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Abstract: The paper concerns shaping curvilinear steel bar structures that are hyperbolic paraboloid
canopy roofs by means of parametric design software Rhinoceros/Grasshopper and Karamba 3D.
Hyperbolic paraboloid shape has found applications in various solutions of building roofs, mainly
as reinforced concrete or steel coverings made of bent sheets. The hyperbolic paraboloid as a ruled
surface can be a good base surface for forming bar grids. However, there are few studies on the effect
of its division and the obtained topology of bar structures on their load-bearing capacity. In order to
fill this gap, the aim of the presented research was to compare the effectiveness of various curvilinear
steel bar structures of hyperbolic paraboloid canopy roofs covering the same plane, as well as defining
both the most effective pattern of their structural grids and the optimal supporting system. This
analysis was carried out thanks to the application of genetic algorithms enabling the free flow of
information between geometrical and structural models, as well as thanks to the obtained result
of multi-objective optimizations of the shaped structures for given boundary conditions. Minimal
mass of the structure as well as minimal deflection of the structural members were assumed as
the optimization criteria.

Keywords: a curvilinear structure; a hyperbolic paraboloid; shaping structures; structural
optimization; parametric design; genetic algorithms; multi-objective optimization; topology;
Grasshopper; FEM

1. Introduction

In general, steel bar structures are determined as spatial structures made of slender members
which are directly connected in order to carry loads. Historically, curvilinear steel bar structures,
mostly in the form of cylindrical lattice structures, began to be created in the mid-nineteenth century.
However, due to serious difficulties in both calculating and constructing from repeatable elements,
they began to be used on a larger scale only in the 1940s. During this period, the beginning of steel
mass production and the invention of many devices influenced the great development of various
manufacturing technologies of steel roof structures. The most popular were layered geodesic domes,
which were shaped using the procedures of sphere division into triangles elaborated by Buckminster
Fuller [1,2]. Due to this fact, the problem of the most regular subdivision of the spherical surface
was one of the major challenges for scientists in the steel structures field. Various ways of dividing
a sphere have been developed over the years, in order to achieve different types of grid, like Lamell’s
lattice and Schwedler’s lattice [3]. However, combining different parts of the sphere into larger forms
was one of the ways of obtaining new shapes of grid shells [3]. The broad review of various types of
spatial grid structures and their development is described in [4], whereas broad analytical approaches
concerning plane bar grids and double layer trusses are given in [5]. The method of forming steel bar
structures, placing their vertices on the so-called base surfaces which are Catalan surfaces—has been
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presented in [6]. On the other hand, the shaping of bar structures based on minimal surfaces, especially
the Enneper surfaces, is presented in [7,8].

A hyperbolic paraboloid constitutes an especially interesting and important basic shape for various
single or complex architectural roof forms. The use of a hyperbolic paraboloid shape for constructing
thin shells was pioneered in the post-war era as the result of the combination of modern architecture
with structural engineering. The hyperbolic paraboloid as the element for creating complex forms was
used widely by F. Candela for the implementation of lightweight shell concrete structures, constituting
coverings that are free of intermediate supports [9]. The great interest in this shape was caused by its
positive static properties, allowing the creation of shells with a large span, as well as a great possibility
of various arrangements of single shells in compound ones.

Hyperbolic paraboloids are exceptionally stiff, due to their double curvature [10]. They exhibit
membrane action, wherein internal forces are efficiently transmitted through the surface, which is
the subject of various publications [11,12]. Most of the research concerns theoretical, experimental and
constructional problems related to hyperbolic paraboloid concrete or reinforced concrete shells [9,13].
The method of shaping freeform buildings, roofed with profiled steel sheets effectively transformed
into strips of screw ruled surfaces, is presented in [11,14]. However, the behaviour of gabled hyperbolic
paraboloid shells is studied in [15]. Although a hyperbolic paraboloid as a ruled surface constitutes
a good basis for creating lattice grids, there is little research into the effect of the division of this surface, as
well as received grid pattern, on the bearing capacity of the bar structure created. However, the variety
of compound roof structures that can be obtained by combining several hyperbolic paraboloid grid
modules is presented in [12]. The canopy roofs of hyperbolic paraboloid shape are worth considering
due to both their interesting form and relative simplicity of construction.

At present, the use of curvilinear steel bar structures is increasing thanks to advanced technology
in the field of steel bar structures. Thus, more and more curvilinear steel bar structures are created,
with a great variety of geometric forms and technical solutions. Therefore, a rational and effective
attempt to shaping of this type of structures is important. The shaping phase is the design phase
preceding all subsequent stages of the design process, which is why it is the most creative phase, as
well as having a significant impact on the final form of the structure [9,16]. Due to this fact, it is very
important to consider as many aspects of the future project as possible in the early stage. The principles
of the rational shaping of steel bar structures are presented in many publications [17,18]. However,
shaping the curvilinear steel bar structures can sometimes be a challenging task.

The possibilities of rational shaping depend not only on creativity and practical skills, but also
on the design tools used. In the last twenty years, the progress of digital technologies has affected
the entire field of both architectural design and structural engineering. That is due to the fact that digital
tools greatly facilitate the creation of complex geometry, as well as performing advanced structural
calculations [19]. The practical application of the digital design tools by European design studios is
presented in the research reported in [20]. Various computer-aided design (CAD) tools enable both
the creation of two-dimensional documentation and the creation of three-dimensional models based
on two-dimensional drawings [21–23]. CAD technology enabled the generation of digital models, their
geometry visualization and, finally, analysis of their structural behavior. Moreover, the progress in
design caused by development of computer technology and integration of digital modeling systems has
facilitated cooperation in various design areas, such as architecture and structural engineering [24,25].
Especially, in the field of steel bar structures, whose shaping is accompanied by a number of issues,
the interdisciplinary approach is often required.

Recently, development of the modeling process based on Non-Uniform Rational B-Splines (NURBS)
has had a great impact on forming the structures’ shapes. NURBS can be controlled during modeling,
and therefore they can constitute a base for the generation of various digital changeable forms with
diverse topologies. Moreover, digital environment, especially algorithmic-aided shaping structures,
has created new possibilities for performing various simulations, which further enable structural
optimization [26]. In 1977, the idea of solving evolutionary optimization problems was introduced by
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means of a computer simulation of evolutionary transformations [27]. The evolutionary algorithms
for such a simulation are the stochastic search methods that mimic natural biological evolution.
These algorithms have been developed in order to arrive at near-optimum solutions to large-scale
optimization problems for which traditional mathematical techniques might fail [28]. A comparison of
the formulation and results of five recent evolutionary-based algorithms—genetic algorithms, particle
swarm algorithms, ant-colony systems, and shuffled frog leaping—is presented in [28].

The algorithms presented in the paper are genetic algorithms inspired by Darwin’s theory of
evolution, which mimic natural selection and gene mutation. In each genetic algorithm, the optimization
process of the given problem begins with creating a set of random solutions called individuals. The set
of variables is treated as chromosomes. As in nature, the whole set of possible solutions is considered
a population. The most efficient and strong chromosomes are selected in order to create the next
population. The evolutionary principles of genetic algorithms allow the generation of well-performing
instances and search for the solution closest to the optimal one in the given space [29]. In order to
solve the optimization problem, the parameters and constraints of the problem should be identified.
Depending on the nature of the objective function applied, the optimization problem can be classified
into either single objective or multi objective. In the literature of the subject, the term multi-objective
optimization refers to problems with up to four objectives [27].

The optimization of bar structures can deal with many aspects: the weight of the structure,
appropriate support method, or topology related to both ultimate limit states (ULS) and serviceability
limit states (SLS) [6,8,30,31]. In the case of a steel structure analyzed in the paper, the ultimate
limit state referring to internal failure involves the resistance of cross sections and the resistance of
the structure and its members. If the design value of effect of actions Ed does not exceed design value of
corresponding resistance Rd, then this should be verified. The design value of the effects of actions Ed

is determined by combining the various values of actions that are considered to occur simultaneously.
However, verification of SLS primarily aims at preventing excessive movements or vibrations of

structures [31]. Whether the design value of the effects of actions specified in the serviceability criterion
Ed does not exceed limiting design value of the relevant serviceability criterion (e.g., design value of
displacement) should be verified.

In the paper, the effects of displacements and deformations are mostly taken into account, assuming
deflection limits equal to

f = L/250 (1)

where L–span of the structure [31].
The application of evolutionary structural optimization (ESO) for the shaping of steel bar structures

is a new field of research, which can lead to obtaining effective structures.
Referring to the above conditions, the article attempts the multi-objective optimization of

curvilinear steel bar structures forming roofs of hyperbolic paraboloid shape. Although the hyperbolic
paraboloid as a ruled surface may be a convenient base for forming bar grids, there are few studies on
the effect of its division and the topology of the obtained bar structures on their load-bearing capacity.
In order to fill this gap, the aim of the presented research is the comparison of the effectiveness of
canopies—curvilinear steel bar structures formed based on hyperbolic paraboloids covering the same
plane. The research goal is to determine the most effective pattern of grids and the optimal supporting
system, as well as the mass of the structure.

2. Materials and Methods

The research was conducted with the application of modern digital tools working in Rhinoceros
3D software developed by Robert McNeel and Associates [32]. These tools are: Grasshopper plug-in
for parametric modeling and Karamba 3D plug-in developed to predict the behaviour of structures
under external loads [33]. The active use of Rhinoceros 3D/Grasshopper software in the architectural
design process is becoming increasingly popular in the world, mainly as a tool for generating models
with complex geometry. Moreover, interactive structural evolutionary optimization has recently
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gained some popularity for optimization in structural design [6,8,9,34]. New methods of design
solutions based on genetic optimization are analyzed in [35]. However, algorithmic structural shaping,
which is the process in which both the geometric model and structural analysis are carried out using
multi-objective interactive structural evolutionary optimization algorithms, is a new field of research.
Therefore, the approach presented in the paper to shape curvilinear steel bar structures of hyperbolic
paraboloid canopy roofs is innovative.

During the tests, in order to generate geometric models, Rhinoceros 5.0 version was used
in combination with Grasshopper. This enabled the creation of complex generative algorithms
and the parallel exploration of the shaped geometric models in the Rhinoceros 3D viewport.
The shaping strategy presented in the paper consisted of forming of curvilinear steel bar structures
by placing their structural nodes on the so-called base surfaces, which were hyperbolic paraboloids.
However, the structures’ geometries were generated algorithmically using a set of various specified
input parameters.

Then, on the basis of the created geometric models of the analyzed structures, as well as the adopted
boundary conditions concerning the supporting systems (loads), as well as the type of joins and
material properties, the structural models were established. The integration of geometrical shaping and
structural analysis took place by the Karamba 3D. The topology and cross-sections of the structures’
bars were optimized taking into account the minimal structure’s self-weight, as well as minimal
deflection, as the optimisation criteria.

The general scheme of the conducted analysis dealing with shaping hyperbolic paraboloid canopy
roof is presented in Figure 1. However, a more detailed description of the individual steps is provided
in the following sections.
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Figure 1. The general scheme of the conducted analysis.

2.1. Definition of the Geometric Model of the Canopy

Canopy roofs of hyperbolic paraboloid shape were chosen as a case study. It was assumed that
the roofs covered a square plan of an area of 100 square meters. Each roof was supported by four
columns placed symmetrically, whereas each column was joined with the grid by four branches,
Figure 2. The positions of the columns have been set as parametric variables, as well as the locations of
the branches’ nodes.
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The Grasshopper’s algorithm, composed of the connected block components, was created in 
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establish a series of points on them. These series of points were next joined by lines to define a 
hyperbolic paraboloid, which constituted a base surface for structural grid creation. Therefore, the 
obtained surface was discretized by dividing it into the same number of parts in two directions. 
Thanks to this a three-dimensional quadrate grid was obtained, whose vertices lay on the base 
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Next, each spatial polygon of the obtained grid was divided into two triangles to form a 
triangular bar grid. Depending on the division direction of each of the quadrangles, which can be 
done along shorter or longer diagonals, and depending on the number of subdivisions of the base 
surface as well as its type, various patterns of bar grids can be obtained. In Figure 4, the examples of 
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The structure with the grid pattern split along a short diagonal is further called the structure of type 
a in the paper, whereas the structure with the grid pattern split along a long diagonal is called the 
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Figure 2. The view of the considered structure.

The hyperbolic paraboloid roof surface as the ruled surface was established by two skew lines—the
directrix lines and a director plane to which all surface’s rulings are parallel, Figure 3. This surface
constituted the base surface to form a grid of bars.
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Figure 3. A hyperbolic paraboloid with the directrix lines expressed.

The Grasshopper’s algorithm, composed of the connected block components, was created in such
a way that two skew lines defined parametrically by two pairs of various points were distinguished as
its input. Each of the lines were next divided into the same number of elements to establish a series of
points on them. These series of points were next joined by lines to define a hyperbolic paraboloid, which
constituted a base surface for structural grid creation. Therefore, the obtained surface was discretized
by dividing it into the same number of parts in two directions. Thanks to this a three-dimensional
quadrate grid was obtained, whose vertices lay on the base surface. The Grasshopper’s block script for
roof’s base surface creation is presented in Appendix A, Figure A1.

Next, each spatial polygon of the obtained grid was divided into two triangles to form a triangular
bar grid. Depending on the division direction of each of the quadrangles, which can be done along
shorter or longer diagonals, and depending on the number of subdivisions of the base surface as well
as its type, various patterns of bar grids can be obtained. In Figure 4, the examples of grid patterns
obtained due to eight-fold division of the hyperbolic paraboloid surface are shown. The structure
with the grid pattern split along a short diagonal is further called the structure of type a in the paper,
whereas the structure with the grid pattern split along a long diagonal is called the structure of type b.
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that reason, grid lines were changed into beams, whereas grid vertices were changed into structural 
nodes. The assumed boundary conditions regarding the means of support, as well as both joints and 
material properties, were specified too. The structure was assumed to consist of round steel pipes. 
The structural nodes of the grid were assumed to be rigid, while the branches’ joins with the grid as 

Figure 4. Rectangular projections of considered grid patterns: (a) the pattern—split along a short
diagonal; (b) the pattern—split along a long diagonal.

The geometry of each considered structure was determined using a block algorithm with variable
parameters. However, during the simulations carried out, the following variables were adopted:

• The amount of parts into which the surface was divided or the lengths of grid bars, which
determined the division;

• The distances of the branches’ nodes from the ground;
• The locations of the supports expressed by the distances of the column bases from the borders of

the covered square, Figure 5.

Buildings 2020, 10, 39 6 of 14 

 
(a) 

 
(b) 

  
Figure 4. Rectangular projections of considered grid patterns: (a) the pattern—split along a short 
diagonal; (b) the pattern—split along a long diagonal. 

The geometry of each considered structure was determined using a block algorithm with 
variable parameters. However, during the simulations carried out, the following variables were 
adopted: 
• The amount of parts into which the surface was divided or the lengths of grid bars, which 

determined the division; 
• The distances of the branches’ nodes from the ground; 
• The locations of the supports expressed by the distances of the column bases from the borders 

of the covered square, Figure 5. 

Moreover, it was assumed that each branch node was placed at the column’s end point, 
whereas the column length was equal to a distance of between sixty and eighty percent of the 
distance of the ground support from the roof surface. However, the columns were assumed to be 
located within the rectangular plan, but no further than one meter from the place’s border (offset 
from the edge of the square in both x and y directions of 0.0–1.0 m), Figure 5.  

 
(a) 

 
(b) 

  
Figure 5. Presentation of the allowed area of supports' positions: (a) a horizontal projection; (b) a 
perspective view  

2.2. Establishing of the structural model of the canopy and assumptions for the evolutionary optimization. 

Due to the fact that the geometry of the structure plays a crucial role in any optimization 
problem, the scripts developed to achieve the geometric forms of the roof structures were used as the 
part of the scripts defining the structural models for optimization performed by Karamba 3D. For 
that reason, grid lines were changed into beams, whereas grid vertices were changed into structural 
nodes. The assumed boundary conditions regarding the means of support, as well as both joints and 
material properties, were specified too. The structure was assumed to consist of round steel pipes. 
The structural nodes of the grid were assumed to be rigid, while the branches’ joins with the grid as 
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(b) a perspective view.

Moreover, it was assumed that each branch node was placed at the column’s end point, whereas
the column length was equal to a distance of between sixty and eighty percent of the distance of
the ground support from the roof surface. However, the columns were assumed to be located within
the rectangular plan, but no further than one meter from the place’s border (offset from the edge of
the square in both x and y directions of 0.0–1.0 m), Figure 5.

2.2. Establishing of the Structural Model of the Canopy and Assumptions for the Evolutionary Optimization

Due to the fact that the geometry of the structure plays a crucial role in any optimization problem,
the scripts developed to achieve the geometric forms of the roof structures were used as the part
of the scripts defining the structural models for optimization performed by Karamba 3D. For that
reason, grid lines were changed into beams, whereas grid vertices were changed into structural nodes.
The assumed boundary conditions regarding the means of support, as well as both joints and material
properties, were specified too. The structure was assumed to consist of round steel pipes. The structural
nodes of the grid were assumed to be rigid, while the branches’ joins with the grid as pinned joins. For
a roof covering, polycarbonate plastic panels with a thickness of 10 mm were chosen.
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The optimization was performed by Octopus which is the Grasshopper’s plug-in for applying
evolutionary principles to parametric design and problem solving by multi-objective optimization.
Octopus as an evolutionary simulator can approach optimal solution sets through iterative tests and
constant self-adaptation. It possesses the ability to cross-reference multiple parameters simultaneously.
However, it requires multiple objectives to be input.

The goal of the performed optimization was to determine the best structure in terms of bar grid
topology, the location of supports, and the locations of branches’ nodes. However, the optimization
objectives were as follows:

• Minimize total mass m;
• Minimize deflection d.

Structural constrains resulting from general structural principles presented in [31–36] were as
follows:

• Due to ULS, the structure should be able to bear acting loads, but this verification was carried
out automatically;

• Due to SLS, the deflection limit for any load case should fulfill the condition f = L/250, where L is
a span of the structure, so for considered structures, f ≤ 40 mm;

• Kind of structural material applied: steel S235.

Established variables:

• Dimensions of the rectangular plan—10 m × 10 m;
• Number of supports—four;
• The height of the whole structure—5 m;
• The height of the roof’s surface—2 m;
• Elements’ cross sections—circular hollow, walls’ thickness not less than 3.2 mm.

Variables for optimization:

• Location of the supports—within the rectangular plan, however, no further than one meter from
the place’s border;

• Bars’ length: 1.0–3.0 m;
• Location of the column branching node in the scope of 60–80%d, where d is the distance of

the column’s base to the roof’s surface.

During simulations it was assumed that the structures were composed of round tubes with
cross-sections, as expressed in Table 1.

Table 1. Division of the structures’ bars and their cross sections.

Lattice Bars Cross-Section
Radius/Wall Thickness

[cm/mm]

Branches Bars Cross-Section
Radius/Wall Thickness

[cm/mm]

Columns Cross-Section
Radius/Wall Thickness

[cm/mm]

16.83/5.0 16.83/5.0 24.45/7.1

Moreover, it was assumed that each structure is loaded by its self-weight, as well as environmental
loads from snow and wind. The wind load was applied locally to the grid structure whereas snow
wind was applied globally. These loads were calculated in the form of pressure coefficients acting
over the surface of the roof assuming the structure’s location in Rzeszow, Poland [34,36]. Several
combinations of loads have been considered, including asymmetric ones, which, in the case of canopy
roofs, can be crucial when shaping the structures. However, in this case, the worst case scenario was
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achieved for the combination when the drifted snow load is a main load and the wind load is an
associated load acting from above on the structure.

Due to the symmetry of each roof structure and its shape, some simplifications were proposed;
that is, the snow load could be calculated similarly, as in the case of a butterfly roof, whereas roof
inclination angle was determined according to Figure 6.

Buildings 2020, 10, 39 8 of 14 

 
Figure 6. Determination of the roof inclination angle. 

3. Result 

The simulation was carried out four times: twice for structures with the grid pattern of type a 
and twice for structures with the grid pattern of type b, presented in Figure 4. The first simulation 
for both structures was carried out assuming bar lengths within the scope of 1.5–2.0 m, while the 
second one assumed bar lengths within the scope of 1.0–3.0 m.  

Due to the fact that the optimization objectives indicated previously—the minimization of total 
mass and minimization of deflection—are conflicting, several results of each simulation for both 
structures with pattern a and b have been chosen. The graph of the Pareto front with the best 
solutions for the structure of type a received during the first simulation is presented in Figure 7. The 
individuals that are displayed closest to the origin are equally optimal for all three objectives, 
however, in our case solutions which meet both ULS and SLS were chosen. As was mentioned 
earlier, ULS and SLS are verified automatically. However, deflection cannot exceed 0.04 m. The 
generated solutions are characterized by the fact that the greater the mass of the structure, the 
smaller the deflection. Therefore, several solutions were chosen for which the deflections are close to 
but not exceeding 0.04 m. This guarantees the minimum mass of the structure.  

 

Figure 7. The 2D graph of the Pareto front for the hyperbolic paraboloid canopy structure with 
pattern a (split along the short diagonal—division into eight parts). 

The chosen results of the first simulation performed for the structure of type a (grid split along a 
short diagonal) are given in Table 2. However, the results of the simulation performed for the 
structure of type b (grid split along a long diagonal) are given in Table 3. 

Table 2. The results of the simulation assuming bar lengths within the scope of 1.5 m–2.0 m. 

Number of 
the canopy 

roof 

Distances of columns from place’s 
boarder in x, y directions [m] 

Distance of the brunches’ 
node from the surface [m] 

Maxi- 
mum 
dis- 

place- 
ment 
[m] 

 
Total mass 

[kg] 

Figure 6. Determination of the roof inclination angle.

3. Result

The simulation was carried out four times: twice for structures with the grid pattern of type a and
twice for structures with the grid pattern of type b, presented in Figure 4. The first simulation for both
structures was carried out assuming bar lengths within the scope of 1.5–2.0 m, while the second one
assumed bar lengths within the scope of 1.0–3.0 m.

Due to the fact that the optimization objectives indicated previously—the minimization of total
mass and minimization of deflection—are conflicting, several results of each simulation for both
structures with pattern a and b have been chosen. The graph of the Pareto front with the best solutions
for the structure of type a received during the first simulation is presented in Figure 7. The individuals
that are displayed closest to the origin are equally optimal for all three objectives, however, in our
case solutions which meet both ULS and SLS were chosen. As was mentioned earlier, ULS and SLS
are verified automatically. However, deflection cannot exceed 0.04 m. The generated solutions are
characterized by the fact that the greater the mass of the structure, the smaller the deflection. Therefore,
several solutions were chosen for which the deflections are close to but not exceeding 0.04 m. This
guarantees the minimum mass of the structure.
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Figure 7. The 2D graph of the Pareto front for the hyperbolic paraboloid canopy structure with pattern
a (split along the short diagonal—division into eight parts).

The chosen results of the first simulation performed for the structure of type a (grid split along
a short diagonal) are given in Table 2. However, the results of the simulation performed for the structure
of type b (grid split along a long diagonal) are given in Table 3.
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Table 2. The results of the simulation assuming bar lengths within the scope of 1.5 m–2.0 m.

Number of
the Canopy Roof

Distances of
Columns from

Place’s Boarder in x,
y Directions [m]

Distance of
the Brunches’ Node
from the Surface [m]

Maximum
Displacement [m]

Total Mass
[kg]

a1 0.83 0.80 0.039 5552.33
a2 0.95 0.80 0.036 5554.83
a3 1.00 0.80 0.035 5557.13

Table 3. The results of the simulation assuming bar lengths within the scope 1.5–2.0 m.

Number of
the Canopy Roof

Distances of
Columns from

Place’s Boarder in x,
y Directions [m]

Distance of
the Brunches’ Node
from the Surface [m]

Maximum
Displacement [m]

Total Mass
[kg]

b1 0.87 0.80 0.040 5560.4
b2 0.95 0.80 0.034 5563.3
b3 1.00 0.80 0.034 5565.6

It is worth noticing that the achieved bar grids during the first simulation were obtained as a result
of the division of the surface into eight parts in both directions. Due to the smallest mass, the structure
a1 is the most efficient, Figure A2.

During the second simulation, a maximum bar length of 3 m was allowed and bar grids were
obtained as a result of the division of the surface into four parts in both directions. The Pareto front for
the structure type b is presented in Figure 8. However, several solutions of the simulation assuming
bar lengths within the scope of 1.0–3.0 m are presented in Tables 4 and 5.
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Figure 8. The 2D graph of the Pareto front for the hyperbolic paraboloid canopy structure with pattern
b (split along long diagonal—division into four parts).

Table 4. The results of the simulation assuming bar lengths within the scope of 1.0–3.0 m.

Number of
the Canopy Roof

Distances of
Columns from

Place’s Boarder in x,
y Directions [m]

Distance of
the Brunches’ Node
from the Surface [m]

Maximum
Displacement [m]

Total Mass
[kg]

a1 0.95 0.71 0.026 4338.54
a2 0.98 0.71 0.026 4339.27
a3 1.00 0.73 0.026 4339.54
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Table 5. The results of the simulation assuming bar lengths within the scope of 1.0–3.0 m.

Number of
the Canopy Roof

Distances of
Columns from

Place’s Boarder in x,
y Directions [m]

Distance of
the Brunches’ Node
from the Surface [m]

Maximum
Displacement [m]

Total Mass
[kg]

b1 1.00 0.66 0.022 4347.58
b2 1.00 0.74 0.027 4343.73
b3 1.00 0.73 0.026 4343.61

The analysis of the above results suggests that there was a certain reserve in the amount of
deflections in the structure, which created the possibility of reducing bars’ cross-sections. Therefore,
another simulation was performed assuming bars’ cross-sections as in Table 6.

Table 6. Division of the structures’ bars and their cross sections.

Lattice’s Bars Cross-Section
Radius/Wall Thickness

[cm/mm]

Branches’ Bars Cross-Section
Radius/Wall Thickness

[cm/mm]

Columns Cross-Section
Radius/Wall Thickness

[cm/mm]

16.0/5.0 16.0/5.0 22.45/5.0

The results of this simulation for structures of type a and type b are given in Tables 7 and 8,
respectively. However, the optimum results generated due to performed simulation are presented in
Figures A3 and A4.

Table 7. The results of the simulation assuming bar lengths within the scope of 1.0–3.0 m.

Number of
the Canopy Roof

Distances of
Columns from

Place’s Boarder in x,
y Directions [m]

Distance of
the Brunches’ Node
from the Surface [m]

Maximum
Displacement [m]

Total Mass
[kg]

a1 1.00 0.71 0.038 3255.75
a2 1.00 0.72 0.039 3254.73
a3 1.00 0.73 0.040 3253.84

Table 8. The results of the simulation assuming bar lengths within the scope 1.0–3.0 m.

Number of
the Canopy roof

Distances of
Columns from

Place’s Boarder in x,
y Directions [m]

Distance of
the Brunches’ Node
from the Surface [m]

Maximum
Displacement [m]

Total Mass
[kg]

b1 1.00 0.75 0.040 3256.79
b2 1.00 0.74 0.039 3257.40
b3 1.00 0.73 0.038 3258.15

On the basis of the above, the results of the most efficient structure resulted in the structure a1,
presented in Figure 9.
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Figure 9. Perspective view of the optimal structure; the structure of pattern a, received due to surface
division into four parts along its edges (structure a3, T7).

4. Discussion

An original algorithmic-aided method of shaping the hyperbolic paraboloid canopy roof structures
has been proposed. This method verifies simulation structures’ geometries with respect to structural
requirements. The performed analyses found several solutions that meet ULS at given boundary
conditions and, at the same time, meet SLS, i.e., do not exceed the allowable deflection of 40 mm.
Based on the results compiled in the tables T2, T3, T4, T5, T7, T8, it can be concluded that the mass
of the considered structure depends on the grid topology. In turn, this topology is dependent on
the method of surface division, as well as the number of divisions applied. The curvilinear steel bar
structures resulting from the division of the hyperbolic paraboloid into four parts are much lighter
than the structures resulting from the division into eight parts. Due to the fact that the weight of
the structure significantly affects its cost, these structures are more effective.

As previously mentioned, triangular grids of curvilinear steel bar structures analyzed in the study
are obtained by dividing spatial quadrate grids, and the division can take place along the longer
diagonals or shorter ones. The research revealed large differences in the masses of the structures
depending on the shaping of triangular grids based on quadrangular grids. The analysis of the structures
carried out showed that the grid structures obtained by dividing quadrangles along the longer diagonals
are much heavier than the grid structures formed when dividing them along shorter diagonals.

The location of the supporting columns is another aspect that has a significant impact on
the efficiency of the structure. The simulations showed that the further the columns are moved away
from the edge of the covered square, the larger the mass of the structure. Moreover, the research found
the optimal branch node positions, and thus the optimal column lengths for each structure.

5. Conclusions

The optimal design of structures is an important direction for the development of research.
The presented work is a contribution to the research conducted in the field of design optimization
by modern digital tools. The studies have shown that the multi-objective optimization does not
give one unambiguous optimal solution, especially when the assumed criteria are contradictory.
However, it can pre-estimate solutions and select the most favourable ones. The solutions selected
due to multi-objective optimisation should be subjected to further analysis and selection in order to
choose the most optimal result. However, this kind of optimization at the initial stage of shaping has
a justification when it is difficult to assess the behaviour of the structure and choose the right solution.

Due to its properties, a hyperbolic paraboloid always constitutes an important basic shape for
various interesting single or complex architectural forms of different types; therefore, this study should
be continued. It is very important to take into account other optimization criteria of the structure,
such as the unification of elements and the method of connection, which will be a goal of the author’s
further research.
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Figure A4. Result of the simulation for a structure with pattern b 
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34. Dźwierzyńska, J. Algorithmic-Aided Shaping Curvilinear Steel Bar Structures, 1st ed.; Publishing House of

Rzeszow University of Technology: Rzeszow, Poland, 2019; ISBN 978-83-7934-300-3.
35. Bonenberg, W.; Giedrowicz, M.; Radziszewski, K. Contemporary Parametric Design in Architecture, 1st ed.;
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