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Abstract: Although base isolation is nowadays a well-established seismic-protection technique for
both buildings and bridges, and several issues are still open and attract the interest of the research
community. Among them, the formulation of computationally efficient and accurate analysis methods
is a relevant aspect in structural design of seismic-isolated buildings. In fact, codes and guidelines
currently in force in various parts of the world generally include the possibility for designers to utilize
linear-elastic analysis methods based on equivalent linearization of the non-linear force-displacement
response of isolators. This paper proposes a formula for defining the force distribution in height
that should be considered in linear-static analyses to obtain a more accurate approximation of the
actual structural response, supposedly simulated by means of non-linear time history analysis.
To do that, it summarizes the results of a wide parametric analysis carried out on a batch of structures
characterized by three different heights and various properties of base isolators. The reported
results highlight that the equivalent static force distribution provided by both Italian and European
codes tend to underestimate the actual seismic lateral forces acting on base-isolated buildings,
whereas the inverted triangular distribution, proposed in various American codes and standards,
is often conservative.

Keywords: seismic isolation; linear static analysis; vertical distribution of shear forces

1. Introduction

Seismic isolation is based on well-established mechanical principles [1,2] and it is nowadays
widely adopted worldwide both in the realization of new buildings [3,4] and retrofitting existing
ones [5–7]. Several studies have demonstrated the effectiveness of base isolation in the case of historic
structures with the aim to preserve and reuse the buildings or protect their non-structural elements
and contents [8,9]. A wide variety of seismic isolators are currently available on the market [10,11]
and further devices are being developed and tested in research laboratories [12,13]. Although they are
based on various mechanical phenomena (i.e., elastic response of soft materials, yielding of metals
either in bending or torsion, surface friction, sliding, etc.), the mechanical behavior of seismic isolators
is generally characterized by non-linear behavior [14,15] and, hence, non-linear time history (NLTH)
analyses are needed to consistently simulate the response of base-isolated (BI) buildings subjected to
seismic excitations [16].

However, NLTH analyses are computationally demanding and time consuming, which makes
them unfit for practice-oriented design activities. Therefore, modern codes and guidelines [17–20]
consider both linear and non-linear analysis methods for seismic design of base-isolated buildings.
Specifically, linear static analysis (LSA) is generally permitted with some limitations, depending on the
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properties of both the isolation system (IS) and the building super-structure. It is based on defining
a pattern of horizontal forces and equivalent stiffness and viscous damping for the base-isolation
system [21–24]. According to various structural codes, IS may be modelled by an equivalent linear
visco-elastic behavior with some limitations defined in terms of effective damping ratio, re-centering
capability and invariability of the mechanical properties [15,20].

Various researchers have investigated accuracy and suitability of LSA in design-oriented
simulations of base-isolated buildings [25–27]. Specifically, several studies were intended at assessing
and possibly enhancing the definition of the properties of linearized structural models to be employed
in LSA, especially in the case of bridges [28–30]. Moreover, the use of alternative lateral force patterns
was assessed to perform pushover analyses on BI-structures [31]. However, setting an appropriate
equivalent linearized model is only the first step in LSA procedures for multi-story buildings [32,33],
as they also require a consistent definition of the distribution of equivalent horizontal forces in height.

As a matter of principle, two typical behaviors can be distinguished. On the one hand, if it
is assumed that the base-isolation system is significantly more flexible than the superstructure (the
latter being basically assumed as a rigid body), a uniform distribution can be figured out where the
equivalent static seismic forces Fi at the i-th story can be determined as a function of both the total
design base shear (Vb) and the story masses mi [17,34]:

Fi= V
mi∑N

j=1

(
mj

) (1)

On the other hand, other seismic codes, including the US and Chinese ones [20,35,36], assume an
inverted triangular distribution of the base shear Vb that can be described as follows:

Fi= V
mihi∑N

j=1

(
mjhj

) (2)

However, some studies [37,38] demonstrate that uniform distribution tends to neglect flexibility
of the superstructure and the participation of the higher vibration modes. Conversely, the inverted
triangular force distribution has been found to overestimate the maximum seismic responses of most
BI-buildings, even when the IS exhibits a strong non-linear behavior [39,40].

Therefore, enhanced formulations are also available in the literature to describe the distribution in
height of lateral forces with the aim to take into account relevant parameters, such as the frequency
ratio between BI- and fixed-base structure [41,42], the fundamental period of the superstructure [43],
the modal shape of the latter [42], the non-linearity factor [14] of seismic isolators [44,45] or combination
of some of the above parameters [46–49]. Under the mathematical standpoint, the proposed
formulations are based on either introducing an exponent to hi in Equation (2) [44,46] or combining
Equations (1) and (2) [41,42,48].

This work aims at assessing several formulations available in the scientific literature [41–49],
as well as in codes and standards [17,20,34], for the distribution in height of lateral earthquake-induced
forces to be considered in LSA of base-isolated structures. Specifically, NLTH analyses are carried out
on the numerical models of three reinforced-concrete (RC) frames with three, five and seven stories and
various fundamental periods of vibration at the fixed-base configuration. Various ISs, characterized by
elastic-hardening force-displacement curves, are considered. The parameters describing the isolation
devices range within the interval of relevance in practical applications with the aim to reproduce
the actual behavior of commercial ISs, which may either be realized by lead rubber bearings (LRB),
high-damping rubber bearings (HDRB), low-damping rubber bearings (LDRB) and friction pendulum
bearings (FPB). Regardless of the specific technological solution, the formulation proposed herein
depends on the relevant mechanical properties of the IS under consideration and allows us to analyze
BI-structures by means of LSA in lieu of more time-consuming NLTH analyses, which results in a more
efficient design procedure.
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The paper is organized as follows. Section 2 describes the types of analysis and the domain of
variation of the relevant parameters considered in this study. Section 3 summarizes the results of the
seismic analyses and shows the comparisons between the outcome of NLTH and LSA, the latter being
carried out with lateral forces distributed both uniformly and as an inverted triangle, according to
two well-established practices. Section 4 discusses the results by comparing the pattern of horizontal
forces resulting from NLTH analyses with the relevant formulations available in the literature;
a practice-oriented formula for lateral force distribution to be adopted in LSA is finally proposed as a
main finding of the present paper. The main results of the work are then remarked upon in Section 5.

2. Research Methodology: Parametric Analysis

The present study is based on comparing the results of accurate, yet computationally intensive,
NLTH analyses with the corresponding ones obtained via LSA under lateral loads supposedly
equivalent to the effect of the seismic excitation. The relevant modelling assumptions and analysis
procedures are described into details in the following sections.

2.1. Superstructure

The present study is based on considering a set of three-, five- and seven-story reinforced RC frame
structures. Specifically, the attention has been focused on regular buildings with invariant horizontal
stiffness throughout the height of the structure and moderately variable floor mass. The building
models have a rectangular plan and a symmetric distribution of resisting systems. Figure 1 depicts the
model of the five-story base-isolated building.
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Figure 1. Three-dimensional model of a prototype base isolated building with five stories.

The following main assumptions are made in modelling the superstructure:

i. linear-elastic behavior of the superstructure, which is generally accepted in BI-structures;
ii. rigid diaphragm constraints are set at all floor;
iii. soil-structure interaction is neglected;
iv. torsional effects are also neglected, as the superstructure is regular both in plan and height.

The plan dimensions are 16.50 m × 13.50 m. The story area is approximately 223 m2 and is divided
into three equal bays along the X-direction and three equal bays along the Z-direction. The story height
is 3.10 m (Figure 2).
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The mass is the same at each level, except for base- and roof-levels. Uniform dead loads (G1 and
G2) at the intermediate floor is equal to 7.17 kN/m2, at the base levels 8 kN/m2 and at the roof levels
4.30 kN/m2. Live load (Qk) is the same for each level and it is equal to 2 kN/m2. Moreover, the infill
walls are not considered as structural elements and are modelled with a uniform load of 7.25 kN/m.
Therefore, the total masses of the three-, five- and seven-floor superstructures are 1142 t, 1817 t and
2555 t, respectively.
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Figure 2. Standard floor plan. Dimensions are in centimeters.

The superstructure is modelled by elastic elements whose transverse sections are dimensioned
in such a way that the corresponding fixed-base structure has realistic fundamental vibration
periods. Specifically, the beam cross-sections are 0.40 m × 0.60 m in the longitudinal direction and
0.40 m × 0.50 m in the transversal direction. At the base level, a greater depth of the beam sections
is adopted (0.70 m). Conversely, the sizes of column sections vary for the three prototype buildings.
A square shape is always assumed: 0.40 m × 0.40 m for the 3-story building, 0.50 m × 0.50 m for the
5-story building and 0.60 m × 0.60 m for the 7-story building. The section dimensions are the same
from the base to the roof.

Table 1 summarizes the cross-section sizes of the structural elements.

Table 1. Structural element sections for standard floor.

Building Beam Girder Column

three stories 40 cm × 60 cm 40 cm × 50 cm 40 cm × 40 cm
five stories 40 cm × 60 cm 40 cm × 50 cm 50 cm × 50 cm

seven stories 40 cm × 60 cm 40 cm × 50 cm 60 cm × 60 cm

Table 2 reports the main properties of the three-prototype buildings, including the total height
and mass of the buildings, the superstructure-to-base-level mass ratio Ms/Mb and the superstructure
fundamental period Tbf.

Table 2. Main properties of the three structural model in fixed-base configuration.

Superstructure Height Total Mass Ms/Mb Period Tbf

three stories 9.3 m 1142 t 3.40 0.41 s
five stories 15.5 m 1817 t 5.33 0.55 s

seven stories 21.7 m 2555 t 7.34 0.70 s

In NLTH analyses, 2% of the critical damping is assumed by using Rayleigh damping [50–52] for
the superstructures, in addition to the dissipated hysteretic energy at the isolation level due to the
non-linear behavior of the IS.
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2.2. Seismic Isolation System

Nowadays, several types of isolation devices are available in the market, which have been briefly
mentioned in Section 1. Although more sophisticated models can be found in the literature to simulate
the non-linear response of those devices [53–56], the present study is based on assuming a general
elastic-hardening hysteretic force-displacement law (Figure 3), which, in principle, can represent the
response of three main groups of isolation devices, such as LDRB (or HDRB), LRB and FPB.
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This bilinear force-displacement relationship of the isolation systems is identified by three
main parameters: the initial stiffness K1 (before yielding/sliding), the post-yield stiffness K2 and the
intersection Q between the post-elastic branch and the vertical axis (Figure 3). The other parameters
are the yield force and displacement, Fy and Xy, and the NLTH design displacement demand Xd.
The ratios α= K2/K1 and µ= Xd/Xy are the post-yield hardening and ductility ratio of the IS, respectively.
Specifically, for FPB, the mechanical behavior is described by an elastic-hardening curve with a high
value of the initial stiffness, K2 is given by the W/R ratio and the characteristic force Q is equal to υW,
where the W is the weight supported by the bearings, R is the effective curvature radius of the concave
surface, and υ is the friction coefficient.

Since existing building codes tend to propose, at least for preliminary design purposes, the use of
simplified models and techniques that facilitate the analysis of seismically isolated structures in the
LSA, an equivalent linearization of the IS non-linear hysteretic behavior is assumed, as isolators are
modelled through their effective stiffness Keff and effective damping ratio ξ. The effective stiffness is
defined as the secant stiffness to the design displacement Xd and is related to the effective period Teq of
the BI-building. The hysteretic damping ratio is given by the energy dissipation principle, based on the
equivalence between the energy dissipated by one cycle of the bilinear model, EH, and the damping
energy of the linear damped system, ED, related to the maximum displacement value [57].

The effective stiffness Keff and the effective damping ratio ξ, at the displacement Xd are calculated
by the following equations:

Keff =
Fd

Xd
=

K1Xy+K2(X d−Xy
)

Xd
= K1

1 + α(µ− 1)
µ

(3)

ξ =
EH

ED
=

4Xy(K 1−K2)(X d−Xy
)

2πKeffXd
2 =

2(1−α)(µ− 1)
πµ[1 + α(µ− 1)]

(4)
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In this study, the main IS properties are defined by three fixed a-priori effective values of the
equivalent vibration period Teq, and various values of initial stiffness K1 of the isolators. For the
sake of clarity, the ranges of α and ξ parameters assumed in this study are wider than those typically
associated to the IS in order to get a better knowledge of the BI structural dynamics and evaluated
the applicability of the formulae over a larger selection. In fact, the α values vary between 0 and 1
and the ξ values, with respect to the limit values of the previous parameter, can increase from 0 to
0.63. On the one hand, the lower effective damping value, related to α equal to 1, represents a linear
behavior, on the other the upper limit, related to α equal to 0, describes an elastic perfectly plastic
curve. It is worth noting that the typical values of ξ parameter range from 0.05 to 0.35.

Table 3 reports the main parameters of the isolation devices employed for the previously described
buildings. In particular, the following parameters are expected to have the most influence on the vertical
distribution of the base shear: effective period of isolated system (Teq), ductility ratio (µ), initial stiffness
and period (K1, T1), the stiffness ratio (α) and, obviously, the hysteretic damping ratio (ξ).

Table 3. Mechanical properties of the isolation system.

Effective Period [s] 1.5; 2.0; 2.5
Ductility [-] 15; 20; 25

Initial Stiffness [N/mm] 2500; 5000; 7500; 10,000
Damping [-] 0.006–0.55

Stiffness ratio [-] 0.005–0.78

2.3. Ground Motions

The Italian Seismic Building Code [34] defines the response spectra in each point of a network
covering the entire Italian territory. Based on location of the building and the return period of the
seismic events, three parameters, ag, F0, and Tc* are provided to generate the horizontal elastic
acceleration and displacement spectra. More details (the shape of an acceleration spectrum and the
meanings of the different parameters) can be found in Chapter 3 of NTC 2018 [34].

In this case, to determine the non-linear properties of the isolation system, the target IS deformation
Xd, defined according to the simplified approach suggested by the Italian Building Code, is obtained
from the elastic design spectrum for a reference return period Tr = 975 years. Only the limit state of
collapse prevention (SLC) with a low probability of occurrence of the 5% in the design working life of
50 years is considered as seismic input. The seismic parameters for the design spectra are listed in
Table 4. As for geotechnical parameters, soil type B and topology type T1 are considered.

Table 4. Parameters to define the elastic acceleration spectrum.

Limit State Tr [years] ag/g [-] F0 [-] Tc* [s]

SLO 30 0.062 2.356 0.280
SLD 50 0.084 2.330 0.297
SLV 475 0.270 2.278 0.379
SLC 975 0.368 2.281 0.410

To perform NLTH analysis of the BI buildings under consideration, a set of seven natural
ground motions has been selected by means of the REXELite software [58]. Figure 4 shows the
selected-accelerograms and the corresponding response spectra: the graph demonstrates the limited
scatter of the single signal spectra with respect to the target design spectra assumed in this study.
According to the Italian Code [34], spectro-compatibility is checked in the period range between
0.15 s and 1.2 Teq: the average spectrum is never lower than 10% and higher than 30% of the target
response spectrum.
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Figure 4. Ground motion records and horizontal elastic displacement (SDe) and acceleration (Se)
response spectra.

2.4. Methods

A total of 108 different bilinear curves to describe the isolators behavior (3 building configurations
× 3 equivalent periods × 4 initial stiffnesses × 3 ductility values) have been considered in the NLTH
analyses. A total number of 756 NLTH analyses have been.

In this work, one-directional seismic input is considered in X-direction and no amplification
is considered for torsional effects. The considered structures are regular in plan and elevation,
which makes torsional effects negligible, and the study of bi-direction seismic input is beyond the
scope of this paper. The step-by-step procedure followed in this study to derive the actual lateral force
distributions is summarized below.

Step 1: NLTH analyses of base isolated building configurations by considering a set of seven
spectrum-compatible accelerograms;

Step 2: Average of the maximum story shear values at the different levels derived from the selected
seven accelerograms;

Step 3: Conversion of the median peak story shears Vi at the i-th level to median lateral force Fi,
according to the following equations:

Vi =
NColumn∑

j=1

Fj
(i) (5)
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Fi= Vi−Vi+1 (6)

where the Fj are the shear forces recorded at the column of each i-th level, Vi and Vi+1 are the
average of the maximum story shears at the i-th and (i + 1)-th levels and the Fi are the lateral
force applied at the i-th level;

Step 4: Normalization of the story shear and lateral force distributions by base shear (assuming
Vb = 1), in order to focus on relative distribution of force rather than their values.

3. Results

Displacement demand on the isolation system and story shear forces are the main factors for the
design of BI structures: the following subsections report a comparison between the results obtained by
NLTH analyses and LSA on the RC structures defined in Section 2.

3.1. Base-Isolated (BI) Structure Response: Ground Motions

Various configurations of base-isolated buildings are presented in order to evaluate the dynamic
response obtained for the different seismic inputs. Figure 5 shows the maximum demands in terms
of inter-story drift ratio (IDR). It demonstrates that the maximum inter-story drift ratios obtained
from NLTH analyses are generally below 0.45% in all the considered structures. This confirms that
the demand on the isolated structures is lower than the corresponding limits of the elastic range [31],
which is consistent with assuming a linear-elastic model for the superstructures.
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Figure 5. Distribution in height of the maximum inter-story drift ratio obtained from NLTH analyses
for each base-isolated configuration: three-story (a), five-story (b) and seven-story building (c).

Figure 6 reports the distribution of story shear Vi normalized with respect to the mean of the base
shear Vb obtained from NLTH analysis.

Since the actual hysteretic response of the various BI-structures depend on the different seismic
inputs, the values and distribution of the lateral shear forces may vary significantly. As shown in
the graphs of the first column in Figure 6, when the BI structure has a low equivalent damping
value, the envelopes of shear forces for each selected ground motion (and, consequently, the average
distribution represented by the bold line) present an almost linear distribution as a result of a base
isolation system. By increasing the damping ratio of the isolation systems, more seismic force is
transferred to the superstructure. The contributions of the higher modes become significant in the
upper levels so the normalized lateral shear envelope is more bulged (see third column of Figure 6).

Moreover, although the accelerograms have been scaled to be compatible with a selected spectrum,
earthquake excitation characteristics and intensity affect the seismic response of the base isolated
buildings as well. The first reason is the significant difference in low- and high- period energy content
of the scaled spectrum. In fact, some of the scaled ground motions have a large amount of energy in
the high-frequency range and this can trigger the higher-modes response. The second reason is the
equivalent damping ratio. For low damping values, in a classically damped vibrating linear system,
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all modes tend to be mutually orthogonal [2]. In these cases, the dynamic response becomes first-mode
dominated and the influence of the seismic input becomes negligible.Buildings 2020, 10, x FOR PEER REVIEW 9 of 20 
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Figure 6. Story shear at each level obtained from the NLTH analyses under the seven
spectrum-compatible ground motions for different base-isolated configurations.

3.2. Equivalent Distribution of Lateral Forces

The equivalent static story forces resulting from the LSA code procedures are compared with
those obtained from NLTH analysis. According to EuroCode 8 and Italian Building Code [17,34],
the LSA equivalent lateral forces are distributed over the height of the building in proportion to the
story masses. Conversely, in US codes a different lateral pattern is assigned based on an inverted
triangular distribution of story accelerations. The results of the NLTH analysis executed in this study
can be utilized to assess the actual accuracy of the two distributions described by Equation (1) and
Equation (2) in terms of lateral force distribution employed in LSA. Specifically, the maximum values
of Vi and Fi, analytically defined by Equations (5) and (6), respectively, can be determined for each
NLTH analysis and the corresponding average value can be determined for the seven accelerograms
considered in this study. The base shear Vb = Vi|i=1 can also be determined.

The diagrams reported in Figure 7 show (on the x-axes) the ratios Vi/Vb (left column) and Fi/Vb

(right column) for the three buildings with 3, 5, and 7 stories. It is worth highlighting that the resulting
Fi/Vb gives a clear picture of the resulting seismic lateral force distribution, which can be deducted
from NLTH analyses. The dashed and the dash-dotted lines reported in the same diagrams correspond,
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respectively, to the uniform acceleration pattern of Equation (1) and the inverted triangular distribution
of Equation (2).
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Figure 7. Story shear envelopes (left) and lateral force distributions (right) obtained from the NLTH
analysis compared with the equivalent distribution employed for the linear static analysis (LSA)
(uniform and inverted triangular).

The synoptic view of the diagrams depicted in Figure 7 demonstrates that the distributions of the
maximum story shear-forces obtained from NLTH analysis strongly diverge from the conventional
uniform distribution as the equivalent damping in the isolators increases. A marked bulge at the
mid-height of the building, due to the higher-mode contribution, is observed with a relatively high
value of ξ. Compared with the results of the non-linear analysis, the uniform distribution approach is
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substantially unconservative. Conversely, the inverted triangular distribution shows a relatively good
correspondence with the shear at the higher stories for medium-high damping values although it is
too conservative for the lower stories.

The results of NLTH analysis confirm that both the uniform and the inverted triangular
distributions are unable to characterize the dynamic behavior of base-isolated building. In fact,
the uniform distribution underestimates the maximum shear forces, especially at the upper stories of
the building, even for relatively low equivalent damping ratio values. On the other hand, the inverted
triangular distribution results too conservative for the typical values of common applications (ξ < 0.20).
However, for very high value of equivalent damping ratio (ξ > 0.30) the triangular distribution leads
to an underestimation of lateral force at the top and the mid height of the building.

Therefore, for typical values of ξ the average of nonlinear results under ground motion records
shows that the real distribution falls between these two extremes.

3.3. Effective Height

To better understand the dynamic behavior of an isolated building, the effective height can
return an appropriate indication about the shear force profile, providing the location of the resultant
equivalent force along the height of the building [37,41,49]:

heff =

∑Nstory
i=1 Fihi∑Nstory

j=1 Fj

(7)

Figure 8 presents the effective height related to 3-, 5- and 7-story buildings. It is compared with
that calculated from uniform and inverted triangular distribution. The different configurations are
described in terms of equivalent damping ratio of the isolation systems.

Figure 8 confirms that the dynamic response of base-isolated buildings significantly depends on
the degree of non-linearity of the isolation system. For the three superstructures, higher values of the
equivalent damping ratio cause an increase of the effective height: the resulting horizontal force is
applied at a higher point due to the contribution of higher modes that increase the shear forces at the
top level. The effective height for the uniform distribution is equal to 0.436 h, 0.460 h and 0.471 h for
the 3-, 5-, and 7-story building respectively, while for the inverted triangular distribution it is equal to
0.724 h, 0.693 h and 0.682 h, in the same order.

The values highlight that the uniform distribution of lateral forces over the height of the three
structures always underestimates the inertial forces at the upper levels. By contrast, the inverted
triangular distribution provides conservative values of the shear forces for values of the damping ratio
smaller than 0.30 for 3-story buildings, 0.20 for the 5-story buildings and 0.16 for the 7-story buildings.
It should be noted that structures with more levels and a longer period in fixed-base configurations
show effective heights even greater than the values associated with a uniform distribution. Indeed, the
shear envelope is closer to a triangular distribution than to the uniform one, even for small values of
equivalent damping ratio.

Nevertheless, for relatively high values of ξ also the triangular distributions are not suitable.
The greater effective height implies the base shear distribution is more bulged than triangular
distribution. For completeness, if the damping ratio tends to extreme values, non-linear analyses
provide anomalous values of the effective height that becomes greater than the total height.
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Figure 8. Normalized effective height of the base isolated configurations.
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4. Discussion

The alternative lateral force distributions, available in the literature for the base isolated buildings,
are compared to those used by building codes (uniform and inverted triangular) and to the shear force
profiles obtained from NLTHA, in order to investigate their applicability and accuracy.

4.1. Comparison between Different Lateral Distribution

As reported in Section 1, most of the different formulae, obtained for BI structures, are functions
of the non-linearity properties of the IS and superstructure to adapt to various configurations of BI
Systems [43,44,46,47]. As seen in Section 3, a proper prediction can be obtained only by including the
IS characteristics in the lateral force distributions.

In addition, since the main problem in the triangular distribution is that the entire base shear
is transferred to the superstructure and that the story force at the base level is equal to zero,
some distributions consider the influence of the inertia of the base floor [41–43,46,48]. Indeed,
ignoring this story force in distributing the base-shear forces leads to overestimating the forces at higher
levels and overturning the moment on the structure. Therefore, some authors propose distributions
given by a combination of different modes of vibration or by the union of uniform and triangular shear
profiles, while others include concentrated force at the base level.

In particular, Khoshnoudian et al. [49] and Cardone et al. [47] propose a distribution given by
the combination of the first three simplified modal shape accounting for the superstructure period of
vibration and for the non-linearity of the isolation system. Khoshnoudian et al. [48], Lee et al. [41],
and Tsai et al. [42] proposed a combination of the uniform and linear distributions not considering
the IS characteristics but only the superstructure properties. Since the last formulae, developed for
configurations with almost linear isolation system and isolation periods well-separated from the
superstructure period, provide similar values of story shear, in the following, only the Lee’s formula
will be considered as reference.

In the non-linear distribution proposed by Ryan et al. [43], York et al. [46] and Andriono et al. [44],
the exponent “p” [44] or “k” [43], depending on IS parameters, predict with more accuracy the bulging
shape of the shear envelopes due to the several damping values. In fact, the predicted superstructure
force distribution is strongly influenced by effective damping: as the damping increases, the exponent
value becomes greater and the lateral shear envelope becomes more bulged. For completeness,
the distribution is nearly uniform (exponent tends to zero) for a lightly damped system and more than
linear (exponent is greater than the unit) for a highly damped system.

For the sake of simplicity, the improved force distributions are compared to the existing force
distribution used by the codes in Figure 9. The comparison is carried out for the 3-, 5- and 7-story
prototype buildings, equipped with different isolation systems. In order to make it more meaningful,
any of these IS parameters are compatible with those investigated by other authors in their studies.

The charts in Figure 9 refer to a 3-story (a), a 5-story (b) and a 7-story (c) buildings. For every type
of superstructure two different configurations of IS are considered, the first one with a low value of the
equivalent damping ratio, the second one with a medium-to-high value.

As can be observed, for the base isolated configurations analyzed in this study, only some
formulae can accurately predict the effective distribution of the inertial forces over the height of
the superstructure.

In their studies, Lee et al. [41] and Tsai et al. [42], for instance, refer to an equivalent viscous-elastic
model that describes the isolation system with low degree of non-linearity. For this reason, their formulae
underestimate the shear values at the upper level, especially for highly damped systems. The lateral
force distribution proposed by Andriono and Carr [44,45], instead, tends to overestimate the shear
force at the different levels because at the base story the inertial force is equal to 0.

Also the first formula developed by Khoshnoudian et al. [48] provides values too conservative
for slightly damped systems. It becomes even less accurate for the configurations with a greater
number of stories. For a highly damped system, by contrast, it predicts unsafe values of the story
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shears. The same considerations hold also for the second formula [49]. For the structures under
consideration, the formula by Cardone et al. [47] does not generally lead to accurate predictions.
Conversely, more recent formulations [43,46] are able to predict very accurately the shear force at the
different levels of the superstructure. The distribution proposed by them fits the shear profile even for
high values of equivalent coefficient damping ratio. However, while for three- and five-story structures
a perfect overlap can be observed between the results of the NLTH analysis and that of the LSA, for the
seven-story building their distribution is less accurate and underestimates the shear forces at the upper
levels. These results may restrict their applicability for building with a number of stories in accordance
with the international regulations [17,20].
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Figure 9. Comparison between the several lateral force distributions available in the literature for
the prototype BI buildings of three-story (a), five-story (b), seven-story (c) equipped with different
isolation systems.
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The effective height is a parameter that makes the shape of the lateral force distribution immediately
understandable. Figure 10 shows a comparison in terms of effective heights for a configuration of each
prototype building considering similar values of the equivalent damping ratio.Buildings 2020, 10, x FOR PEER REVIEW 15 of 20 
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Figure 10. Effective height of the different lateral distribution of shear force available in literature for
three different base-isolated configurations: three-story (a), five-story (b) and seven-story building (c).

By comparing the effective heights, for medium values of equivalent damping ratio, it can be noted
that the distribution proposed by Lee et al. [41] provides an underestimation of the effective height,
while the formulations suggested by Khoshnoudian et al. [49], York at al. [46] and Andriono et al. [44]
overestimate the shear forces at the upper levels, especially in the cases of three- (a) and five-story
(b) buildings. It can be observed again that the equivalent distribution of static forces proposed by
Ryan et al. [43] better predicts the seismic response of the base-isolated buildings.

4.2. Statistical Analysis and Considerations

The results of the NLTH analysis have demonstrated that, as expected, the superstructure force
distribution is strongly influenced by the effective damping. In fact, an apparent correlation between
the damping ratio and the shape of the shear envelope can be observed in the previous charts
(Figures 7 and 8).

Figure 11 shows the correlation between the relative error of base shear distribution, obtained from
a uniform distribution formula and non-linear dynamic analysis results, and the equivalent damping
ratio. For the sake of simplicity, the relative error is reported in terms of story shear force (Equation (8)):

∆Fi =
Fi

NLTHA − Fi
LSA

Fi
LSA

(8)

where i indicates the ith level and FNLTH and FLSA represent, respectively, the peak of the story shear
force obtained from NLTHA and the static force provided by the uniform distribution for the i-th level.
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Figure 11. Relationship between relative error of shear force at the varying levels and the equivalent
damping ratio for three-story (a), five-story (b), and seven-story (c) buildings.

Figure 10 shows an almost linear correlation between the relative error of shear forces and the
effective damping. Passing through the origin, the relationship highlights the suitability of the uniform
distribution for value of ξ near zero and the inadequacy to describe the seismic response of BI structures
even for relatively low values of the effective damping.
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It can be observed that the slope of the curves is steeper for the upper levels. The negative slopes
of the lower levels, instead, underline that the uniform distribution overestimates the shear force of
these levels while underestimating those of the upper levels with the increase of the damping.

Specifically, for slightly and moderately damped systems, the effective shear envelopes fall
between the two distributions recommended by the building codes, though it should be noted that the
inverted triangular distribution is unconservative for highly damped systems, which tends to increase
the superstructure forces. For this reason, in order to provide an accurate lateral distribution of base
shear over the height of superstructure for LSA procedures and preserve the intrinsic simplicity and
practicality of the method, a simplified formula is proposed by Equation (9), given by the combination
of the two formulae used by building codes [15,18]:

Fi = δ V
mihi∑N

j=1

(
mjhj

) + (1− δ) V
mi∑N

j=1

(
mj

) (9)

The accuracy of this force distribution can be related to an easily interpretable variable: the effective
height of the shear forces. Figure 8 has documented a strong correlation between the effective height
and the degree of non-linearity of the IS, expressed in terms of equivalent damping ratio ξ. For practical
purpose, a linear correlation between the effective height and ξ can be detected:

heff = heff,u + θ ξ (10)

where the heff, u is the effective height assessed for uniform distribution.
Thus, the δ parameters can be derived as a function of the equivalent damping ratio in order to

provide an appropriate effective height for the force distribution.
Since the effective height of the proposed distribution can be easily expressed by Equation (11),

by equalizing Equations (10) and (11), δ can be derived from Equation (12):

heff = heff,u (1 − δ) + heff,t δ (11)

where heff,t is the effective height assessed for triangular distribution.

δ =
θ

heff,u − heff,t
ξ (12)

In an idealized configuration, where the story mass is the same at the different levels, heff,u and
heff,t reduces to 0.50 htot and 0.67 htot, respectively. Conversely, the expression of h in Equation (11)
covers the case of more general distribution of lateral forces resulting from the variability of relevant
structural parameters.

As shown in Figure 8, the θ coefficient, instead, depends on the number of stories of the
superstructure. It assumes values ranging from 0.93 (for 3-story buildings) to 1.34 (for 7-story
buildings).

5. Conclusions

This study investigated the validity of linear static analysis (LSA) for BI-structures. Specifically,
equivalent lateral force distributions recommended in structural building codes and proposed in the
literature have been examined to evaluate realistic seismic loads in the preliminary analysis and design
of seismic-isolated structures using simplified procedures.

Based on the comparisons between the story-shear envelopes, obtained from NLTH analyses and
the corresponding shear profiles proposed for LSA, considering the different lateral force distributions,
the following conclusions can be drawn:
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i. the lateral force distribution currently recommended in EuroCode and NTC 2018, which neglects
the contribution of higher modes, significantly underestimates the shear forces at the upper
levels of the superstructures, even when the IS exhibits weakly non-linear response;

ii. the lateral force distribution proposed by ASCE 7–10 provides results that are too conservative
compared with those of dynamic analyses for low and medium equivalent damping ratios;

iii. the degree of non-linearity of the isolation system strongly influences the seismic response of
the base-isolated buildings. As the equivalent damping ratio increases, the shear envelope
increasingly bulges because of more significant higher mode effects;

iv. some formulations available in the literature provide more accurate predictions of the peak
seismic forces throughout the height of buildings and hence of the lateral force distributions
because of their explicit dependence on IS parameters;

v. an accurate vertical distribution can be achieved as a function of the relevant parameters of the
superstructures and isolation systems;

vi. a simplified formula for the vertical distribution of the base shear, combining both uniform and
linear distributions, is proposed as a function of the equivalent damping ratio (Equation (9));

vii. the formula provides slightly conservative seismic story forces, resulting in a more economic
design compared to the procedure of the ASCE and in a safer method than that proposed in
NTC 2018 for buildings that comply with the codes’ limitation.

Finally, the simplicity of the proposed formulation for determining lateral force distribution in LSA
makes them a valid alternative to more computationally intensive NLTH analyses, with a significant
reduction in time and an easier way to check the physical consistency of the analysis results. However,
further research is needed to verify the general applicability of the proposed equations for different
configurations of base-isolated buildings, including different structural types (e.g., shear-wall systems,
masonry building), and different distributions of structural stiffness over height, as well as for a more
diverse set of seismic records.
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Abbreviations

Fi equivalent lateral force at the i-th level
mi story mass of the i-th floor
Vb total design base shear force
N number of stories
hi, hj height of the i-th and j-th stories -from the base level
Vi shear force at the i-th level/median peak story shear at the i-th level
G1, G2 self-weight and permanent loads, respectively
Qk live loads
Ms mass of the superstructure
Mb mass of the base level
Tbf fundamental period of vibration of the superstructure assumed fixed at the base
Teq effective fundamental period of the base isolated building
K1, K2 initial stiffness of the isolators, post yield stiffness
α stiffness ratio K2/k1 - post yield hardening
Q intersection force of hysteresis cycle with vertical axis
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υ friction coefficient of sliding bearings or friction pendulum bearings (FPB)
W weight supported by the bearings
R effective curvature radius of the concave surface of FPB
Xy, Fy yield displacement and force of the isolators
Xd design displacement demand of the IS effective stiffness center
µ ductility ratio Xd/Xy of the isolators
Keff effective stiffness of the isolation system at a displacement Xd
ξ equivalent damping ratio
Tr reference return period of the design spectrum
ag reference peak ground acceleration on type A ground
g acceleration of gravity
F0 amplification factor of the design spectrum
Tc* period at the end of the constant acceleration branch of the elastic spectrum
Se(T) elastic horizontal ground acceleration response spectrum
SDe(T) elastic displacement response spectrum
heff effective height
heff,u effective height for the uniform lateral forces distribution
heff,t effective height for the inverted triangular lateral forces distribution
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