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Abstract: The vector form intrinsic finite (VFIFE) method is a new and promising structural analysis
technique that has many advantages as compared with the conventional finite element method
(FEM) in analyzing the complex behaviors of a structure. However, despite the popularization of
its application in civil and infrastructure engineering, there is no available unified general analysis
framework for it, which limits the applications and developments of VFIFE. This work develops and
implements a platform (termed openVFIFE) based on a new proposed object-oriented framework to
facilitate the development and application of the vector form intrinsic finite method as well as the
efficient and accurate analyses of complex behaviors for civil structures. To validate the platform,
a series of numerical examples are conducted. Furthermore, to extend the applications of VFIFE,
the nonlinear dynamic and collapse processes of a transmission tower under earthquake load are
studied using openVFIFE. The results of these numerical examples simulated by the developed truss
or beam elements are consistent with theoretical solutions, previous research or conventional finite
element models. The failure modes of the transmission tower under earthquake load simulated by the
platform is consistent with those observed in real cases. In addition, the results of nonlinear dynamic
analyses of the transmission tower show that the computational efficiency of the proposed platform is
6-10 times higher than that of the conventional finite element method. The results provide sufficient
evidence to prove the accuracy and efficiency of the proposed platform in the static, dynamic and
elastoplastic analyses of truss and frame structures, especially in the structure analysis characterized
by strong geometry nonlinearity. It is noteworthy that in addition to the link and beam elements,
further work is undergoing on implementing more elements, such as shell and solid elements. The
openVFIFE also allows researchers who are interested in this topic to put their creative ideas into this
platform and continuously improve the completeness and applicability of the VFIFE method.

Keywords: VFIFE; object-oriented programming; structural nonlinear analysis; transmission tower;
link element; beam element

1. Introduction

Conventionally, the finite element method (FEM), finite difference method (FDM) or
lumped mass method has been widely employed in analyzing the structure’s behavior in
civil or mechanical engineering community. These approaches have been well developed
and programmed by mathematically analyzing the structural components based on the
continuum mechanics. Recently, some advanced finite element models have also been
proposed and applied to more accurately model structure’s behavior, e.g., Roy et al. [1–3],
Uzzaman et al. [4] and Chen et al. [5]. These results show that the FEM is able to simulate
some complex structural behavior, such as the failure modes of self-drilling screw connec-
tions for high strength cold-formed steel, the buckling of gapped built-up cold-formed
steel channel sections, etc.
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However, there are some inherent defects that have no satisfactory solutions. For
example, serious distortion of grids could be observed when solving the large deformation
problem using the Lagrangian principle in finite element analysis. It also requires consider-
able computation resources and time to deal with some non-continuum and geometrically
nonlinear issues, which is especially difficult in examining the complex behaviors of a
large-scale structure system. The vector form intrinsic finite element (VFIFE) method
proposed by E.C. Ting [6–8] provides an innovative algorithm for analyzing the complex
behaviors of a structure, such as large deformations, large overall motions, fragmentation,
etc. The structure’s geometrical shape and motion are described utilizing a set of discrete
particles in VFIFE. The interactions between particles are simulated by massless elements.
In addition, the trajectory of each particle is divided into several segments (called path
elements) in which the particle properties remain unchanged. To deal with the structure’s
discontinuous behavior, the properties of each particle can be updated at time steps be-
tween path elements. In general, as compared with FEM, the VFIFE method has five
significant advantages:

(1) According to the discrete model, the particles and elements can be added or re-
moved freely in the analysis process, and thereby the entire process of the collapse or
fragmentation of the structure can be well modeled.

(2) Inspired by the explicit finite element method, the equation of the motion of each
particle is directly formulated by Newton’s second law individually, suggesting that
there is no concept of any integrated stiffness matrix. Consequently, this method
avoids the issue of ill-conditioned matrices, which can happen in the conventional
finite element method.

(3) Moreover, in contrast to the explicit finite element method, the VFIFE method adopts a
procedure of reversed motion rather than the co-rotational technique [9,10] to calculate
the pure deformations and internal forces of each element. This treatment avoids
the numerical instability of the co-rotational technique in dealing with elements with
large deformations.

(4) To solve the governing equations, an explicit solution procedure, e.g., a second order
central difference time integrator, is employed. The computation cost can be therefore
greatly reduced as compared with the implicit time integrator, in which the nonlinear
governing equations are solved by a complicated iterative process.

(5) Due to the independence of the elements and particles, the VFIFE is specially suitable
for parallel computing [9,11].

Because of these advantages, the VFIFE method has received intensive attention in
the past decade by many scholars. At the very beginning, only a few elements were
studied, including planar frame elements [7], planar 3-node triangular elements and planar
4-node isoparametric elements [8]. Obviously, they are not sufficient to apply the VFIFE
method to analyze the engineering structures. Fortunately, in recent years, many elements
have been successfully developed for the VFIFE framework, such as three-dimensional
(3D) truss elements [11], 3D frame elements [12], 3D fine beam elements [8,13], 3-node
triangular membrane elements [14], 4-node quadrilateral elements [15], 3-node triangular
shell elements [16] and 8-node hexahedral solid elements [17]. In addition, the VFIFE
method has been extended to the analysis of the complex behaviors of structures. The new
algorithms of large deflection analysis [9,15], elastic-plastic analysis [13,18,19], collapse
analysis [20–23], crack propagation analysis [24] and contact analysis [17,25,26] have been
successively proposed based on the VFIFE framework.

The continuous development and update of new elements as well as algorithms
allow for a wide application of VFIFE in many fields, such as civil engineering [20–37],
maritime engineering [38–45], mechanical engineering [17] and biomechanics [46]. It is
confirmed by these literatures that VFIFE has a great potential for the application to civil and
infrastructure engineering. However, the most challenging issue is that above-mentioned
studies of VFIFE are implemented by self-programmed codes by utilizing MATLAB or
FORTRAN language based on a process-oriented framework, which is no scalability and is
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unsuitable for developing a large-scale and user-friendly software. Besides, the process-
oriented framework can hardly meet the requirements of complicated parallel computing.
To the authors’ knowledge, there is no software or platform yet available for VFIFE. This is
one of the major obstacles for its development and popularization.

On the other hand, structural analysis software such as ANSYS, ABAQUS, ADINA
and OpenSees based on FEM or explicit finite element are very mature. These large-
scale software have been developed using object-oriented programming technology (OOP),
which is currently believed to be the most promising way for designing a new finite element
application [47]. The development of object-oriented engineering software flourished in the
1990s [48–53], and some new object-oriented software packages have also been developed
to implement new structural analysis algorithms or to extend the capability of existing
software [54–57]. With the support of abstraction, encapsulation, modularity and code
reuse in OOP architecture, object-oriented finite element software, particularly those written
in C++ language (such as OpenSees), have shown high performance and still provide for
the maintainability and extensibility essential in modern software packages.

In this study, a basic computing platform (called openVFIFE) is proposed and im-
plemented to facilitate the development and application of the VFIFE method as well as
the efficient and accurate analyses of complex behaviors for civil structures. It is written
in C++ language with the standard template library (STL) using OOP architecture. The
mathematical implementation of VFIFE is briefly introduced in Section 2. Then, the devel-
opment of the framework and implementation for the openVFIFE platform is described in
Section 3. A series of numerical validations of link as well as beam elements are conducted
in Section 4. Finally, the openVFIFE is applied to perform the nonlinear dynamic and
seismic-induced collapse analysis of a transmission tower before being compared with
the results achieved by a conventional FEM software, i.e., ANSYS. It is noteworthy that
the link and beam elements are implemented in openVFIFE; more work is undergoing in
developing the shell and solid elements. Besides, the advanced modeling features such
as initial geometric imperfection, semi-rigid of structure connections and bolt slip, which
will affect the behavior of the structure [58,59], are also under development. It also allows
researchers who are interested in this topic to put their creative ideas into this platform
and continuously improve the completeness and applicability of the platform.

2. Mathematical Implementation of VFIFE

Unlike traditional analytical mechanics, the structure is discretized into a finite number
of particles in VFIFE method. These particles are the basic units of the VFIFE. The structure’s
geometry and motion are described by the spatial positions and trajectory of the particles,
respectively [12]. The structure’s mass, displacement, deformation, boundary conditions,
internal force and external force are all determined through each particle. Adjacent particles
are connected using a group of standardized elements, such as bar element, beam element,
etc. The element is weightless and is only used to calculate the internal force in the particle
connected to it. In the time domain, the time trajectory of the particle’s motion is divided
into several segments by a series of time points, and the time history of the structure’s
motion and deformation is reflected by its displacement, velocity and other state variables
at each time point. Assuming that the initial and final time of the analysis is t0 and tn, a
set of time points t0, t1, t2, · · · , ti−1, ti, · · · , tn is adopted to divide the time history into
several independent fragments. The time interval of each segment is small enough such that
the physical properties of the particle remain unchanged in each time segment, while the
structure’s discontinuous behavior is dealt with at each time point. This discrete scheme
of time and space is called point value description. Based on the above discretization
method, a 3D truss system can be discretized into a series of particles and elements, as
shown in Figure 1. In addition, it is worth noting that VFIFE takes the particle as the basic
analysis unit. When considering material nonlinearity, firstly, the strain of the element is
calculated according to the deformation analysis results of the element, then the stress of
the element is obtained directly according to the stress-strain relationship of the material,
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and then the internal force of the element is obtained by integration. In this process, it is
unnecessary to integrate the global mass and stiffness matrix of the structure system. As
a result, the inverse operation of the global stiffness matrix, which is time consuming, is
avoided. Thus, it is more efficient than FEM, and more conducive to conducting nonlinear
behavior analysis of a structure.
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VFIFE directly uses the laws of dynamics as a unified criterion to describe various
mechanical behaviors. When describing a structure’s physical behavior, each particle
is considered to be in a strict dynamic equilibrium state in the process of motion and
deformation. At each time step, the motion of any particle in the structure follows Newton’s
second law, and its motion equation is:

M
..
x = Fext + Fint + Fdamp (1)

where M is the mass matrix, x is the displacement vector,
..
x is the acceleration vector, Fext

and Fint are the external and internal forces of the particle and Fdamp is the damping force.
To illustrate the procedures of VFIFE, the space bar assemblies, which have only three

translational degrees of freedom (DOFs) on the connected particles, are discussed in this
paper [11]. For more information about other types of elements, see [7,8,12–17,21]. The
mass of a particle connected to a space bar element consists of two parts: the concentrated
mass of the particle and the equivalent mass of the space bar element. The mass matrix of
the particle can be expressed as:

M =

 m 0 0
0 m 0
0 0 m

, m = m0 +
1
2

n
∑

i=1
mi (2)

where m is the mass of the particle, m0 is the concentrated mass and mi is the mass of the
ith bar element.

Fext is the summation of the external forces acting on the particle, which includes the
forces directly acting on the particle and the equivalent external forces. The equivalent
external forces can be obtained by the principle of virtual work; they have the same form
as the results in FEM and are omitted here for brevity.

Fint is the summation of the internal forces applied by the elements connected to
the particle. For one space bar element, the internal element force only depends on its
pure deformation. In VFIFE, the rigid body displacement and the pure deformation of an
element are distinguished by inverse motion. To illustrate this concept, taking the space
bar element shown in Figure 2 as an example, the displacement vector of the end particles
i and j at time steps ta and tb = ta + ∆t are denoted by (xi, xj) and (x′i, x′j), respectively.
Similar to the updated Lagrangian formulations (UL), the configuration of the element at ta
is taken as the reference configuration. From ta to tb, the relative displacement of particles i
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and j are ∆xi = x′i − xi and ∆xj = x′j − xj; the angle between elements at ta and tb can be
calculated by:

∆θ = arccos

(
eij·ei′ j′

|eij|
∣∣∣ei′ j′

∣∣∣
)

(3)

where eij and ei′ j′ are the direction vectors of the elements at ta and tb, respectively. Let the
element at tb (denoted as i′ j′) translate −∆xi and rotate −∆θ to i′′ j′′ , as shown in Figure 2a.
Then, the pure deformation of element from ta to tb can be easily derived:

∆l = |jj′′ | =
∣∣∣(li′ j′ − lij)eij

∣∣∣= li′ j′ − lij (4)

where lij and li′ j′ are the lengths of the element at ta and tb, respectively. The axial force in
the element at time tb is:

ftb
= fta

+ EA∆l/lij·eij (5)

where fta
is the axial force in the element at time step ta, E is Young’s modulus and A is the

cross-sectional area of the element. Note that the internal force calculated by Equation (5) is
based on the reference configuration. To obtain the actual internal force at time tb, element
i′′ j′′ should be rotated ∆θ and translated ∆xi to its original configuration. The magnitude of
the internal force will remain unchanged during the rotation and translation except for the
direction of the internal force. After the forward motion, the internal forces of the element
nodes are:

fi′ = − ftb ei′j′ (6)

fj′ = ftb ei′j′ (7)

where fi′ and fj′ are the internal forces at nodes i′ and j′, respectively, and ftb is the
magnitude of the element internal force at time step tb. Axial forces fi′ and fj′ are applied
to the corresponding particles.
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Obviously, the VFIFE method is a dynamic analysis method directly based on New-
ton’s second law. It obtains the dynamic response of a structure by solving the motion
Equation of the particles, suggesting that the dynamic analysis is the method’s essential
characteristic. However, the energy dissipation of the motion is inevitable due to the effects
of damping. The vibration of the real structure will eventually decay to a stable static
state. Although different energy dissipation mechanisms result in different trajectories,
the structure will converge to a same static stable state as long as the force is unchanged.
Therefore, when using VFIFE to solve static problems, the damping force can be assumed
arbitrarily. However, when solving dynamic problems, the structure’s real damping param-
eters should be adopted. To unify the solutions of static and dynamic problems, viscous
mass damping is used, and the damping forces are computed from Fdamp = αM

.
x, where α

is the damping coefficient.
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As for the solution of Equation (1), the central difference method is adopted in VFIFE
to avoid iteration in the solution procedure. The velocity and acceleration can be approxi-
mated as:

.
xi =

1
2∆t (xi+1 − xi−1) (8)

..
xi =

1
∆t2 (xi+1 − 2xi + xi−1) (9)

where xi−1, xi and xi+1 are the displacements of an arbitrary particle at steps i− 1, i and
i + 1, respectively, and ∆t is the time interval. Substituting Equations (8) and (9) into
Equation (1) yields:{

xi−1 = 0.5∆t2M−1(Fext,i + Fint,i) + xi − ∆tC1
.
xi, i = 0

xi+1 = C−1
1 ∆t2M−1(Fext,i + Fint,i) + 2C−1

1 xi − C−1
1 C2xi−1, i ≥ 1

(10)

where Fext,i and Fint,i are the external and internal forces at step i; C1 = 1 + 0.5α∆t and
C2 = 1− 0.5α∆t.

3. Framework and Implementation of openVFIFE

As discussed above, the VFIFE frameworks in the existing literature are based on
a process-oriented framework for specific problems. This framework is very easy to
implement and has high efficiency. However, it has low code reusability, poor scalability
and low maintainability. In this paper, based on the aforementioned theory, an object-
oriented framework is proposed, as illustrated in Figure 3. A layered architecture is utilized
to design the framework, which is divided into two layers: the controller and the core
solver. The controller layer calls the interfaces of the core solver to realize flow control of
the analysis procedures. The core solver layer, which consists of particle class (Group A),
element library (Group B), material library (Group C) and section library (Group D), is the
framework’s foundation. A complex system is divided into several independent modules
(also known as modular design) in a layered architecture, which is conducive to simplifying
the design and implementation of the program. Based on this layered architecture, the
framework proposed here has the following advantages:

1. Maintainability. The layered architecture and modular design make the framework
easy to be understood, easy to be modified and easy to be tested. Thus, it allows
users and developers to modify or improve the framework using their own computer
system environment. For instance, if the graphic user interface (GUI) is needed,
developers only need to add a presentation layer responsible for GUI above the
controller layer without changing the rest of the framework.

2. Extensibility. As shown in Figure 3, the class hierarchy is reasonably designed, and
the abstract interfaces of the top-level abstract base class are elaborately planned as
well, which will be explained in the following sections. Therefore, the analysis code
can be modified, extended and recompiled in the framework.

3. Developer-friendliness. The framework proposed here assists researchers in using
VFIFE for structural analysis. Hence, it must be developer-friendly. Thus, the frame-
work modules are derived from the basic components of VFIFE, which means that
each module has a clear physical meaning. For example, the particle class is developed
to simulate the behavior of an actual particle in VFIFE. Thus, the whole framework is
easy for developers to understand.

The openVFIFE platform based on this framework has the ability to conduct static
and dynamic analysis of truss and frame structures. In addition, the elastoplastic anal-
ysis and entire-process simulation of the progressive collapse of a structure can also be
conducted by openVFIFE. It should be noted that the platform will be supported for
a long time and that more new features such as new elements and algorithms will be
continuously implemented.
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3.1. Particle Class

The particle is the basis of VFIFE. The structure’s motion and deformation are simu-
lated by the particles’ motion. In addition, the deformation analysis of a structural element
also needs position information about particles connected to the element. Therefore, the de-
sign of a particle class is the foundation of the whole framework. As discussed in Section 2,
one particle should have the following information: spatial coordinates, displacement,
velocity, acceleration, mass and load. A particle has at most six DOFs, including three
translational degrees of freedom (translation in x, y and z directions, denoted by Ux, Uy
and Uz, respectively) and three rotational degrees of freedom (rotation around x, y and z
axes, denoted by Rotx, Roty and Rotz, respectively). When designing the particle class, the
particle’s physical quantities should be reflected in all six DOFs. Unlike FEM, the global
stiffness matrix and global mass matrix are not required in VFIFE, so the coding sequence
and storage order of particles need not be specially designed. However, in order to ensure
the uniqueness of particles in the system, it is necessary to assign a unique identifier to
each particle. This identifier not only establishes the topological relationship between the
structural element and the particle but is also used for the identification of the particle’s
output results. Obviously, the particle contains all the information required to solve the
governing equation. In order to reduce the frequency of data exchange in the framework
and to ensure the system’s efficiency, the computing of the particle’s governing equation
should also be conducted at the particle level.

Based on the above conventions, the particle class presented in Figure 4 is established
to represent the VFIFE particles. For convenience, efficiency, the security of storage and
the usage of data, the following attributes of particle class are stored by an array container
in STL: coordinate, force, mass, display, velocity, acceleration and previous displacement.
One particle has 6 DOFs, so each position in the array represents information about a fixed
DOF, as shown in Figure 5. For different problems, the particle’s DOFs are different. For
instance, a particle connected with a space bar element has only three translational DOFs
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(Ux, Uy, Uz), while a particle connected with a space beam element has all six DOFs. In
order to simulate the various combinations of a particle’s DOFs, the dof_key attribute is
designed to control them. This attribute is also stored by the array container, and each
position corresponds to a fixed DOF and can only be taken as a Boolean value, as shown
in Figure 5. When the value in the dof_key[i] (i = 0, 1, . . . , 5) is correct, the particle has
the DOFs corresponding to that position. Correspondingly, three methods, activateDof(),
deactivateDof() and constraintDof (), are designed to activate, deactivate and constrain the
particle’s DOFs. Furthermore, the particle class includes the solve() method for solving the
governing equations. The governing equation is solved by the central difference method,
as shown in Equation (10). Once the governing equations are solved, the particle’s spatial
position needs to be updated in time, so the updatePostion() method is designed to achieve
this function.
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3.2. Material Class and Its Derivations

There are many types of materials involved in practical engineering, such as concrete,
steel, wood and so on. In the civil engineering field, the mechanical properties of materials
are mainly considered, including density, Young’s modulus, shear modulus, Poisson’s ratio
and so on. Obviously, it is unreasonable and difficult to integrate material properties into
structural elements. Using a material class to simulate materials in practical engineering
can take into account the system’s feasibility and extensibility. Depending on the problem,
sometimes only linear elastic materials need to be considered, and sometimes nonlinear
materials need to be considered. Thus, the BaseMaterial class, which serves as an abstract
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class, is used to specify the necessary mechanical properties of the materials and the inter-
faces to be called by structural elements. Furthermore, materials with different mechanical
properties can be developed according to users’ requirements. The material library shown
in Figure 6 is established to simulate elastic and plastic materials.
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The abstract base class BaseMaterial is formed by abstracting the commonness of all
materials and includes the following main attributes: material number id, material type
type, elastic modulus E, shear modulus G and Poisson’s ratio nu. The BaseMaterial class
also provides a virtual method Eq() to return the material’s equivalent tangent modulus.
The LinearElastic class inherits from BaseMaterial and is used to simulate all linear elastic
materials. Two abstract classes, UniaxialPlastic and NdPlastic, are also derived from Base-
Material and are used to represent plastic materials under uniaxial stress-strain status and
plastic materials under complex stress-strain status, respectively. The material properties of
plastic materials are related to the loading state and plastic strain/stress history. Therefore,
the isYield() and isLoad() methods are designed to determine whether the material yields
and whether it is loaded or unloaded after yielding, respectively, as shown in the Uniaix-
alPlastic class diagram in Figure 6. Furthermore, the material’s subsequent yield strength
needs to be updated according to its hardening criterion after yielding. Therefore, the
method of updateYiledFunc() is designed to simulate the material’s hardening. The method
involves four attributes: back stress alpha, hardening parameter kappa, mixed hardening
paramePleaster m and plastic stress history plastic_stress. Table 1 shows the pseudo-code
of the Eq() function for plastic material. Depending on the UniaxialPlastic class, two kinds
of commonly used plastic material models, ideal elastoplastic model (UniIdeal class) and
bilinear elastoplastic model (UniBilinear class), are realized in this paper.
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Table 1. Pseudo-code of the Eq() function for plastic material.

Given a strain increment delta_strain
1. delta_strain_← delta_strain // Record the strain increment,
2. Eq_← E // initiate equivalent modulus
3. if (isYield()) // Determine whether the material yield according to the yield criteria
4. then (recordPlasticHistory()) // record the plastic stress and strain history
5. if (isLoad()) // Determine the load status, load or unload
6. then (update back stress alpha and growth function kappa, Eq_← Et)
7. else (Eq_← E)
8. else (Eq_← E)
9. total_strain← total_strain + delta_strain
10. total_stress← total_stress + Eq_ * delta_strain
11. return Eq_

It is obvious that the inheritance mechanism in OOP increases the reusability of
codes and is very convenient for programming. The base class BaseMaterial provides a
common interface through virtual methods, and the dynamic polymorphism for computing
an equivalent tangent modulus by a common instruction is achieved. This mechanism
makes it possible to develop a universal solver for VFIFE and also to expand new features
for users.

3.3. Section Class and Its Derivations

In truss structure analysis, the element’s stiffness matrix depends on its cross-section
characteristics. As in the material library, the section should not be integrated into the
element class. It is necessary to design an abstract base class to specify the section char-
acteristics (including area, static moment, moment of inertia, etc.) and the interfaces for
calculating them. In the engineering practice, there are various structure members with
different sections, so it is unrealistic to establish a derived class for each section. Therefore,
it is necessary to design a user-defined section class to simulate the situation where the
section properties are given directly. In this way, the section characteristic parameters of an
irregular section calculated by other software can be directly used.

Figure 7 shows a UML diagram of the section library. The abstract base class BaseSec-
tion has the following properties: section number id, area A, moments of inertia Iyy and Izz
and polar moment of inertia Iyz. Correspondingly, the BaseSection class also provides virtual
methods calcArea(), calcIyy(), calcIzz() and calcIyz(). In fact, besides the above properties, the
section should also have other attributes, such as static moment and shear center, which are
not given in this paper due to limited space. The CustomSection, Ctube and AngleSteel classes
are inherited from BaseSection and are used to simulate sections with arbitrary parameters,
circular tube sections and angle sections, respectively. As stated above, there are many
cross-sections of beam and column members in engineering. This paper only provides
concrete realization of a few common ones. However, with object-oriented programming,
users can easily develop custom section types based on the abstract base class BaseSection.

3.4. Element Class and Its Derivations

In VFIFE, a structural element is used to reflect the internal force response of the
structural system under external load, and the internal force in the element is also a part of
the external force acting on the particles. When analyzing the internal force in a structural
element, it is necessary to first obtain the motion information about the particle connected
to it. Deformation analysis according to the particle’s displacement is then carried out to
obtain the element’s rigid body motion and pure deformation. Once the pure deformation
is obtained, the internal element force can be computed by taking the material and section
properties into consideration. Finally, the internal element force is applied to the particles
connected to the element as the external force on the particles. The complete procedures
are listed in Table 2. It is natural to associate element object with particle object, material
object and section object in the framework’s design.



Buildings 2021, 11, 505 11 of 29Buildings 2021, 11, x FOR PEER REVIEW 11 of 28 
 

 
Figure 7. UML diagram of BaseSection class and its derivations. 

3.4. Element Class and Its Derivations 
In VFIFE, a structural element is used to reflect the internal force response of the 

structural system under external load, and the internal force in the element is also a part 
of the external force acting on the particles. When analyzing the internal force in a struc-
tural element, it is necessary to first obtain the motion information about the particle con-
nected to it. Deformation analysis according to the particle’s displacement is then carried 
out to obtain the element’s rigid body motion and pure deformation. Once the pure de-
formation is obtained, the internal element force can be computed by taking the material 
and section properties into consideration. Finally, the internal element force is applied to 
the particles connected to the element as the external force on the particles. The complete 
procedures are listed in Table 2. It is natural to associate element object with particle ob-
ject, material object and section object in the framework’s design. 

On the other hand, according to the type and scale of the problem, a structural system 
can be discretized into truss elements (bar and/or beam elements), plane elements, shell 
elements, solid elements, etc. Obviously, there are many differences among these elements 
in both geometric modeling and mechanical analysis: (1) a bar element usually contains 
only two nodes, a plane triangular element can contain three or six nodes, and a shell 
element and a solid element need at least eight nodes; (2) a truss element must specify 
element cross-section information, while other elements do not; (3) the material properties 
that can be considered for each element are different; for example, a bar element cannot 
reasonably reflect the characteristics of anisotropic materials, while a solid element can 
fully consider all the mechanical characteristics of anisotropic materials; (4) the rules for 
establishing the local coordinate systems of elements are not the same; for example, a 
beam element needs to predetermine its principal axis direction; (5) the stress-strain state 
of each element is different. In object-oriented programming, the commonness of the 
above elements is abstracted to form a base element class BaseElement. Besides the basic 
properties of elements such as particle, material and section, this base class also specifies 
the methods that elements must have, such as calculating element mass and internal force, 
as shown in Figure 8. 

  

Figure 7. UML diagram of BaseSection class and its derivations.

Table 2. Procedures for element force calculation.

Step 1. Obtain the particle position of the current and previous time step
Step 2. Calculate the direction vector of the element
Step 3. Calculate pure deformation of the element
Step 4. Calculate the increment of strain
Step 5. If the element is broken, abort computing and reassign attributes of particles
Step 6. Else
Step 7. Calculate internal element force
Step 8. Endif
Step 9. Assign internal force to connecting particles

On the other hand, according to the type and scale of the problem, a structural system
can be discretized into truss elements (bar and/or beam elements), plane elements, shell
elements, solid elements, etc. Obviously, there are many differences among these elements
in both geometric modeling and mechanical analysis: (1) a bar element usually contains
only two nodes, a plane triangular element can contain three or six nodes, and a shell
element and a solid element need at least eight nodes; (2) a truss element must specify
element cross-section information, while other elements do not; (3) the material properties
that can be considered for each element are different; for example, a bar element cannot
reasonably reflect the characteristics of anisotropic materials, while a solid element can
fully consider all the mechanical characteristics of anisotropic materials; (4) the rules for
establishing the local coordinate systems of elements are not the same; for example, a beam
element needs to predetermine its principal axis direction; (5) the stress-strain state of
each element is different. In object-oriented programming, the commonness of the above
elements is abstracted to form a base element class BaseElement. Besides the basic properties
of elements such as particle, material and section, this base class also specifies the methods
that elements must have, such as calculating element mass and internal force, as shown
in Figure 8.
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The abstract base class BaseElement has the following main attributes: element number
id, particle objects container particles, material object material, section object section, ele-
ment mass mass, stress stress, strain strain and direction vector of element local coordinate
system ex, ey, ez. The BaseElement class also provides virtual methods setParticleMass(),
setParticleMass() and setParticleForce(), which are used to set the DOFs, mass and internal
forces in the particles connected to the element, respectively. The virtual method calcOri-
entVector() is designed to update the element’s local coordinate system. On this basis, the
virtual method calcElementForce() is designed to calculate the internal element force.

Furthermore, StructElement, PlaneElement and SolidElement are inherited from the
BaseElement class and are used to specify the basic characteristics of truss element, plane
element and solid element, respectively. Thus, they also serve as abstract classes. One
specific element class can be derived from the above three abstract classes according to its
own characteristics. The inheritance relationship of the element class implemented in this
paper is shown in Figure 3 Group B.

Link2D, Link3D, Beam2D and Beam3D classes are derived from StructElement class.
Link2D element is a 2D bar element that can simulate truss, connecting rod and spring. Each
particle of Link2D element has 2 DOFs (Ux and Uy). Link3D is a 3D bar element with similar
performance to Link2D, but each of its particles has 3 DOFs (Ux, Uy and Uz). Link2DLD
and Link3DLD elements are developed based on Link2D and Link3D elements, respectively,
and can consider both geometric nonlinearity and material nonlinearity. Beam2D element
is a 2D frame element that can bear axial tension, compression and bending. Each particle
of Beam2D element has 3 DOFs (Ux, Uy and Rotz). Beam3D element is a 3D frame element
that can bear axial tension, compression and bending. Each particle of Beam3D element has
6 DOFs (Ux, Uy, Uz, Rotx, Roty and Rotz). Both Beam2D and Beam3D elements can consider
geometric nonlinearity, but they cannot accurately consider material nonlinearity.

3.5. StructSystem Class

The structural system can be modeled and analyzed utilizing the particle class, ma-
terial library, section library and element library. However, it has not been unified, and
the function of organizing and outputting the results has not been implemented. In order
to solve these problems, StructSystem class is designed to manage the particle objects,
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material objects, section objects and element objects involved in the analysis procedures, as
shown in Figure 9. This class is responsible for the creation and destruction of the objects
of classes of the core solver, as well as the addition, deletion, checking and modification
of each object. At the same time, the StructSystem class is responsible for the output of
model information (including particle coordinates, element information and constraint
information) and calculation results (including particle motion information and element
internal force). The StructSystem class is also the middle layer for users to interact with the
core solver of VFIFE. The specific solving process is open to users after being encapsulated
by the StructSystem class. This design can not only reduce the cost of users but also increase
the security of the whole system.
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The StructSystem class has the following properties: number id, working directory
workdir, job name jobname, container for Particle objects particles, container for BaseSection
objects sections, container for BaseMaterial objects materials, container for BaseElement
objects elements and constraint information constraints. The above containers are mainly
used to store and manage all kinds of objects in the whole system. In order to facilitate
interaction between the user and the kernel, the StructSystem class provides the following
methods: setExtetnalForce(), setInternalForce(), autoTimeStep(), solve(), saveResult() and relaseC-
ontainers(). Among them, the setExtetnalForce() method is used to apply external load; the
setInternalForce() method is used to calculate the internal forces in the elements and apply
them to the particle; the autoTimeStep() method is used to achieve automatic time step size;
the solve() method calls the particle solver program to solve the governing equation; the
saveResult() method is used to save the calculation results; and the relaseContainers() is used
to release the contents in the StructSystem class to avoid memory leak.

4. Numerical Validation

As mentioned before, six types of elements are implemented in openVFIFE currently,
including Link2D, Link3D, Link2DLD, Link3DLD, Beam2D and Beam3D. Link2DLD and
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Link3DLD inherit from Link2D and Link3D, respectively. The accuracy and reliability
ofLink2DLD, Link3DLD, Beam2D and Beam3D are validated in this section. In addition,
the performance of openVFIFE in large deformation analysis, elastic-plastic analysis and
dynamic nonlinear analysis is also examined. For example, applications presented in this
section demonstrate the aforementioned multiple capabilities of the platform, including the
elastoplastic analysis of a planar truss (example 1), stability analysis of a 24-member shallow
dome (example 2), large deformation analysis of a planar cantilever beam (example 3) and
dynamic analysis of a space curved beam (example 4).

4.1. Example 1: Link2DLD Element

In example 1, a planar three-bar truss subjected to a load P in the y direction is
analyzed, as shown in Figure 10. The cross-sectional area (A) of bars is 1 m2; the length (L)
of BD bar is 1 m; and ∠ADB = ∠CDB = θ = 45◦. Two different plastic material models are
considered: an ideal elastic-plastic model and an elastic linear hardening model, as shown
in Figure 10. The density (ρ) of the bars is 7850 kg/m3; Young’s modulus E is 206 Gpa in
the elastic state; the tangent modulus Et is 20.6 Gpa in the plastic state; and the yield stress
σy is 235 Mpa.
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If the ideal elastic-plastic model is adopted, the displacement of node D can be
expressed as:

P =


EA
(
1 + cos3 θ

)
∆/L, P ≤ Pe

σy A + 2EA cos3 θ∆/L, Pe < P ≤ Py
Py, Py < P

(11)

where Pe = σy A
(
1 + 2 cos3 θ

)
, Py = σy A(1 + 2 cos θ), and Py/Pe ∼= 1.41.

If the elastic linear hardening model is adopted, the displacement of node D can be
expressed as:

P =


EA
(
1 + cos3 θ

)
∆/L, P ≤ Pe

σy A + Et A
(
∆/L− σy/E

)
+ 2EA cos3 θ∆/L, Pe < P ≤ Py

σy A + Et A
(
∆/L− σy/E

)
+ 2σy A cos θ + 2Et A cos θ

(
cos2 θ∆/L− σy/E

)
, Py < P

(12)

where Pe = σy A
(
1 + 2 cos3 θ

)
, Py = σy A

(
1 + 2 cos θ + Ettan2θ/E

)
, and Py/Pe ∼= 1.47.

A numerical analysis of the truss is conducted using the proposed framework. The
truss is simulated using three Link2DLD elements, which consider material nonlinearity
and geometric nonlinearity simultaneously. The time increment ∆t is taken as 10−5 s to
ensure the stability of central difference, and the total analysis time t is 100 s. The load
P is applied slowly with ∆P = P∆t/t. The damping coefficient α is taken as 1.0. The
dimensionless results of the numerical analysis and the theoretical solution are presented
in Figure 11.
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As shown in Figure 11, in the planar 3-bar system, BD bar always yields first, and
then AD bar and CD bar yield together. For the ideal elastic-plastic model, the truss’s
bearing capacity remains unchanged after all three bars have yielded. However, in the
numerical analysis, the load is continuously increasing, which leads to a slightly larger
numerical result at this stage. For the elastic linear hardening model, the numerical result
is consistent with the theoretical result, even when all three bars have yielded. All in
all, the openVFIFE results are in good agreement with the theoretical solution for both
material models, which proves the feasibility and correctness of the Link2DLD element and
openVFIFE. This example also shows that the VFIFE method is suitable for the elastoplastic
analysis of a structure.

4.2. Example 2: Link3DLD Element

To illustrate the capability of VFIFE in geometric nonlinear analysis, and to test the
Link3DLD element, a 24-member shallow dome (as shown in Figure 12) is analyzed by
openVFIFE. The topological relationship between elements and particles as well as the
size information are depicted in Figure 12. The density of the bars is 20 lb/in3; Young’s
modulus E is 106 ksi; and the cross-sectional area (A) of the bars is 0.1 in2. A concentrated
force P is imposed on node 1 in the z direction, as shown in Figure 12.
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The dome is simulated by 13 particles located in the joints and 24 Link3DLD ele-
ments. To capture the structure’s buckling process, two loading schemes are adopted
here: the displacement-controlled method (DCM) and the load-controlled method (LCM).
The computing parameters of openVFIFE are listed in Table 3. The buckling analysis is
also conducted using FEM for comparison purpose. The arc-length method is adopted
to capture the complete buckling process, which can provide a benchmark of DCM in
openVFIFE. The LCM in FEM is also conducted using same computing parameters as
openVFIFE.
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Table 3. Computing parameters of openVFIFE.

Parameter DCM LCM

time step size ∆t 1× 10−3 s 1× 10−3 s
damping 1.0 1.0

simulating 100 s 1000 s
increment of displacement/load ∆d/∆ f 6× 10−5 in 0.5 lb

Figures 13 and 14 show load-deflection curves using DCM and LCM, respectively.
As can be seen in Figure 13, the load-deflection curves of node 1 obtained by openVFIFE
and FEM are quite close, while there is a slight discrepancy for node 2, especially in the z
direction. The bearing capacity of the dome increases with the increase of the displacement
of node 1 at the small deformation stage. When the dome is instable, the bearing capacity
continues to decline. Until the dome stabilizes again, the bearing capacity of the structure
can be improved. As shown in Figure 14, the complete instability path can be obtained
using DCM. The LCM fails to reproduce the descending portion of the load-deflection curve.
Instead, the load remains unchanged after buckling, then increases in the post-buckling
position. When the structure is about to buckle, the results calculated by openVFIFE are
more consistent with the results using DCM, while the results of FEM are slightly larger. It
is obvious that the results of openVFIFE are quite close to FEM, indicating that openVFIFE
is suitable for the buckling analysis of a structure.
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4.3. Example 3: Beam2D Element

The large deformation analysis of a planar cantilever beam subjected to a bending
moment at its free end is shown in Figure 15. Young’s modulus E is 1000 pa, density ρ is
1 kg/m3, beam length (L) is 1 m, cross-section area (A) is 1 m2 and moment of inertia (I)
of the cross-section is 0.01 m4. The beam’s deformation is related to the bending moment
acting on the free end, as expressed by:

φ = ML
EI (13)

where φ is the curvature.
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Figure 15. Planar cantilever beam.

The cantilever beam is discretized into 21 particles and 20 Beam2D elements. The time
step ∆t is taken as 10−5 s to meet the stability of central difference, the analysis time t is
100 s and the damping coefficient α is taken as 1.0. The numerical computing results by
openVFIFE are compared with the theoretical solution, as shown in Figure 16.
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Figure 16. Deformation of cantilever beam.

It is obvious that the numerical simulation results yeilded by applying openVFIFE are
in good agreement with the theoretical results, as can be seen in Figure 16. The numerical
solutions remain highly accurate even when the beam is curled by 3 laps, i.e., ML/EI = 6π.
It provides sufficient evidence to prove the accuracy of the Beam2D element and also
verifies the capability of the geometrically nonlinear analysis of openVFIFE.

4.4. Example 4: Beam3D Element

Example 4 illustrates the application of Beam3D element in dynamic time history
analysis. A space curved beam (AB) is located in the xoy plane. End A is fixed, and
end B is free, as shown in Figure 17. The center angle of the curved beam is 45◦, with
the radius of R = 100 in. The cross-section of the beam is a rectangle (width w= depth
h = 1 in). Young’s modulus E is 1× 107 psi, shear modulus G is 5× 106 psi and density ρ is
2.54× 10−4 lb·s2/in−4. A concentrated load (P = 300 lb) perpendicular to the xoy plane is
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suddenly applied at the free end of the curve beam, and the duration is 0.3 s. The curved
beam is simulated by 21 particles and 20 Beam3D elements. The time step ∆t is taken as
10−5 s to meet the stability of central difference, the analysis time t is 0.3 s and the damping
coefficient α is taken as 0.
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Figure 17. Space curved beam.

According to Chan’s study [60], the curved beam will vibrate under a suddenly
applied load P. As shown in Figure 18, the openVFIFE results are compared with those of
Chan’s study in which FEM was adopted. As can be seen, the openVFIFE results show
reasonable agreements with the FEM results, especially in the z direction. This further
validates that the Beam3D element as well as openVFIFE is effective in analyzing the
dynamic nonlinear problems of space frames.
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The above four examples verify the accuracy of the four structural elements (Link2DLD,
Link3DLD, Beam2D and Beam3D) constructed in the present study. They also prove the
ability of openVFIFE in structural behavior analysis, including but not limited to the
following aspects: (1) static and dynamic analysis of structures; (2) nonlinear analysis of
structures, including geometrical nonlinearity and material nonlinearity; (3) structural
stability analysis.

5. Nonlinear Dynamic and Seismic Analysis of a Transmission Tower

Latticed transmission towers are important infrastructures and are major components
of the power grid system. To illustrate the application of openVFIFE, dynamic nonlinear
analyses of a latticed tower under sudden-applied and earthquake loads are conducted
utilizing openVFIFE, respectively. The results are compared with that obtained from a
commercial finite element software (ANSYS 19.0). All the examples are computed on a
64-bit Linux machine with an Intel Xeon E3-1230 v2 processor.
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5.1. Model Establishment

A ±800kV double-circuit tangent transmission tower is studied. The elevation of
the tower is depicted in Figure 19. The height of the tower body is 42 m, and its total
height is 48.8 m. The sections of the tower columns are square, and the materials are
equilateral angle steel, as listed in Table 4; the density of the material is 7850 kg/m3 and
the Young’s modulus is 2.06 × 1011 Pa. The models of VFIFE and FEM are established by
openVFIFE and ANSYS software, respectively. The finite element model established in
ANSYS adopts a Link180 element and a Beam188 element, and the VFIFE model established
in openVFIFE adopts a Link3DLD element and a Beam3D element, as shown in Figure 20.
As J.G.S. da Silva [61] pointed out, using truss elements (such as Link180 in ANSYS or
Link3DLD in openVFIFE) to simulate the transmission tower will cause a lack of constraints
at the transverse layer such that the tower will become a geometrically unstable system. To
avoid this problem, the main materials and diagonal materials are simulated by the Link180
element in ANSYS and by the Link3DLD element in openVFIFE. The transverse materials
are simulated by a Beam188 element and a Beam3D element in ANSYS and openVFIFE,
respectively. The models in both ANSYS and openVFIFE consist of 191 nodes/particles
and 569 elements.
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As stated before, there is no need to integrate the global mass and stiffness matrix in
VFIFE, so openVFIFE cannot conduct modal analysis of the tower. However, to understand
the tower’s dynamic characteristics, the modal analysis is conducted in ANSYS. The natural
frequencies of the first six order modes are listed in Table 5.

Table 5. Natural tower frequencies.

Number of Order Frequency/Hz Mode

1 1.720 bending along x direction
2 1.831 bending along y direction
3 1.999 torsion around z direction
4 4.912 bending along x direction
5 8.785 bending of cross-arm
6 8.868 bending along x direction

5.2. Nonlinear Dynamic Analysis

Firstly, the dynamic behavior of a tower under suddenly applied loads is com-
puted to compare the capabilities of FEM and VFIFE. A sudden load is applied to every
node/particle of the model along the negative direction of the y-axis. The load remains at
0 N until time 0.1 s, then suddenly increases to 10,000 N and lasts for 59.9 s. The damping
coefficient α is taken as 0.5 in both ANSYS and openVFIFE. In ANSYS, the full transient
analysis is adopted, which uses an implicit integration method (Newmark-Beta) to solve
the governing equations. Hence, the time step can be relatively large. In ANSYS, in order
to ensure the stability of the integration algorithm, time step ∆t is taken as 10−3 s from
0.1 s to 1 s, and 10−2 s from 1s to 60 s. In openVFIFE, the time step ∆t is taken as 10−4 s. In
addition, geometrical nonlinearity is considered in both ANSYS and openVFIFE.

Figure 21 shows the time history of the displacement of node/particle 47 (see Figure 20),
and Figure 22 shows the displacements of every node/particle at t = 60 s. It can be seen
that the results of openVFIFE and ANSYS are almost the same. The mean displacements
of node/particle 47 calculated by ANSYS and openVFIFE are 0.812 m and −0.805 m,
respectively. Thus, the relative error is only −0.832%. Figure 23 shows the time history of
the axial force of element 469 (see Figure 20), and the axial forces of every truss element
(Link180/Link3DLD) at t = 60 s are plotted in Figure 24. It is clear that the internal force
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calculated by openVFIFE is accurate enough. To evaluate the accuracy of openVFIFE, the
errors are computed by:

error =
‖yANSYS−yopenVFIFE‖1

‖yANSYS‖1
(14)

where yANSYS and yopenVFIFE are the result vectors calculated by ANSYS and openVFIFE,
respectively. For instance, when calculating the error of node displacement, yANSYS is
taken as [y1, y2, . . . , yi, . . . yn]

T (yi is the displacement of node i calculated by ANSYS)
and yopenVFIFE is the taken as

[
y′1, y′2, . . . , y′i, . . . y′n

]T (y′i is the displacement of particle i
calculated by openVFIFE). The errors are listed in Table 6. It’s worth noting that it takes
about 654.0 s to complete the analysis in ANSYS, while openVFIFE takes only 107.7 s.
Clearly, the computing efficiency of openVFIFE is higher, largely because there is no
iteration process in explicit integration.
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Table 6. Errors of openVFIFE.

Item Description Error (%)

Node displacement Uy 1 0.009
Internal force of truss element N 1 0.077

1 Uy is displacement along the y-axis; N is axial force.

5.3. Time-History Analysis under Earthquake

The acceleration time history of ground motion recorded in the El Centro earth-
quake [62] is selected when conducting the seismic analysis, as shown in Figure 25. The
peak ground acceleration (PGA) is 0.2808 g (g is gravity acceleration), and the time interval
of ground motion is 0.01 s. Therefore, to meet the stability of central difference, the time
step of El Centro ground motion in FEM is taken as 0.01 s, while that taken in openVFIFE is
0.0001 s. The acceleration in openVFIFE is calculated by inputting the acceleration history
using a linear interpolation method. The earthquake acceleration is inputted transversely
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to the transmission tower. The other computation parameters are same as in Section 5.2.
The time history curves of the displacement of node/particle 47 are plotted in Figure 26,
and those of the axial force of element 469 are plotted in Figure 27.
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As can be seen in Figures 26 and 27, the calculated responses of the transmission tower
under earthquake acceleration obtained from ANSYS and openVFIFE almost coincide with
each other. The maximum displacement at 5.26 s is 106 mm for the openVFIFE platform and
105 mm for ANSYS. The relative displacement error of particles is quite small. These results
illustrate that the seismic time history analysis obtained from openVFIFE is reliable, and
the efficiency of openVFIFE is proved again in the seismic analysis. It is worth mentioning
that the computing times in ANSYS and openVFIFE are 1025.6 s and 108.2 s, respectively.
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5.4. Collapse Analysis under Earthquake

In the past several decades, there are numerous instances of damages to the trans-
mission towers due to earthquakes [63] or strong winds [64,65]. For example, more than
20 towers collapsed during the Wenchuan earthquake in 2008 [63]. There are two typical
failure modes of transmission towers under strong earthquake: (1) tower top damages,
(2) the whole tower tilts, as shown in Figure 28.
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The simulation of the progressive collapse of a transmission tower under an extremely
strong earthquake is complicated. The above examples strongly prove that the validity of
the openVFIFE in static analysis, dynamic analysis and nonlinear analysis. However, as
mentioned before, one of the advantages of VFIFE is its ability to analyze the discontinu-
ous behavior of structures, which is hardly solved by FEM. The collapse analysis of the
transmission tower under earthquakes has been conducted by openVFIFE to illustrate its
application on discontinuous behavior analysis. The bilinear elastic-plastic constitutive
damage model is adopted, as shown in Figure 29. The elastic modulus Ee = 2.06× 1011 Pa,
plastic modulus Ep = 2.06× 1010 Pa, the initial yield stress σy = 2.35× 108 Pa and the
ultimate strain εu = 0.03. If the strain of an element reaches the ultimate strain εu, this ele-
ment fractures and its internal force becomes zero. In order to make the transmission tower
collapse, the acceleration of the earthquake ground motion is amplified 10 times, and the
PGA reaches 2.808 g. Other calculation parameters are same as those used in Section 5.3.

Buildings 2021, 11, x FOR PEER REVIEW 24 of 28 
 

transmission tower collapse, the acceleration of the earthquake ground motion is ampli-
fied 10 times, and the PGA reaches 2.808 g. Other calculation parameters are same as those 
used in Section 5.3. 

  
(a) (b) 

Figure 29. Bilinear elastic-plastic constitutive damage model: (a) monotonic loading, (b) cyclic load-
ing. 

The entire process of the collapse of the tower is shown in Figure 30. It is found that 
the tip of the cross-arm destroys first at about 33.2 s, which is similar to the failure mode 
shown in Figure 28a. At about 35.1 s, the failure of some elements at the diaphragm leads 
to the instability of the diaphragm at the bottom of the tower. The tower tilts evidently 
and loses its bearing capacity. From 35.1 s to 38.0 s, the tower continues to topple. But the 
tower legs still work. At about 38.8 s, the tower fully tilts, and the legs at the bottom of the 
tower fracture due to significant deformations. It is obvious that the failure of the tower 
is in good agreement with the failure mode shown in Figure 28b.  

 
  

(a) (b) (c) 

 
(d) 

 
(e) 

Figure 30. Entire-process simulation of the seismic collapse of the transmission tower, (a) t = 33.2 s, (b) t = 35.1 s, (c) t = 37.0 
s, (d) t =38.0 s, (e) t = 38.8 s. 

Figure 29. Bilinear elastic-plastic constitutive damage model: (a) monotonic loading, (b) cyclic loading.

The entire process of the collapse of the tower is shown in Figure 30. It is found that
the tip of the cross-arm destroys first at about 33.2 s, which is similar to the failure mode
shown in Figure 28a. At about 35.1 s, the failure of some elements at the diaphragm leads
to the instability of the diaphragm at the bottom of the tower. The tower tilts evidently
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and loses its bearing capacity. From 35.1 s to 38.0 s, the tower continues to topple. But the
tower legs still work. At about 38.8 s, the tower fully tilts, and the legs at the bottom of the
tower fracture due to significant deformations. It is obvious that the failure of the tower is
in good agreement with the failure mode shown in Figure 28b.
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Figure 31 shows the evolution of the strains of the tower leg. It is clear that the element
512 fractures when its strain reaches the ultimate value 0.03, which is consistent with the
defined ultimate strain for the tower material. It indicates that the present openVFIFE is
effective in simulating the entire process of the collapse of structures.
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6. Conclusions

VFIFE is a new structural analysis method that has significant advantages in the large
deformation analysis, nonlinear dynamic analysis, discontinuous behavior analysis, etc., of
a structure. It has therefore been widely used in civil engineering, marine engineering and
mechanical engineering. To provide a general VFIFE analysis platform for researchers and
engineers, an object-oriented general structural analysis platform (openVFIFE) based on
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VFIFE is developed in this paper. This platform is structured by a layered architecture with
two layers: the controller and the core solver. In the core solver, four modules including par-
ticle class, element library, material library and section library are developed to implement
the computing tasks of VFIFE. In the controller, a StructSystem class is achieved to manage
objects created in the core solver and encapsulate the core solver. Six types of elements are
implemented, including planar bar element (Link2D), space bar element (Link3D), flexibility
planar bar element (Link2DLD), flexibility space bar element (Link3DLD), planar frame
element (Beam2D) and space frame element (Beam3D). Three material models are achieved,
including linear elastic material (LinearElastic), ideal elastoplastic material (UniIdeal) and
bilinear elastoplastic material (UniBlinear). To validate the reliability and efficiency of
the platform, a series of numerical examples are conducted. Furthermore, to extend the
applications of VFIFE, the nonlinear dynamic and collapse process of a transmission tower
under earthquake load are studied using openVFIFE.

Based on the numerical results presented in this paper, the following conclusions can
be drawn:

1. The accuracy of elements and material models in openVFIFE are verified by four
numerical examples. The capacity of the platform in large deformation analysis,
elastic-plastic analysis and nonlinear dynamic analysis is also confirmed by these
numerical examples.

2. Benefiting from the explicit solution strategy and the well-designed object-oriented
framework, the proposed platform is much more efficient than ANSYS in nonlinear
dynamic analysis. Its operation speed is about 6–10 times faster than ANSYS.

3. In addition, the entire-process collapse of the transmission tower under earthquake
loads has been successfully simulated by the openVFIFE. Firstly, the cross-arm of the
tower destroys, and then the whole tower tilts under a strong earthquake, which is
consistent with the failure modes observed in real cases. The study lays the foundation
for further investigation of the collapse mechanism, failure modes and their control
of the transmission towers.
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