.5–2.5 commonly adopted for masonry
structures appears to be appropriate and allows to predict, in most cases, conservatively
the hysteretic energy that can be brought into play by the buildings. Yet, the fact that rigid
diaphragms improve the box behavior of the buildings corresponds to a localization of the
dissipated energy in the masonry piers.

If, instead, the diaphragms are also able to activate energy dissipation, a remark-
able beneficial effect on the buildings can be observed (Figure 16); floors retrofitted
with plywood panels allow us to largely increase the hysteretic energy activated by
the buildings when compared to the configurations with rigid diaphragms. This is
related to the fact that the buildings with rigid floors showed stiff behaviors, especially
in the y direction, linked to the presence of squat piers (see, for instance, B1-RC, which
exhibited a very limited ductility). On the contrary, the increased displacement capacity
and dissipation provided by the floors retrofitted with plywood panels, along with
a higher fundamental period in both directions, allowed us to activate a much larger
hysteretic energy and to subject the buildings to an increased amplitude of the seismic
signals. This larger amplitude, in combination with the higher fundamental period
compared to the configurations with rigid floors, is also consistent with a larger value
of spectral velocity, on which the hysteretic energy depends through a quadratic rela-
tion, justifying its increased values for the configurations featuring the wood-based
retrofitting.

Figure 17 highlights how relevant the contribution of the dissipative floors can be
in terms of their activated hysteretic energy, with respect to a retrofitting with rigid di-
aphragms. In all cases, the floors retrofitted with plywood panels are responsible for a
significant increase in the energy that can be dissipated by the building. This also explains
the capacity of these floors to provide an increase in the behavior factor range for the
specific analyzed buildings, highlighting once more the great potential of well-designed
wood-based retrofitting techniques. These outcomes, along with those of the preceding
section, will now be discussed more in detail in Section 4, with specific reference to the role
of (retrofitted) timber diaphragms.
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Figure 15. Hysteretic energy from the numerical model and predicted with Equations (1)–(3) for the concrete slab retrofitting.
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Figure 16. Hysteretic energy from the numerical model and predicted with Equations (1)–(3) for the plywood panel
retrofitting.
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Figure 17. Hysteretic energy vs. time for the retrofitted configurations at a near-collapse state. The dissipative role of the
diaphragms retrofitted with plywood panels in comparison to the rigid concrete slabs is evident.
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4. Discussion

The results of the three analyzed case–study buildings highlighted once more how
the role of timber diaphragms in the seismic response of URM buildings can be crucial.
The effect of the in-plane stiffness of the floors is firstly discussed, taking into account
additional control nodes with respect to those selected in Figures 12–14. Considering the
out-of-plane seismic response of the front gable in building B1 (Figure 18), this can be
regarded as one of its most vulnerable portions due to its reduced thickness (only 100 mm).
The insufficient in-plane stiffness of the existing roof (Figure 18a) leads to a premature out-
of-plane collapse of the gable, highlighted by the large, out-of-phase relative displacement
between the two control nodes. This local collapse, if compared to the cases featuring
stiffened diaphragms, occurs for a relatively low seismic acceleration, justifying the need
of a retrofitting intervention. When the concrete slab retrofitting is applied (Figure 18b),
the two control nodes display an identical displacement time–history, as expected with
a rigid diaphragm system. The collapse of the building is, in this case, not related to
the gable, as in the as-built situation, but to the in-plane failure of the squat walls along
the earthquake direction. This same failure type was observed for configuration B3-PP
(Figure 18c), which displayed a hybrid response: the floors retrofitted with plywood panels
proved to be sufficiently stiff to activate the in-plane failure of the walls but also allowed
for a limited out-of-plane displacement in the gable, activating energy dissipation in the
strengthened roof.

The performed analyses also showed that the in-plane stiffness of the floors is re-
sponsible for how quickly the masonry piers are brought into play; this is exemplified in
Figure 19 for building B2, taking into account the displacements of a control node on the
roof and of one on the lateral walls. When considering the existing floors (Figure 19a),
on the one hand, their low stiffness and deflection capacities could positively prevent the
in-plane walls from being excessively solicited; on the other hand, their flexibility led to
out-of-plane collapses and to an independent movement of each floor without retrieving
the desired box behavior. With rigid concrete diaphragms (Figure 19b), the deflection of
the floors is absent, and the diaphragms and walls undergo the same displacement. This
solution guarantees the maximum redistribution of seismic shear forces and an excellent
box behavior but directly brings the walls’ strength into play. When an optimized, dissi-
pative retrofitting is chosen (Figure 19c), it is possible to link the displacement capacity
of the diaphragms, enabling their energy dissipation potential, with an in-plane stiffness
sufficient to redistribute seismic loads among the walls. Thus, similar to building B1-PP, the
in-plane capacity of the piers is retrieved, but the damping effect of the floors can prevent
this from occurring right at the beginning of the seismic signal, with an increase of the
seismic capacity of the building.

The previously discussed results were again obtained in case–study B3 (Figure 20),
subjected to tectonic earthquakes. Considering the control nodes at each floor level and at
the top and bottom of the gable, configuration B3-AB (Figure 20a) showed that the existing
flexible floors are sufficient to retrieve the in-plane strength of the walls because of the
massive structure of the piers. However, the as-built floors cause extensive damage to
the gables, where the largest relative displacements are recorded, and a dangerous out-of-
phase movement of each floor level. In configuration B3-RC (Figure 20b), the observed
displacements are all linked to the in-plane capacity of the walls because of the presence
of rigid diaphragms. The response also shows an improved box behavior, but the PGA at
collapse is interestingly the same as configuration B3-AB, as pointed out and discussed
in Section 3.1. Finally, configuration B3-PP (Figure 20c) shows a combination of the two
previous cases; as can be noticed, the presence of optimally designed retrofitted diaphragms
induces an in-phase movement of the floor levels while reducing the dangerous relative
displacement between the top and bottom of the gable and retrieves, at the same time,
the in-plane capacity of the piers. This combination maximizes once more the hysteretic
energy that can be activated and dissipated by the building, with a beneficial effect in its
seismic response.
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Figure 18. Out-of-plane displacement time–histories of the front gable for configurations B1-AB (a), B1-RC (b), and B1-PP
(c) at collapse.
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Figure 19. Examples of top floor and in-plane wall displacement time–histories for configurations B2-AB (a), B2-RC (b), and
B2-PP (c) at collapse.
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Figure 20. Out-of-plane displacement time-histories of the front wall for configurations B3-AB (a), B3-RC (b), and B3-PP (c)
at collapse.
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The damping effect induced by the plywood panels retrofitting is also evident in
Figure 21, comparing the response of the most solicited wall in building B1 when the
diaphragms are retrofitted with concrete slabs or plywood panels; as can be noticed, under
the same signal, when concrete slabs are present, the pier reaches its capacity after a
shear diagonal failure; with plywood panels retrofitting, a damping effect on the wall is
noticeable, and the maximum in-plane load for the pier is reached by further amplifying
the signal to more than 35% compared to that applied to the B1-RC configuration. Yet, it
is important to underline that, in order to be able to activate the dissipative potential of
the floors, a dry screed made of loose materials (so that the diaphragms are not further
stiffened by this component), as well as a continuous and resistant connection between the
diaphragms and walls, has to be realized so that local collapses can be prevented and the
box behavior can still be enabled [41].

Figure 21. Comparison between the in-plane response of the most solicited wall under the application of signal 4 in
configurations B1-RC (left) and B1-PP (right). When the concrete slab brings the wall to the in-plane capacity, for the same
PGA, the dissipative plywood panel retrofitting prevents the pier from reaching its ultimate strength, which is retrieved at 0.76g.

With reference to the increase in seismic capacity, in Reference [40], a value of equiva-
lent hysteretic damping ratio ξ = 15% was determined for the diaphragms retrofitted with
plywood panels. From the performed analyses, it appears that the difference in PGA at col-
lapse between the configurations with stiff floors and those having dissipative diaphragms
was, on average, approximately 30% (see Figure 11). This result thus confirms the obtained
15% equivalent damping ratio value; if the floors were retrofitted with plywood panels,
and for a simplified modeling (e.g., a pushover analysis), they were assumed as stiff; their
dissipative contribution could be taken into account by considering an overdamped spec-
trum reduced by the factor η = [10/(5 + ξ)]1/2 [54]. It is interesting to notice that η = 0.707
for ξ = 15%, a value suggesting that, when a dissipative retrofitting of the floors is designed,
the demand response spectrum could indeed be reduced by approximately 30% in addition
to the further nonlinear contributions of the in-plane masonry walls.

Furthermore, the largely increased hysteretic energy that can be activated in the URM
buildings because of the presence of retrofitted, dissipative timber diaphragms was also
linked to a higher behavior factor range of q = 2.5–3.5. It should be noticed that these
values could be obtained considering very regular, low-rise buildings with homogeneous
and well-connected masonry—thus, in almost ideal conditions when dealing with the
seismic assessment and retrofitting of existing buildings; this was also confirmed by the
large values of PGA obtained at collapse. Nevertheless, these same conditions of regularity
and homogeneity of the masonry were applied for the configurations with concrete slabs.
Therefore, by adopting the obtained behavior factor ranges as indicators for comparison,
the increase in energy dissipation activated by the plywood panels retrofitting was tangible
and could be predicted and validated. As a recommendation for further studies, since past



Buildings 2021, 11, 604 35 of 38

shake table tests [61] highlighted that the use of the lower limit value of q = 1.5 should be
preferred for buildings with rigid diaphragms, similar (full-scale) experiments could be
performed to assess the potential increase in the behavior factor provided by an optimized,
dissipative, wood-based strengthening of the timber floors in URM buildings.

5. Summary and Conclusions

In this work, the possibility of optimizing the seismic performance of URM buildings
through the retrofitting of timber diaphragms was investigated, transforming them into
dissipative structural components. Numerical time–history analyses were conducted on
three case–study buildings, considering the as-built state with flexible floors, a retrofitting
option with concrete slabs (and, thus, rigid floors), and a dissipative strengthening method
consisting of plywood panels screwed on the existing diaphragms.

It was shown that, in order to optimize the seismic response of URM buildings, the
retrofitting of timber diaphragms can be designed based on the pertaining floor seismic
shear and masonry out-of-plane drift limits. In this way, the diaphragms can undergo the
maximum deflection without causing out-of-plane collapse, activating at the same time the
maximum base shear of the building: thus, the maximum energy dissipation can also be
retrieved from the diaphragms. Yet, in order for the floors to efficiently transfer the seismic
shear loads and deflect without causing local masonry collapses, the timber–masonry joints
have to be effectively strengthened accordingly, as their role is paramount to efficiently
redistribute the actions on the URM structure. Instead, if the diaphragms are too flexible,
severe out-of-plane damage or collapses are observed, while, with rigid floors, the box
behavior of the building is improved, but the dissipative contribution of the diaphragms
cannot be activated.

The relevant, dissipative effect of well-retrofitted, optimized timber floors was quanti-
fied in terms of an equivalent hysteretic damping ratio of 15% additional to the dissipation
already provided by the masonry walls. Besides, in the presence of optimally designed
dissipative diaphragms, an increased behavior factor range of q = 2.5–3.5 was observed
in comparison to the range of q = 1.5–2.5 for rigid floors. Throughout the analysis, this
parameter was used to quantify the energy dissipation for the purpose of comparisons
among the retrofitted configurations and refers to regular buildings featuring homogenous
and well-connected clay brick masonry, as well as continuous floor-to-wall connections.
Thus, it is expected that these values reflect almost ideal conditions when dealing with the
seismic assessment and retrofitting of existing buildings; however, the obtained values still
prove the beneficial effect of an optimized strengthening of timber diaphragms with respect
to rigid floors. Hence, further (experimental) studies for validating the dissipative role
of wood-based retrofitting techniques for timber floors in URM constructions are highly
encouraged and recommended, so that a possible increase in the behavior factor can be
assessed for real building prototypes as well.

The obtained results can further support a more aware seismic retrofitting of exist-
ing URM constructions, with specific references to the use of wood-based (dissipative)
strengthening techniques as a more beneficial alternative to rigid concrete diaphragms, and
can contribute to the research framework supporting the conservation of the architectural
heritage of seismic-prone countries.
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