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Abstract: In the analysis of reinforced concrete (RC) buildings, beam–column joints are regarded as
rigid nodes. In fact, joint deformation may make a significant difference in the lateral response of
RC buildings if joints are not properly designed and detailed. To consider joint flexibility, several
types of joint models have been proposed. However, these models require complicated computations,
consequently making them challenging to apply in engineering practice. This paper proposed a
simple approach for predicting the contribution of the joint deformation to the total deformation of
RC interior beam–column joints under critical structural deformations. To develop such a simple and
accurate approach, experimental and analytical studies were performed on RC interior beam–column
joints. In this study, eight half-scale joint specimens were tested under reversed cyclic loading, and 39
full–scale FE models were constructed, varying the selected key parameters. The experimental and
analytical results showed that the “joint shear” is a useful index for the beam–column joints with
high shear stress levels of v j > 1.7

√
f ′c but is unsuitable for defining the failure of beam–column

joints with medium or low shear stress levels of v j ≈ 1.25–1.7
√

f ′c and v j ≈ 1.0
√

f ′c . Based on the
results, three equations were developed to predict the joint shear deformation index (SDI) of RC
interior beam–column connections corresponding to three different types of failure (i.e., joint failure
before beam yielding, joint failure after beam yielding, and beam flexural failure). SDI predictions
of the proposed equations correlate well with 50 test results of beam–column joints available from
the literature.

Keywords: beam–column joint; column-to-beam strength ratio; joint hoop ratio; joint deformation;
finite-element analysis

1. Introduction

The design of beam–column joints is an integral part of earthquake design for reinforced concrete
(RC) moment-resisting frames. The response of RC moment-resisting frames is significantly influenced
by the diagonal cracking and bar bond–slip of the beam–column joints [1–7]. To prevent such structural
damage in the joints, current design codes [8–11] have provisions for the design of beam–column joints.
They set limits on the joint shear stress and give high importance to provide enough anchorage and
confinement of core concrete for resisting shear. However, Shiohara [12,13] recently reported that
the current design concept based on precluding joint shear failure by limiting the joint shear input is
incorrect. Beam–column joints with certain combinations of design parameters, such as the dimensions,
reinforcement ratios, and member end forces, may exhibit damage concentration [14]. These types of
joints are found rather commonly in many existing RC buildings worldwide. Furthermore, ASCE/SEI
41-13 [15], referred to hereafter as ASCE 41, provisions have been widely adopted to evaluate shear
strength of the joints in existing RC buildings. ASCE 41 classifies beam–column joints as conforming or
nonconforming according to the spacing(s) of the joint shear reinforcements. The joint shear strength
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is specified according to the classification, independent of the joint deformation. However, it was
found [12,13] that joints reserved their shear capacity as the joint shear deformation increased in the
cases of joints with medium or low shear stress levels of v j ≈ 1.25–1.7

√
f ′c and v j ≈ 1.0

√
f ′c . Therefore,

along with strength evaluation, it is necessary to evaluate the effect of the joint deformation on the
global behavior of RC beam–column connections for different combinations of the parameters.

The earliest experimental investigations of the cyclic response of interior beam–column joints
with various design parameters in Japan were performed by Joh et al. [16] and Fujii and Morita [17].
Joh et al. [16] conducted experiments to study the effects of joint shear reinforcement on the response
of beam–column joints. The results indicated that heavy joint shear reinforcement may reduce the
slippage of beam bars in the joint and increase the joint stiffness after cracking. Fujii and Morita [17]
evaluated the basic joint shear strength under different axial load levels and joint hoop bars. The results
indicated that the joint shear strength was slightly affected by increases in the column axial load from
0.08 f ′c to 0.25 f ′c and in the joint shear reinforcement ratio from 0.41 to 1.1%.

Kamimura et al. [18] experimentally studied the effects of joint shear reinforcement on the
deformation capacity of RC interior beam–column joints that failed because of joint shear after beam
yielding. The test results indicated that the amount of shear reinforcement in the joint had little
influence on the strength and deformation of interior beam–column connections. Kim and Lafave [19]
constructed an extensive database of RC beam–column joint test specimens. Based on the analysis of
the database, they suggested the most important parameters affecting the joint shear strength at the
points where the most distinct stiffness changes occur. Hwang et al. [20] investigated the effects of
joint hoops on the shear strength of RC exterior beam–column joints. Hwang and Lee [21,22] applied
the strut-and-tie mechanism to the beam–column joint for predicting the shear strength of joints with
different aspect ratios. Based on previous strength models, the deformation-based strut-and-tie and
shear strength degradation models [23,24] were developed to consider the effects of the bar bond
parameters on the shear deformation and shear strength of interior beam–column joints. Recently,
Lee et al. [25] proposed a method for predicting the deformation component ratios of RC beam–column
joint connections. The method is only applicable to the joints that fail in shear after beam yielding.

In that manner, the majority of the previous studies focused on the basic shear strength of
beam–column joints. However, few studies [18,23–25] have been performed on the deformation
of beam–column joints and their influence on total frame deformation. In the test of Shiohara
and Kusuhara [14], the effects of the column-to-beam flexural strength ratio, beam longitudinal
reinforcement ratio, and joint aspect ratio were considered. They reported that the lateral strength
and ductility of beam–column joint connections were not maximized when the flexural strength ratio
was near unity. Other studies [3,4,26] recently conducted in Japan, including a three-dimensional
full-scale shaking table test of an RC frame structure, revealed that for the smaller flexural strength
ratios and joint hoop ratios, the joint deformation contributed about 40 to 60% of the total inter-story
drift during earthquake loading. Consequently, the main flexibility source of the structural system
was joint deformation, which significantly reduced the overall stability of the structure. The results
of laboratory testing and earthquake response simulations of RC frames indicate that beam–column
joint deformation can determine total frame deformation, and excessive joint deformation can result
in frames losing lateral and gravity load-carrying capacity. Hence, it is apparent that due allowance
should be made for the contribution of joint deformations in order to arrive at realistic estimates of
story drifts under the action of lateral forces.

In this study, a simple approach for predicting the joint deformation contribution was developed
through experimental and numerical investigations. The major parameters were the joint shear
reinforcement ratio and column-to-beam flexural strength ratio. As secondary parameters, the joint
aspect ratio and area ratio of adjoining members were selected. The effects of the parameters identified
in this study on the joint shear stress and shear deformation were investigated. On the basis of the
results obtained from experimental and analytical studies, three equations were proposed to predict the
story drift due to the joint shear deformation of RC interior beam–column connections corresponding
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to three different types of failure (i.e., joint failure before beam yielding, joint failure after beam yielding,
and beam flexural failure). The joint deformations of 50 interior beam–column joints reported in the
literature were used to verify the applicability of the proposed equations. The proposed equations
can be useful for practicing structural engineers to identify inelastic joints within a structure without
having to do a comprehensive static or dynamic inelastic frame analysis.

The rest of the paper is organized as follows. Section 2 describes the experimental program of
eight half-scale interior joint specimens, including the specimen’s details, material properties, loading
history, test setup, and instrumentation plans. The evaluation of the test results and observations
are presented in Section 3. Section 4 is composed of four parts. The first part (4.1) shows the finite
element (FE) modeling and verification of the FE models against the experimental results from Section 3.
The second part (4.2) describes parametric studies on 39 full-scale FE models of RC interior joints.
Subsequently, the results of the parametric investigations and the development of a simple approach
to predict the joint shear deformation index (SDI) are presented in the third part. The final part (4.4)
demonstrates the verification of the proposed approach against test results in the technical literature.
Section 5 presents a summary of the main findings and conclusion of this research.

2. Description of Test Program

2.1. Test Specimens

Since there are less comprehensive test data available for the validation of the models, our test
program has two main purposes: (1) to measure flexibility sources of RC interior beam–column joint
sub-assemblages and gauge their relative contribution; and (2) to validate Shiohara’s hypothesis that
“beam–column connections maintain shear strength during the lateral loading although joint shear
deformation increases and lateral load degrades.” Eight interior joints were tested under cyclic lateral
loading. The test specimens were half-scale models, representing beam–column sub-assemblages
of a typical perimeter moment-resisting RC frame. The specimens were divided into three groups.
The specimens in Group 1 were labeled as S16-N, S16-32, and S16-34, and the labels S13-N, S13-32,
and S13-34 were assigned to the specimens in Group 2. Group 3 comprised two specimens: U13-N
and U13-34. The specimen names indicate the test parameters. The numbers 32 and 34 at the end are
the numbers of joint shear reinforcement layers with legs, and “N” indicates no shear reinforcement
in the joint. “S” and “U” indicate symmetrically reinforced and unsymmetrically reinforced beams,
respectively. The numbers 13 and 16 indicate the diameters of the beam longitudinal reinforcement db
(in millimeters). The specimens were designed to have medium shear stress levels. The dimensions
and reinforcement details of the specimens are shown in Figure 1, and the reinforcement details of the
joint are presented in Figure 2.
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The design parameters for each specimen are presented in Table 1. The joint reinforcement ratio(
ρ j = Ash/bc j

)
ranged from 0 to 0.72%. Ash represents the total cross-sectional area of the joint shear

reinforcement, including crossties, within a distance j between the top and bottom beam longitudinal
reinforcing bars. bc represents the column width. The ratio of the column depth to the beam bar
diameter was 15.6 for Group 1 and 19.23 for Groups 2 and 3. The cross-sectional dimensions of the
columns and beams were 250 mm × 250 mm and 200 mm × 250 mm, respectively. The overall length
of the beam was 2750 mm, and the net length between beam supports was 2500 mm. The total height
of the column was 1500 mm (distance between the top and bottom reaction points). The hoops and
stirrups of all the specimens had rectangular D6 deformed bars with a spacing of 60 and 80 mm for the
columns and beams, respectively, to prevent the premature shear failure of the beams and columns.
As shown in Table 1, the flexural strength ratio of the columns to the beams was in the range of 1.1–1.6.
Thus, for all the test specimens, the beams were expected to yield before the columns. The joint shear
demand and capacity were calculated according to ASCE 41 [15].
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Table 1. Specimen Properties and Test Variables.

Specimens S16-N S16-32 S16-34 S13-N S13-32 S13-34 U13-N U13-34

Concrete Strength, f ′c (MPa) 28.2 27.5 28.6 29.7 30.9 31.1 32.1 31.9

Axial Load Ratio, (Nu/ f ′c Ag) 0.07 0.08 0.07 0.07 0.07 0.07 0.07 0.07

Beam

Width × Depth in mm 200 × 250 200 × 250 200 × 250

Top Rebar, % 1.35 1.44 1.44

Bottom Rebar, % 1.35 1.44 0.88

Column
Width × Depth in mm 250 × 250 250 × 250 250 × 250

Reinforcing Bar Ratio (%) 2.43 1.62 2.43

Joint Hoop Ratio ρ j (%) - 0.36 0.72 - 0.36 0.72 - 0.72

Flexural Strength Ratio 1.5 1.5 1.5 1.1 1.1 1.1 1.6 1.6

Joint Demand Ratio (V jn/V j) 0.82 0.76 0.91

Anchorage Length Ratio (hc/db) 15.6 19.2 19.2

2.2. Material Properties

Concrete cylinders were tested. The average compression strength of the three cylinders was
27.5–28.6 MPa for Group 1 and 29.7–31 MPa for Group 2. The average concrete strength reached
32 MPa for Group 3. Concrete with a maximum coarse aggregate size of 15 mm was cast by setting the
column parts of the specimens in the vertical direction. Table 2 presents the yield strengths fy and
ultimate strengths fu of the reinforcing bars. A D6 bar was used for the shear reinforcements, and D13
and D16 bars were used for the longitudinal reinforcements of the beams and columns, respectively.

Table 2. Material Test Results for the Reinforcing Bars.

Diameter Grade
Yield Strength, fy,

(MPa)
Yield Strain,εy

(µ)
Ultimate Strength,fu,

(MPa)
ElasticModulus,Es

(GPa)

D6 SD345 363 1998 542 182
D13

SD390
498 2602 669 192

D16 440 2449 618 180

2.3. Test Setup and Loading History

Figure 3 shows the test setup of the interior beam–column joint. A photograph of the test setup is
shown in Figure 4. A hinge support was used at the bottom of the column, and both ends of beams
were roller supports to ensure that the beam would be free to move horizontally.
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As reported by Park [27], quasi-static cyclic loading tests can be used to assess a toughness of
the structure that would perform satisfactorily during a strong earthquake. Hence, quasi-static cyclic
loading was employed in the test. The test was conducted under the displacement-controlled test
method with the increasing of the lateral drift ratio. The lateral drift ratio is defined as the net lateral
displacement divided by the net column height. The loading sequence is shown in Figure 5. It was
planned by modifying the ACI 374.1-05 specifications [28]. At lateral drift ratios of 0.25%, 0.5%, 0.75%,
and 1.0%, three loading cycles were applied. After the lateral drift ratio exceeded 1.0%, three loading
cycles were applied at every 0.5% increase, and the cyclic loading was terminated when the load
decreased to 50% of its peak value. The cyclic lateral load was applied to the top of the column.
A constant vertical load with a magnitude of 0.1 f ′c Ag was applied to all the specimens.
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2.4. Instrumentation

Numerous strain gauges and linear variable displacement transducers (LVDTs) (Tokyo Measuring
Instruments Lab, Tokyo, Japan) were installed on the test specimens to measure the strain at selected
points on the reinforcing bars, as well as the deformations of different parts of the specimens.
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An instrumentation method recently proposed by Kusuhara and Shiohara [29] was adopted in this
study. As shown in Figure 6a, 16 LVDTs were installed within the beam–column joint region to measure
the components of the deformation of the beam–column joint, including the relative displacements
of the member ends for three degrees of freedom as well as the components of the chord rotations
of the beams and columns. The support movements (Sh and Sv) were monitored during the test to
consider the effects of additional displacements on the lateral deformation of the specimens. The lateral
load and displacement at the loading point were measured using the load cell in the actuator and an
LVDT attached directly to the column, respectively. The reaction forces induced by the roller supports
were measured using load cells throughout the test. Strain gauge locations on both longitudinal and
transverse reinforcements within and around the joint region are illustrated in Figure 6b.
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A mechanical motion of the measurement system for the deformation components of interior
beam–column joint under inelastic deformation is illustrated in Figure 7. Shiohara [12,13] reported
that the distribution of cracks and the associated damage pattern may be explained by considering
the beam–column joint divided by into four rigid triangular parts rotating relative to each other.
Unlike the assumption of uniform shear deformation over the joint region, shear deformation in
the joint is assumed primarily due to the rotation of the four triangular concrete segments and the
crack opening, as shown in Figure 7. Therefore, in order to obtain the joint deformation, the relative
rotations of the assumed four segments were measured, and then, the measured data were converted
to the subcomponents of the total deformation by referring to the previous study by Kusuhara and
Shiohara [29]. The components of the total deformation (Rs) proposed by Kusuhara and Shiohara are
the lateral displacement due to chord rotations of beams and columns (Rsb and Rsc), fixed-end rotations
of beams (Rse), joint shear deformation (Rsps), and rotations of faces of the beam–column joint (Rspb
and Rspc).
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3. Test Results

3.1. Lateral Load–Drift Ratio Relationships and Failure Modes

Figure 8 shows the hysteretic responses of the applied load (P) and drift ratio (δ) for the test
specimens. The lateral drift ratio (δ) is defined as ∆n/Hc. Here, ∆n represents the net lateral
displacement at the loading point of the column without any support movements, and Hc represents
the column height (1500 mm). The circles in Figure 8 represent the maximum loads Pu for the positive
and negative lateral loadings. The horizontal dashed lines represent the theoretical lateral load-carrying
capacities Pnb, Pnc, and Pnj, which correspond to the beam yielding, column yielding, and joint shear
failure, respectively. The detailed procedure for calculating these capacities is presented in Appendix A.
Figure 9 depicts the failure modes of the specimens at the end of the test.
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(f) S16-34; (g) S13-34; (h) U13-34.

S16-N, S13-N, and U13-N (without joint shear reinforcement) reached the maximum loads at
δ = 2.0%. Subsequently, the strengths and stiffnesses gradually decreased, and the diagonal cracks in
the joint began to widen (Figure 8). At δ = 3.0%–3.5%, the specimens exhibited joint failure owing
to excessive cracking and spalling of the concrete (Figure 9a–c). Regarding the P − δ relationship,
the hysteresis loop became severely pinched, indicating lower energy dissipation. The average
maximum loads, i.e., Pu = 61.4, 63.2, and 63.3 kN for SRN16, SRN13, and URN13, respectively, exceeded
the predicted joint shear strengths, i.e., PNC

nj = 39.9, 40.9, and 42.4 kN, respectively. This indicates
that ASCE 41 underestimated the joint shear strengths of the interior sub-assemblages (ρ j = 0) by
approximately 50.0%.
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For S16–32 and S13–32 (ρ j = 0.36), the overall hysteretic P− δ relations and failure modes were
similar to those of S16-34 and S13-34 (ρ j = 0.72) (Figures 8 and 9d–g). However, the maximum loads
were increased to Pu= 65.1 and 67.4 kN, respectively, compared with S16-N and S13-N. This was
related to the joint shear reinforcement. The maximum loads of the specimens with the joint shear
reinforcement were accurately predicted by ASCE 41.

In the cases of S16-34 (Pu = 64.4 kN) and S13-34 (Pu = 71.4 kN), the maximum loads Pu were slightly
larger than those of S16-32 and S13-32. Moreover, the specimens exhibited significant damage within
the joint region with the concrete spalling despite the increased amount of the joint reinforcement
(Figure 9f,g). Ultimately, joint failure occurred in S16–34 and S13−34. The maximum loads of Pu = 64.4
and 71.4 kN for S16-34 and S13-34, respectively, were 7.0% and 13.0% greater than the joint shear
strengths, i.e., PC

nj = 60.2 and 62.8 kN, respectively (Figure 8).
For U13–34 (with ρ j = 0.72 and the largest flexural strength ratio of 1.6), owing to the increased

flexural strength ratio, the maximum load Pu = 66.1 kN exceeded the predicted joint shear strength
PC

nj = 63.6 kN, and it was close to the beam yielding strength Pnb = 73.3 kN. At δ = 3.0%, gradual
strength degradation occurred. Compared with the other specimens, the joint damage was significantly
reduced, as shown in Figure 9h. The ultimate failure of this specimen was a joint failure, which occurred
after the flexural yielding of the beam. The failure was comparatively ductile so that the specimen can
be classified in the moderate ductility class according to ASCE 41. These results indicate that the joint
shear reinforcement affected the lateral strength of the beam–column joint, which depended on the
flexural strength ratio of the adjacent members.

3.2. Strains of Beam Reinforcement

Figure 10 presents the strain developments of beam longitudinal reinforcements measured at the
joint face and within the joint. The measured strain variations in the top beam bars were examined
for S13-N, S13-32, and S13-34, which had the smallest flexural strength ratio of 1.1, to investigate the
effects of the joint reinforcement on the shear stress and failure mode. Comparisons of the strain
developments at the joint face and within the joint revealed the following.

• At the peak strength of the specimens (δ = 2.0%), the strains in flexural beam bars measured
at the beam end (i.e., the joint face) were lower than the yield strains (εyt = 2604 µ) or equal
to the yield strains. In the subsequent loading, the strains at the beam end did not increase.
This indicates that the specimens failed owing to joint shear.

• The amount of shear damage in the joint significantly decreased when the moderate amount of
joint shear reinforcement was provided. Thus, the beam reinforcement strains at the beam end
increased (compare the strains in Figure 10a–c). This indicates that the joint shear reinforcement
successfully reduced the joint shear damage and increased the maximum lateral loads.

• The beam reinforcement at the column right face under positive loading was subjected to
compressive stress at the beginning of the test. However, above δ = 1.0%, the bond deterioration
of the beam-reinforcing bar passing through the joint occurred. Consequently, the transition of the
compressive stress in the beam bar on the compression side at the beam end section to the tensile
stress occurred (Figure 10a–c). The concrete took this compressive stress in the beam bar on the
compression side, and the height of the compressive zone for the concrete may have increased,
resulting in a smaller moment of the lever arm. Therefore, the moment in the beam section at the
column face may have decreased. This phenomenon may have caused lateral strength degradation
and stiffness degradation in all the test specimens (Figure 8). Our experiments are consistent with
previous findings in the literature (Hakuto et al. [5] and Shiohara [12]).
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3.3. Joint Shear Stress

The joint shear stresses of the six specimens at the lateral load peaks in each loading cycle were
plotted with respect to the lateral drift angle, as shown in Figure 11. For all the specimens, the strains
in the reinforcements of the beam were measured and monitored during the test. The joint shear (V j)

was calculated via Equation (A4) using the measured strain values, and the joint shear stresses were
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calculated using Equation (1). Since the strain of only one rebar was measured in the case of the beam
bottom layer, it was assumed that the stresses were identical for all the bars belonging to the same layer.

v j =
V j

A j
; V j = Tbr + Tbl − P (1)
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Figure 11. Relationship between the normalized joint shear stress and the lateral drift angle.

Here, A j represents the effective joint area, which was used for the calculation of the joint shear
stress and was a product of the column depth (hc) and the effective joint width be = (bc + bb)/2, where
bc and bb represent the widths of the column and beam, respectively. The calculation of the effective
joint width was different from the ACI 352 recommendations [30], where the effective joint width be is
taken as Min [bc; bb + 0.5Dc] i f bc > bb. The joint shear stress was normalized by the square root of the
concrete compressive strength.

The maximum shear stresses, v j = 1.36
√

f ′c , 1.54
√

f ′c , and 1.32
√

f ′c MPa for nonconforming joints
S16-N, S13-N, and U13-N, significantly exceeded the predicted joint shear strength v jn = 0.83

√
f ′c MPa.

In the cases of S16-32, S16-34, S13-32, S13-34, and U13-34 (conforming joint), the maximum shear
stresses v j were greater than those of S16-N, S13-N, and U13-N owing to the joint shear reinforcement.
Nevertheless, the specimens displayed significant damage within the joint region with the spalling
of cover concrete. The attained maximum shear stresses of the specimens with the joint shear
reinforcement were greater than the ASCE 41 predictions. This indicates that the ASCE 41 shear
limits for joint shear are conservative for nonconforming and conforming interior joints under certain
combinations of design parameters.

In contrast to the results in Figure 8, the joint shear stress increased monotonically with the
increasing lateral drift ratio for S16-N, S16-32, S13-32, and S13-34 (except for S13-N). For the specimens
with the joint shear reinforcement, the joint shear stress and the width of the diagonal cracks on the
joint core surfaces increased as the lateral drift increased. For all the specimens, approximately 40.0% of
the total lateral drift was caused by the joint shear deformation at the maximum shear stress v j, and the
corresponding lateral drift ratio was approximately 3.0–3.5%. Thus, the widening of the diagonal
cracks and degradation of the lateral load-carrying capacity at a larger lateral drift ratio did not result
from the degradation of the joint shear strength. Furthermore, the results indicate that the joint shear
stress was not proportional to the lateral load P. Accordingly, the “joint shear” is a useful index for the
beam–column joints with heavily reinforced beams (i.e., high shear stress levels), but it is unsuitable
for defining the shear failure of beam–column joints with moderately reinforced beams (i.e., medium
shear stress levels). Hence, the consideration of joint distortion corresponding to the shear stress is
vital for the joints.
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3.4. Decomposition of Lateral Drift

Percentages of decomposition of the total lateral drift measured at the top of the column at δ = 3.5%
and the deformation components are shown in Figure 12. The components of the total deformation
(Rs) proposed by Kusuhara and Shiohara [29] are the lateral displacement due to chord rotations of
beams and columns (Rsb and Rsc), fixed-end rotations of beams (Rse), joint shear deformation (Rsps),
and rotations of faces of the beam–column joint (Rspb and Rspc). These components were calculated
using the procedure described in [29].
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Lateral drift due to shear deformation (Rsps) and rotations of the faces of the beam–column
joint (Rspb and Rspc) were dominant for all the specimens. This implies that the expansion of the
joint at δ = 3.5% was significant for all the specimens. However, the shear deformation tended to
decrease, owing to the shear reinforcement in the joint. For instance, the contribution of the shear
deformation (Rsps) decreased by up to 25.0% for S13-34 (

∑
Mc/

∑
Mb = 1.1), whereas the reduction

was not significant for U13-34 (
∑

Mc/
∑

Mb = 1.6). The lateral drift due to the chord rotations of the
columns (Rsc) accounted for only 3.0–7.0% of the total displacement for all the specimens. Similarly,
the contribution of the lateral displacement from the chord rotations of beams (Rsb) ranged from 10.0%
to 16.0% for all the specimens. In contrast, the contribution of the beam fixed-end rotations to the total
displacement ranged from 5.0% to 29.0% at δ = 3.5%. For Group 1, the fixed-end rotations decreased
as the joint shear reinforcement increased. This is because the joint shear reinforcement improved
the anchorage of beam reinforcement within the joint. Similar tendencies were observed in previous
studies (Joh et al. [16] and Ichinose [7]). Our results for the lateral drift highlight the importance of
considering the joint deformation since the primary source of the overall deformation of the specimens
is joint deformation, which potentially causes a soft story mechanism [3,4].

4. Analytical Studies of Interior Beam–Column Joints

Due to a limited number of physical test specimens (a total of eight beam–column joints), no clear
correlation was found between the test parameters and the failure mode of the joints. Hence, the results
from the test program cannot be considered acceptable as the basis for drawing conclusions on this
matter. To determine the relationship between the parameters identified in this study and joint
deformation and/or failure mode, additional data on the cyclic behavior of RC interior beam–column
joint connections for different combinations of the parameters are required. The nonlinear finite
element (FE) analysis tool DIANA version 10.3 [31] was used for further investigating the complex
behavior of interior joints. The validation and calibration of FE models were first done by simulating
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the experimental results to ensure that they will provide reliable predictions. Subsequently, the FE
models were used to study the combined effects of the shear reinforcement ratio, flexural strength
ratio, aspect ratio, and area ratio of adjoining members on the shear strength and shear deformation of
interior beam–column joints.

4.1. Finite-Element Modeling and Verification

In the FE analysis, two-dimensional continuum elements with quadratic interpolation of the
displacement field were used for the concrete modeling, and the embedded steel reinforcement models
were used for reinforcing bars. A total strain based rotating crack model was used in the analysis.
Adequate tensile softening and compressive hardening–softening relations were considered, and the
reduction of the concrete compressive strength due to lateral cracking was included. All reinforcing
bars were assumed to be one-dimensional line elements with neither shear stiffness nor flexural rigidity.
An elastic–plastic constitutive relationship with isotropic strain hardening was used to characterize
the behavior of the reinforcement. All longitudinal reinforcing bars were connected to the concrete
using the available interface elements in the DIANA library for accounting for nonlinear bond-slip.
The bond–slip law used for the interface elements was based on the CEB-FIP model code 1990 [32].
The constitutive model and FE discretization are presented in Appendix B. The aforementioned FE
modeling procedures and assumptions were determined by referring to a previous study performed
by Deaton [33].

For verification, the FE analysis results were compared with the experimental results. The most
common and often important comparisons are initial stiffness, capacity, deformation at peak load,
and deformation at failure. Figure 8 presents the comparison between the hysteretic response of
the test specimens in the experiment and the FE prediction. All those measures were successfully
captured, and there was a satisfactory agreement between the experimental and analytical results.
The comparisons were also made on the local behavior of the joints, including the strain developments
of joint shear reinforcements and joint shear stress versus shear strain relations, as shown in Figures 13
and 14. Although a complete agreement in the strain developments of the joint reinforcement for
the test and analysis was not attained, it is seen that the strain values obtained from the analysis
were similar to those observed in the test up to a drift ratio of 2.0%. Generally, FE models provided
lower maximum loads than the test data, which explained the conservatism in the FE simulation.
The maximum load estimated using the FE model was approximately 5.0–23.0% smaller than that
observed in the test. The softening of the FE models after the maximum capacity was attained was
similar to the test result; however, for some specimens, the FE models underestimated the post-peak
behavior. Apart from those slight disagreements, the results confirmed that FE models could be used
to predict the joint behavior by varying critical parameters.
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Figure 13. Strain development of the joint shear reinforcement: (a) S13-34 and (b) U13-34.



Buildings 2020, 10, 176 15 of 34

Buildings 2020, 10, x FOR PEER REVIEW 14 of 31 

models were used for reinforcing bars. A total strain based rotating crack model was used in the 
analysis. Adequate tensile softening and compressive hardening–softening relations were 
considered, and the reduction of the concrete compressive strength due to lateral cracking was 
included. All reinforcing bars were assumed to be one-dimensional line elements with neither shear 
stiffness nor flexural rigidity. An elastic–plastic constitutive relationship with isotropic strain 
hardening was used to characterize the behavior of the reinforcement. All longitudinal reinforcing 
bars were connected to the concrete using the available interface elements in the DIANA library for 
accounting for nonlinear bond-slip. The bond–slip law used for the interface elements was based on 
the CEB-FIP model code 1990 [32]. The constitutive model and FE discretization are presented in 
Appendix B. The aforementioned FE modeling procedures and assumptions were determined by 
referring to a previous study performed by Deaton [33]. 

  

(a) (b) 

Figure 13. Strain development of the joint shear reinforcement: (a) S13-34 and (b) U13-34. 

Figure 14. Envelope curves for the joint shear stress versus joint shear strain. 

For verification, the FE analysis results were compared with the experimental results. The most 
common and often important comparisons are initial stiffness, capacity, deformation at peak load, 
and deformation at failure. Figure 8 presents the comparison between the hysteretic response of the 
test specimens in the experiment and the FE prediction. All those measures were successfully 
captured, and there was a satisfactory agreement between the experimental and analytical results. 
The comparisons were also made on the local behavior of the joints, including the strain 
developments of joint shear reinforcements and joint shear stress versus shear strain relations, as 
shown in Figures 13 and 14. Although a complete agreement in the strain developments of the joint 
reinforcement for the test and analysis was not attained, it is seen that the strain values obtained from 
the analysis were similar to those observed in the test up to a drift ratio of 2.0%. Generally, FE models 
provided lower maximum loads than the test data, which explained the conservatism in the FE 
simulation. The maximum load estimated using the FE model was approximately 5.0–23.0% smaller 

-50

950

1950

2950

3950

4950

-5 -3 -1 1 3 5

St
ra

in
 (µ

)

Lateral drift ratio (%)

ML-EXP

ML-FEA

Initial Diagonal 
crack

𝜀 = 2195

-50

950

1950

2950

3950

4950

-5 -3 -1 1 3 5

St
ra

in
 (µ

)

Lateral drift ratio (%)

ML-EXP

ML-FEA

Initial 
Diagonal 
crack

𝜀 = 2195

0

0.25

0.5

0.75

1

1.25

1.5

1.75

0 0.005 0.01 0.015 0.02 0.025 0.03
Joint shear strain, γj

S13-34-EXP

S13-34-FEA

N
or

m
al

iz
ed

 sh
ea

r s
tre

ss
, 𝑣/

𝑓

0

0.25

0.5

0.75

1

1.25

1.5

0 0.005 0.01 0.015 0.02 0.025 0.03
Joint shear strain, γj

U13-34-EXP

U13-34-FEA

N
or

m
al

iz
ed

 sh
ea

r s
tre

ss
, 𝑣/

𝑓

Figure 14. Envelope curves for the joint shear stress versus joint shear strain.

4.2. Parametric Studies

After the verification of the FE models against the experimental results, an extensive parametric
investigation was performed to examine the shear stress and shear deformation of the interior
beam–column joints and to develop simple equations to predict the joint shear deformation
corresponding to three different failure modes without a comprehensive static or dynamic inelastic
frame analysis. In the parametric study, 39 full-scale FE models were systematically constructed with
varying parameters of design. The distance between the beam supports was 6000 mm. The total height
of the column was 3000 mm. The cross-sectional dimensions of the columns were 500 × 500 mm2,
550 × 550 mm2, and 600 × 600 mm2, respectively. The following section presents the results of the
parametric study. Additionally, the regression and correlation analysis were performed to investigate
the relationship between the selected design parameters and joint shear behavior. Based on the analysis,
three simple equations are proposed to predict the contribution of the joint deformation to the total
deformation of beam–column joint connections.

4.3. Shear Stress and Shear Deformation of Interior Joints

Relative to the experimental results, ASCE 41 (Equation (A3)) was conservative in predicting
the shear strength of both nonconforming and conforming joints for certain combinations of design
parameters. Furthermore, ACI 352 specifies the joint shear strength with specific values of the design
parameters, regardless of the deformation of the beam–column joints. Hence, the shear stress and
shear deformation of the interior beam–column joints were investigated further, including the results
of the parametric studies. The FE analysis results were compiled from the parametric studies. For all
the FE models, the concrete compressive strength and compressive axial load level were set as constant
values: f ′c = 28 MPa and Nu/

(
Ag f ′c

)
= 0.1. The ranges of the design parameters were 0 ≤ ρ j ≤ 0.72,

0.13 ≤ s/hc ≤ 1.0, 0.83 ≤ hb/hc ≤ 1.4, 1.0 ≤
∑

Mc/
∑

Mb ≤ 2.5, and 0.89 ≤ Ac/Ab ≤ 1.8, respectively.
The specimen properties and analysis variables are presented in Appendix C. According to the FE
results, the failure types of 39 specimens were classified as follows: a joint failure after beam yielding
was denoted as “BJ-Failure”, a joint failure prior to beam yielding was indicated as “J-Failure”, and a
beam flexural failure was denoted as “B-Failure”. The maximum joint shear stress v ju was computed
by averaging the shear stresses in diagonal elements of the joint panel in the FE models, and the same
approach was applied to estimate the joint shear deformations (Figure 15).



Buildings 2020, 10, 176 16 of 34Buildings 2020, 10, x FOR PEER REVIEW 16 of 31 

  

Figure 15. Diagonal elements of the joint panel in the finite element (FE) models. 

Figure 16 shows the correlation between the normalized joint shear stress 𝑣 / 𝑓  and design 
parameters. The joint shear reinforcement ratio, joint aspect ratio, and column-to-beam flexural 
strength ratio (𝜌 , ℎ ℎ⁄ , and ∑ 𝑀 ∑ 𝑀⁄ , respectively) were considered as the parameters. In Figure 
16(a), for interior beam–column joints (𝜌  = 0), the range of 𝑣 / 𝑓  was 1.15–1.63. However, some 
specimens exhibited B–Failure even if the 𝑣 / 𝑓  was 30–70% greater than the ASCE 41 value for 
nonconforming joints. 

The specimens with small joint reinforcement ratios (𝜌 ) of <0.36% exhibited large 𝑣 / 𝑓  
values of 1.0–1.65, as shown in Figure 16b. In this category, a few specimens exhibited BJ–Failure, 
whereas most of the specimens exhibited B–Failure. Figure 16c shows the normalized shear stress 𝑣 / 𝑓  for specimens with moderate joint shear reinforcement ratios. The 𝑣 / 𝑓  value was 
reduced by 7.0–39.0% for the specimens with larger values of the proposed coefficient K0, and all the 
specimens exhibited B–Failure. 

The variation in the joint shear stress 𝑣 / 𝑓  with respect to the proposed coefficient K0 is 
shown in Figure 16d. According to the results, joint failure did not occur even when the 𝑣 / 𝑓  was 
relatively high. This means that joint failure does not always result from a lack of shear strength of 
the joint but rather insufficient moment resisting capacity. In that case, the joint shear deformation 
increases, although the joint maintains its shear strength. Thus, the joint acts similar to a hinge. The 
increase in the proposed coefficient K0, together with the joint shear reinforcement shifts the failure 
plane to a beam flexural hinge yield mechanism. This is because the moment resisting capacity of the 
joints increases with respect to the increasing amount of joint hoop and column-to-beam flexural 
strength ratio. These results are inconsistent with the ASCE 41 provisions for the shear-strength 
evaluation of interior joints, i.e., 𝑣 = 0.83 𝑓  for 𝑠 > 0.5ℎ  and 𝑣 = 1.245 𝑓  for 𝑠 ≤ 0.5ℎ . 
Therefore, the “joint shear” is a useful index for the induced force level but is not suitable for defining 
joint failure. In addition to the joint shear index, it is necessary to consider the “shear deformation 
index” (SDI), which can be used to define the failure of beam–column connections. 

(a) (b) 

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

1.4 1.6 1.8 2 2.2

ASCE 41-13 "NC"

𝜌 =0

ASCE 41-13 "C"

N
or

m
al

iz
ed

 sh
ea

r s
tre

ss
, 𝑣/

𝑓

Combined coefficient, 𝐾 = (ℎ ℎ )(∑ 𝑀 ∑ 𝑀 )⁄⁄ 0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

1.4 1.6 1.8 2 2.2

ASCE 41-13 "C"

0.2≤𝜌 ≤0.36

Combined coefficient, 𝐾 = (ℎ ℎ )(∑ 𝑀 ∑ 𝑀 )⁄⁄N
or

m
al

iz
ed

 sh
ea

r s
tre

ss
, 𝑣/

𝑓

Figure 15. Diagonal elements of the joint panel in the finite element (FE) models.

Figure 16 shows the correlation between the normalized joint shear stress v ju/
√

f ′c and
design parameters. The joint shear reinforcement ratio, joint aspect ratio, and column-to-beam
flexural strength ratio (ρ j, hb/hc, and

∑
Mc/

∑
Mb, respectively) were considered as the parameters.

In Figure 16a, for interior beam–column joints (ρ j = 0), the range of v ju/
√

f ′c was 1.15–1.63. However,
some specimens exhibited B–Failure even if the v ju/

√
f ′c was 30–70% greater than the ASCE 41 value

for nonconforming joints.
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Figure 16. Maximum shear stress at the interior joints for different combinations of design variables:
(a) no joint reinforcement ratio; (b) low joint reinforcement ratio; (c) moderate joint reinforcement ratio;
(d) total design variables.

The specimens with small joint reinforcement ratios (ρ j) of <0.36% exhibited large v ju/
√

f ′c values
of 1.0–1.65, as shown in Figure 16b. In this category, a few specimens exhibited BJ–Failure, whereas
most of the specimens exhibited B–Failure. Figure 16c shows the normalized shear stress v ju/

√
f ′c

for specimens with moderate joint shear reinforcement ratios. The v ju/
√

f ′c value was reduced by
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7.0–39.0% for the specimens with larger values of the proposed coefficient K0, and all the specimens
exhibited B–Failure.

The variation in the joint shear stress v ju/
√

f ′c with respect to the proposed coefficient K0 is shown
in Figure 16d. According to the results, joint failure did not occur even when the v ju/

√
f ′c was relatively

high. This means that joint failure does not always result from a lack of shear strength of the joint
but rather insufficient moment resisting capacity. In that case, the joint shear deformation increases,
although the joint maintains its shear strength. Thus, the joint acts similar to a hinge. The increase
in the proposed coefficient K0, together with the joint shear reinforcement shifts the failure plane to
a beam flexural hinge yield mechanism. This is because the moment resisting capacity of the joints
increases with respect to the increasing amount of joint hoop and column-to-beam flexural strength
ratio. These results are inconsistent with the ASCE 41 provisions for the shear-strength evaluation
of interior joints, i.e., v ju = 0.83

√
f ′c for s > 0.5hc and v ju = 1.245

√
f ′c for s ≤ 0.5hc. Therefore,

the “joint shear” is a useful index for the induced force level but is not suitable for defining joint failure.
In addition to the joint shear index, it is necessary to consider the “shear deformation index” (SDI),
which can be used to define the failure of beam–column connections.

The SDI versus the proposed combined coefficients K1 and K2 = ρj K1 is shown in Figure 17a–c for
two expected structural deformations (in ASCE 41-13, the lateral story drift ratio of moment frames
should be ≥4.0% for collapse prevention and 2.0% for life safety). The joint shear reinforcement
ratio, area ratio of adjoining members, and column-to-beam flexural strength ratio (ρ j, Ac/Ab,
and

∑
Mc/

∑
Mb, respectively) were considered as the parameters. In this study, the structural

deformations were assumed to be 3.5% for collapse prevention and 2.5% for life safety. Assuming that
the joint deformation of the beam column joint contributes to the total lateral drift ratio, the SDI is
defined as the ratio of the lateral drift ratio Rsps (Equation (2)) due to the joint deformation to the total
lateral drift ratio Rs.

Rsps = γ j

(
1−

hc

Lb
−

hb
Hc

)
(2)
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Figure 17. Shear deformation index (SDI) of interior connections for different combinations of design
variables: (a) low ductility demand (<2); (b) moderate ductility demand (2–4); and (c) high ductility
demand (>4).

Here, γ j represents the joint shear deformation.
Although the combinations of the joint shear reinforcement ratio, joint aspect ratio,

and column-to-beam flexural strength ratio (ρ j, hb/hc, and
∑

Mc/
∑

Mb) were considered as the
parameters affecting the joint shear stress in Figure 16a–d, the area ratio of adjoining members was
additionally included in terms of the joint shear deformation, instead of the joint aspect ratio. This is
because the joint shear deformation exhibited a strong correlation with ρ j, Ac/Ab, and

∑
Mc/

∑
Mb.

Therefore, the coefficients K1 and K2 = ρj K1 were proposed.
In all six figures, the contribution of the shear deformation to the total deformation of the

beam–column joint connection decreases as the values of the proposed coefficients increase. According
to the observed patterns, these graphs were classified into three categories depending on the SDI
values. For instance, the first set of figures corresponds to a low ductility demand (<2), which is
defined in ASCE 41. This is because the range of the SDI values was 0.4–0.8 at lateral drift ratios of
2.5% and 3.5% for specimens with ρ j = 0. This implies that heavy damage is expected in the joint
region; thus, the main source of the overall deformation of a beam–column joint sub-assemblage is
joint deformation. Consequently, the global displacement ductility of the sub-assemblage is reduced,
which reduces the collapse-prevention capacity of the overall frame structure. The second set of
graphs corresponds to a moderate ductility demand (2–4), and the third set of graphs corresponds
to a high ductility demand (>4), as the SDI values ranged from 0.11 to 0.4 for the specimens with
moderate joint reinforcement ratios. Based on these three groups of graphs, the following simple
equations are proposed to predict the SDI of RC interior beam–column joint connections corresponding
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to three different failure modes: J-mode, BJ-mode, and B-mode. Each equation has its basic criteria for
application. The graphical representations of the proposed equations are shown in Figures 18–20.
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Figure 18. SD index corresponding to J-Failure.
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The SDI corresponding to the J-mode (joint failure before beam yielding) can be expressed as
follows:

SDI = 0.8 0 ≤ K1 ≤ 1
SDI = 0.8K−0.6

1 1 ≤ K1 ≤ 3
. (3)

Basic criteria for applying Equation (3):

•
∑

Mc/
∑

Mb < 1.5
• (As,top fy)/(bbd f ′c ) > 0.25

Regardless of the amount of joint hoop.
The SDI corresponding to the BJ-mode (joint failure after beam yielding) can be calculated by{

SDI = 0.4 0 ≤ K2 ≤ 0.4
SDI = 0.3K−0.3

2 0.4 ≤ K2 ≤ 2
(4)

Basic criteria for applying Equation (4):

• 1.5 ≤
∑

Mc/
∑

Mb < 2.0
• 0.15 < (As,top fy)/(bbd f ′c ) ≤ 0.25
• 0.25% ≤ ρ j < 0.5%.
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The SDI corresponding to the B-mode (beam flexural failure) can be calculated using Equation (5).{
SDI = 0.3 0 ≤ K2 ≤ 0.25
SDI = 0.15K−0.6

2 0.25 ≤ K2 ≤ 4
(5)

Basic criteria for applying Equation (5):

• 2.0 ≤
∑

Mc/
∑

Mb < 3.0
• 0.05 < (As,top fy)/(bbd f ′c ) ≤ 0.15
• 0.5% ≤ ρ j < 1.0%.

Using Equation (3) to Equation (5), one can readily define the expected failure mode of
beam–column joints and determine the contribution of the joint deformation to the total lateral
drift of the system. These simple equations can be used for both the new design of interior joints
and shear deformation evaluation of existing interior joints. It should be noted that for both cases,
practicing structural engineers first need to calculate the flexural strengths of beams and columns,
the area ratio of columns and beams, and the joint hoop ratio (if available) in order to determine which
equation can be used for that particular situation.

4.4. Verification of Proposed Equations

The experimental shear deformation indexes (SDIs) of the tested eight specimens were compared
with the SDI calculated using Equation (3), since the test specimens showed J-failure. Furthermore,
to check the accuracy of the proposed equations, 50 available experimental results reported in the
previous investigations were compared with the SDI values predicted by the equations. The ranges of
the experimental database were 21 ≤ f ′c ≤ 107, 0 ≤ Nu/

(
Ag f ′c

)
≤ 0.3, 0 ≤ ρ j ≤ 1.6%, 0.89 ≤ hb/hc ≤ 1.67,

0.88 ≤
∑

Mc/
∑

Mb ≤ 5.15, 0.03 ≤
(
As,top fy

)
/(bbd f ′c ) ≤ 0.5, and 0.6 ≤ Ac/Ab ≤ 1.58, respectively. Out of

50 specimens, 15 specimens were reported to show J-type failure, and 16 specimens exhibited BJ-type
failure. Nineteen specimens failed due to beam flexure (B-type failure). The specimen properties and
analysis variables are presented in Appendix D.

The accuracy of the proposed equations is gauged in terms of a shear deformation index (SDI)
ratio, which is defined as the ratio of the measured SDI to the predicted SDI. The SDI ratio of 1 indicates
perfect accuracy; the SDI ratio > 1 indicates that the equations tend to be conservative; and the SDI
ratio < 1 suggests that it is non-conservative. Figure 21 shows a comparison between the measured and
predicted SDI values. Equation (3), Equation (4), and Equation (5) predict the SDI values of the existing
test results with respective mean values of 1.03, 0.89, and 0.76 for the SDI ratio and corresponding
coefficients of variation (COVs) of 18.0%, 14.0%, and 35.0%. Although there was a low correlation
between measured and calculated SDI values for Equation (5), it was proved that the predictions of
Equation (5) were on the safe side. By comparing the results of Equation (3), Equation (4), and Equation
(5) with experimental results, it was concluded that the proposed equations have reasonable accuracy.
The relative ease of the calculations and the accuracy of the results indicate that the proposed equations
would be suitable for routine design by practicing structural engineers. In addition, the SDI prediction
is considered useful for the displacement-based design of moment frames, which are significantly
affected by joint damage.
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Figure 21. Experimental shear deformation index (SDI) versus the SDI predicted by proposed equations:
(a) J-mode predicted by Equation (3); (b) BJ-mode predicted by Equation (4); and (c) B-mode predicted
by Equation (5).

5. Conclusions

Three equations were proposed in this study to predict the joint shear deformation index (SDI)
of RC interior beam–column connections corresponding to three different types of failure (i.e., joint
failure before beam yielding, joint failure after beam yielding, and beam flexural failure). To develop
such equations, experimental and analytical studies were conducted on eight half-scale joint specimens
and 39 full-scale FE models of beam–column connections with various combinations of joint design
parameters. The SDI values of 50 beam–column joints reported in the literature were compared
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with those predicted by the proposed equations to validate their applicability. According to these
investigations, the following conclusions are drawn.

• With regard to the strength and stiffness, the performance of the test specimens was satisfactory
up to δ = 2.0% (lateral drift ratio), beyond which the strength and stiffness generally degraded.
The maximum loads occurred at δ = 2.0–2.5%, after which concrete cracking and spalling became
severe at δ = 3.5–4.0%. Among the eight specimens, S13-N exhibited the worst performance.
This was mainly due to the absence of joint shear reinforcement and the smaller flexural
strength ratio.

• Experimental and finite-element investigations indicated that throughout the lateral loading,
the joint shear stress increased, while the width of the diagonal shear cracks on the joint core
surfaces increased. The maximum joint shear stress values exceeded the limits of v ju = 0.83

√
f ′c

for s > 0.5hc and v ju = 1.245
√

f ′c for s ≤ 0.5hc suggested by ASCE 41. The joint shear deformation
contributed approximately 40% of the total lateral drift at the maximum shear stress v j, and the
corresponding lateral drift ratio was approximately 3.0–3.5%. This indicates that the “joint shear”
is a useful index for the beam–column joints with high shear stress levels of v j ≥ 1.7

√
f ′c but is

unsuitable for defining the shear failure of beam–column joints with medium or low shear stress
levels of v j ≈ 1.25–1.5

√
f ′c and v j ≈ 1.0

√
f ′c .

• Using the results of parametric studies (39 specimens), the shear stress of the interior joints was
investigated considering the design variables ρ j, hb/hc, and

∑
Mc/

∑
Mb. The maximum shear

stress v ju varied between 0.85
√

f ′c and 1.65
√

f ′c . However, joint failure did not occur in some
specimens, even if v ju/

√
f ′c was relatively large. This is because the increase in the proposed

coefficient K0, together with the joint shear reinforcement shifts the failure plane to a beam flexural
hinge yield mechanism.

• The shear deformation of interior joints was examined with consideration of the design variables ρ j,
Ac/Ab and

∑
Mc/

∑
Mb. The contribution of the joint shear deformation to the total deformation

ranged from 10.0% to 80.0% depending on the values of the proposed coefficients K1 and K2 = ρ jK1.
The joints with smaller values of K1 and K2 performed poorly, exhibiting wide inclined cracks
and deformations that accounted for up to 80% of the overall lateral deformation (δ = 2.5% and
δ = 3.5%). Larger values of K1 and K2 yielded smaller deformation of the joint region.

• The design based on limiting the joint shear stress can be used for safety. However, it should be
supplemented with consideration of the corresponding joint shear deformation to define the joint
failure clearly. According to the results, three simple equations were proposed for predicting
the joint deformation contribution to the total story drift of beam–column joints under critical
structural deformations. The equations were able to predict SDI values with reasonable agreement
with the experimental data. Compared with previously proposed models and theories, our method
does not require complex nonlinear numerical analyses of the structure or sub-assemblage.

Author Contributions: Analysis, investigation, data curation, and writing—original draft preparation, D.G.;
supervision, writing—review & editing, and software, T.M. All authors have read and agreed to the published
version of the manuscript.
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Appendix A. Current Design Methods

For interior beam–column connections, the following three failure modes are considered:
(1) flexural yielding of the beam or column, (2) shear failure of the joint, and (3) bond failure of
the longitudinal beam reinforcement. The lateral forces corresponding to each failure mode can be
estimated as follows.
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Appendix A.1. Flexural Yielding of Beam or Column

Figure A1 shows the support reactions (Vc, Vbr, and Vbl) and internal moments at the joint face
(Mc, Mbr, and Mbl) in an interior beam–column connection specimen subjected to a lateral load (P) at
the top of the column. When yielding of the column occurs before yielding of the beam (in the case of a
low-rise building), the lateral force (Pnc) based on column yielding is given as

Pnc =
Mc

(Hc − hb)/2
=

2Mnc

Hc − hb
(A1)

where Mnc represents the nominal flexural strength of the column, and Hc represents the distance from
the bottom support of the column to the loading point. (For actual columns, Hc represents the distance
between the inflection points in the upper and lower columns.)
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When yielding of the beam occurs, the corresponding lateral force Pnb can be calculated from the
moment equilibrium (Figure A1):

Pnb =
(Vbl + Vbr)Lb

2Hc
=

(
Mn,bl + Mn,br

)
Lb

Hc(Lb − hc)
(A2)

where Mn,bl represents the nominal flexural strength of the beam, and Lb represents the distance from
the left beam support to the right beam support. (For an actual beam, Lb represents the distance
between two inflection points of the beam.)

Appendix A.2. Shear Strength of Beam–Column Joint

In ASCE 41, the joint shear strength V jn is specified as

V jn = 0.083γ
√

f ′c A j (A3)

where γ is a factor reflecting the confinement provided by the transverse beam and joint shear
reinforcement, and A j represents the effective joint area. Interior joints with s ≤ 0.5hc are classified as
conforming joints, and γ = 15 is used. Interior joints with s > 0.5hc are classified as nonconforming
joints, and γ = 10 is used. Here, s represents the spacing of the joint transverse reinforcement, and hc

represents the column depth measured in the direction of the joint shear considered.
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In Figure A1, the sum of the vertical forces at the beam supports is (Vbl + Vbr) = 2P·(Hc/Lb),
and the sum of the beam moments at the joint faces is (Mbl + Mbr) = P·(Hc/Lb)·(Lb − hc). Hence,
the horizontal shear force at the joint V j is expressed as

V j = Tbl + Tbr − P =
Mbl + Mbr

jb
− P = P

(
Hc

Lb

)(
Lb − hc

jb

)
− P (A4)

where jb represents the moment lever arm of the beam section (≈ 0.87de f f ; Joh et al. [16] and
Kamimura et al. [18]), and de f f represents the effective depth of the beam. When joint shear failure
occurs [i.e., V j = V jn in Equation (A3)], the corresponding lateral force Pnj is defined as follows:

Pnj =
V jn(

Hc
Lb

)
−

(
Hchc
jbLb

)
− 1

(A5)

Appendix A.3. Bond Strength of Beam Reinforcement

In ACI 318, the minimum embedment length of all the straight beam and column bars passing
through the joint is defined as

hc ≥ 20db (A6)

where db represents the diameter of the largest beam longitudinal reinforcing bar. When the embedment
length of the beam reinforcement is shorter than the required value, bond failure is expected in the joint.

Appendix A.4. Strength Predictions for Test Specimens

Table A1 presents the nominal strengths Pnb, Pnc, and Pnj under beam yielding, column yielding,
and joint shear failure, respectively, which were calculated via Equations (A1)–(A6) using the actual
material strengths. Specimens S16-N, S13-N, and U13-N were classified as nonconforming joints
according to the ASCE 41 requirement, as the shear reinforcement is not provided in the joint. For these
joints, Pnj is denoted as PNC

nj . For S16-32, S16-34, S13-32, S13-34, and U13-34, where the hoop spacing

satisfies the requirement, Pnj is denoted as PC
nj. It is noted that ASCE 41 does not specify the shape and

details of joint hoops apart from the spacing.
As shown in Table A1, for S16-N, S13-N, and U13-N, PNC

nj was smaller than Pnb and Pnc, indicating

that joint shear failure was expected. However, for S16–32, S16–34, S13–32, and S13–34, PC
nj was the

lowest among strengths under the lateral loading. Among the specimens, U13–34 had the closest PC
nj

to the force Pnb at the beam yielding point. Therefore, among the eight specimens, seven exhibited
joint shear failure before the yielding of the beam, and only one failed after beam yielding. Table A1
presents the provided and required anchorage lengths of the beam flexural reinforcements (lal and ldh,
respectively). The lal/ldh ratios of 0.78 and 0.96 indicate that the anchorage length was satisfied for the
Group 2 and 3 specimens but not for Group 1. Therefore, the test specimens were designed to induce
joint shear failure, with consideration of the effect of the insufficient anchorage length.
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Table A1. Prediction of the Nominal Strengths and Failure Modes *.

Specimen

Column Yielding Beam Yielding Joint Shear Failure
Predicted
Strength,
Pn(kN)

Failure
Mode

Anchorage Length
Mnc,

(kN·m)
Pnc,
(kN)

Mn,bl,
(kN·m)

Mn,br,
(kN·m)

Pnb,
(kN)

Conforming Nonconforming

VC
jn, (kN) PC

nj, (kN) VNC
jn , (kN) PNC

nj , (kN) lal(mm) lal
ldh

S16-N 78.0 125 51.6 51.6 76.4 - - 247.93 39.9 39.9 J 250 0.78
S16-32 77.7 124 51.5 51.5 76.3 367 59.1 - - 59.1 J 250 0.78
S16-34 78.2 125 51.6 51.6 76.4 375 60.2 - - 60.2 J 250 0.78
S13-N 62.8 100 57.4 57.4 85.0 - - 254 40.9 40.9 J 250 0.96
S13-32 63.0 101 57.8 57.8 85.6 389 62.7 - - 62.7 J 250 0.96
S13-34 63.1 101 57.8 57.8 85.6 391 62.8 - - 62.8 J 250 0.96
U13-N 79.9 128 56.9 42.1 73.3 - - 264 42.4 42.4 J 250 0.96
U13-34 79.9 128 56.9 42.1 73.3 396 63.6 - - 63.6 BJ 250 0.96

* Note: J = joint shear failure; BJ = beam joint failure; lal and ldh = provided and required anchorage length, respectively; Pnc and Pnb = connection strengths by column and beam yielding;
and Pnj = connection strength by joint failure (ASCE 41).
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Appendix B. Constitutive Model for Nonlinear Fe Analysis of Test Specimens

Appendix B.1. Constitutive Law for Concrete

In the analysis, a total strain-based rotating crack model was used for nonlinear concrete.
An isotropic linear–elastic material model based on Young’s modulus and Poisson’s ratio was adopted
for linear concrete. The Poisson’s ratio was assumed to be 0.15 regardless of the concrete strength.
Young’s modulus obtained from the material test was used.

Appendix B.1.1. Tensile Behavior

DIANA 10.3 [34] predefines tensile stress–strain curves for the total strain crack model. In the
present study, the nonlinear tension-softening model proposed by Hordijk [34] was adopted for
nonlinear FE analysis (NFEA), as the tension-softening model results in more localized cracks and
consequently avoids large areas of diffuse cracking. The stress–strain relationship for concrete under
tension is shown in Figure A2a. Here, the parameters are the tensile strength ft, fracture energy G f ,
and crack bandwidth, h.
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The uniaxial tensile strength of concrete ft was determined using the compressive strength f ′c
according to the CEB-FIB Model code (1990) [32]:

ft = 0.3( f ′c )
2/3. (A7)

The tensile fracture energy of concrete, i.e., G f (N/mm2), was determined using the formula of
the CEB-FIB Model code:

G f =
(
73 f ′0.18

c

)
/1000 (A8)

where f ′c represents the compressive strength of the concrete.
The crack bandwidth h is an essential parameter in constitutive models that describes the softening

stress–strain relationship. Additionally, it is crucial to reduce the mesh-size dependence. In this study,
an automatic procedure for determining the crack bandwidth provided in DIANA 10.3 was used.

Appendix B.1.2. Compressive Behavior

In DIANA 10.3, the compressive behavior of the total strain crack model can be described using
predefined curves. A parabolic stress–strain diagram with a softening branch was used in this study
(Figure A2b). The softening branch was determined according to the compressive fracture energy, Gc,
to reduce the mesh-size dependence during compressive-strain localization. The compressive fracture
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energy of concrete, i.e., Gc (N/mm2), was determined using the formula proposed by Nakamura and
Higai [35]:

Gc = 250G f . (A9)

The lateral influence on the concrete mainly comprised two aspects. The first was the decrease in
the compressive strength of the concrete, which occurred because the tensile strain perpendicular to
the principal compressive stress caused cracks and damage in the concrete. The reduction is explained
by the model developed by Vecchio and Collins [36] in DIANA 10.3. The other aspect is the lateral
confinement. It has long been recognized that the strength, as well as the deformability of concrete,
continuously increases when the amount of confinement is increased. Equations have been proposed
based on numerous experimental studies to predict the improvement of the loading capacity. In DIANA
10.3, the effects of the lateral confinement are considered by modifying the compressive stress–strain
curves, for which the parameters are determined by a failure function defining the compressive stress as
a function of the confining stresses in the lateral directions, as explained by the model of Selby et al. [37].

Appendix B.2. Constitutive Law for Reinforcement

The von Mises criterion with isotropic strain hardening and the associated flow rule was used
to describe the constitutive behavior of the reinforcement. The bars were modeled with the DIANA
options of separate truss elements. Figure A3a shows the stress–strain relationship for the reinforcing
steel, which was modeled with an elastoplastic curve. During the test, bond deterioration was
observed along the beam longitudinal bars and main column bars (particularly within the joint region),
and slippage of the steel bars was expected to occur. The bond–slip models with the DIANA options
accounted for the reinforcement and surrounding concrete.

Buildings 2020, 10, x FOR PEER REVIEW 26 of 31 

𝐺 = (73𝑓 . ) 1000⁄  (A8) 

where 𝑓  represents the compressive strength of the concrete. 
The crack bandwidth ℎ  is an essential parameter in constitutive models that describes the 

softening stress–strain relationship. Additionally, it is crucial to reduce the mesh-size dependence. In 
this study, an automatic procedure for determining the crack bandwidth provided in DIANA 10.3 
was used. 

Appendix B.1.2. Compressive Behavior 

In DIANA 10.3, the compressive behavior of the total strain crack model can be described using 
predefined curves. A parabolic stress–strain diagram with a softening branch was used in this study 
(Figure B.1b). The softening branch was determined according to the compressive fracture energy, 𝐺 , to reduce the mesh-size dependence during compressive-strain localization. The compressive 
fracture energy of concrete, i.e., 𝐺  (N/mm ), was determined using the formula proposed by 
Nakamura and Higai [35]: G = 250G . (A9) 

The lateral influence on the concrete mainly comprised two aspects. The first was the decrease 
in the compressive strength of the concrete, which occurred because the tensile strain perpendicular 
to the principal compressive stress caused cracks and damage in the concrete. The reduction is 
explained by the model developed by Vecchio and Collins [36] in DIANA 10.3. The other aspect is 
the lateral confinement. It has long been recognized that the strength, as well as the deformability of 
concrete, continuously increases when the amount of confinement is increased. Equations have been 
proposed based on numerous experimental studies to predict the improvement of the loading 
capacity. In DIANA 10.3, the effects of the lateral confinement are considered by modifying the 
compressive stress–strain curves, for which the parameters are determined by a failure function 
defining the compressive stress as a function of the confining stresses in the lateral directions, as 
explained by the model of Selby et al. [37]. 

Appendix B.2. Constitutive Law for Reinforcement 

The von Mises criterion with isotropic strain hardening and the associated flow rule was used 
to describe the constitutive behavior of the reinforcement. The bars were modeled with the DIANA 
options of separate truss elements. Figure A2a shows the stress–strain relationship for the reinforcing 
steel, which was modeled with an elastoplastic curve. During the test, bond deterioration was 
observed along the beam longitudinal bars and main column bars (particularly within the joint 
region), and slippage of the steel bars was expected to occur. The bond–slip models with the DIANA 
options accounted for the reinforcement and surrounding concrete. 

  

(a) (b) 

Figure A2. Model for the reinforcement: (a) stress–strain curve for the steel reinforcement; (b) bond–
slip law based on CEB-Figure 1990. 
Figure A3. Model for the reinforcement: (a) stress–strain curve for the steel reinforcement; (b) bond–slip
law based on CEB-Figure 1990.

Bond–Slip Law

The bond law used in the analysis is based on the CEB-FIP model code 1990, as shown in
Figure A3b. Equations of the bond stress for different parts of the curve are presented below:

τ = τmax

(
s
s1

)α
for 0 ≤ s ≤ s1 (A10)

τ = τmax for s1 ≤ s ≤ s2 (A11)

τ = τmax − (τmax − τf)
s− s1

s3 − s2
for s2 ≤ s ≤ s3 (A12)

τ = τf for s3 ≤ s. (A13)
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The bond-law model parameters were s1 = 1.0 mm, s2 = 3.0 mm, s3 = 5.0 mm, α= 0.4, τmax = 2
√

f ′c ,
and τ f = 0.4τmax.

Appendix B.3. Geometry Modeling

Eight-node two-dimensional quadratic solid elements (CQ16M) were used for the concrete
modeling, and the embedded reinforcing bars were modeled using truss elements. As an example,
the FE discretization of the specimens is presented in Figure A4.
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Appendix C. Analysis Variables of Parametric Study

Table A2 lists the main analysis parameters of 39 FE beam–column joint models that were used to
develop three equations to predict the joint shear deformation index (SDI) of interior joints for various
combinations of joint design parameters.
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Table A2. Specimen Properties and Analysis Variables.

Specimens

Geometric Properties Top Rebar of
Beam

Bottom Rebar
of Beam

Joint Hoop
Ratio

Joint Aspect
Ratio

Area
Ratio

Strength
Ratio

Failure
Mode

(a) (b) (c) (d)

L H hc bc hb bb db As fy db As fy ρj, (%) hb/hc Ac/Ab

∑
Mc∑
Mb

FE
Prediction

Group 1

M1

6000 3000 600 600

500 400

22 1548

431 19 1146 431

- 0.83 1.8 2.5 B
M2 0.3 0.83 1.8 2.5 B
M3 0.6 0.83 1.8 2.5 B

M4
25 2026

- 0.83 1.8 2.2 B
M5 0.3 0.83 1.8 2.2 B
M6 0.6 0.83 1.8 2.2 B

M7

600 400

22 1548
- 1.0 1.5 2.0 BJ

M8 0.24 1.0 1.5 2.0 B
M9 0.48 1.0 1.5 2.0 B

M10
25 2026

- 1.0 1.5 1.7 BJ
M11 0.24 1.0 1.5 1.7 B
M12 0.48 1.0 1.5 1.7 B

M13

700 400

22 1548
- 1.17 1.29 1.7 BJ

M14 0.2 1.17 1.29 1.7 B
M15 0.4 1.17 1.29 1.7 B

M16
25 2026

- 1.17 1.29 1.5 BJ
M17 0.2 1.17 1.29 1.5 B
M18 0.4 1.17 1.29 1.5 B
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Table A2. Cont.

Specimens

Geometric Properties Top Rebar of
Beam

Bottom Rebar
of Beam

Joint Hoop
Ratio

Joint Aspect
Ratio

Area
Ratio

Strength
Ratio

Failure
Mode

(a) (b) (c) (d)

L H hc bc hb bb db As fy db As fy ρj, (%) hb/hc Ac/Ab

∑
Mc∑
Mb

FE
Prediction

Group 2

M19

6000 3000

500 500

500 400

22 1548

431 19 1146 431

- 1.0 1.25 1.7 B
M20 0.36 1.0 1.25 1.7 B
M21 0.72 1.0 1.25 1.7 B

M22
25 2026

- 1.0 1.25 1.5 BJ
M23 0.36 1.0 1.25 1.5 B
M24 0.72 1.0 1.25 1.5 B

M25

600 400

22 1548
- 1.2 1.04 1.4 BJ

M26 0.29 1.2 1.04 1.4 BJ
M27 0.57 1.2 1.04 1.4 B

M28
25 2026

- 1.2 1.04 1.2 J
M29 0.29 1.2 1.04 1.2 BJ
M30 0.57 1.2 1.04 1.2 B

M31

700 400

22 1548
- 1.4 0.89 1.2 J

M32 0.24 1.4 0.89 1.2 BJ
M33 0.48 1.4 0.89 1.2 B

M34
25 2026

- 1.4 0.89 1.0 J
M35 0.24 1.4 0.89 1.0 BJ
M36 0.48 1.4 0.89 1.0 B

M37
550 550 600 400 25 2026

- 1.1 1.26 1.46 BJ
M38 0.26 1.1 1.26 1.46 B
M39 0.52 1.1 1.26 1.46 B

(a) L = beam length (mm); H = column height (mm); hc = column depth (mm); bc = column width (mm); hb = beam depth (mm); bb = beam width (mm); (b) db = rebar diameter (mm);
As = area of rebar (mm2); and fy = yield strength of rebar (MPa); (c) yield strength of joint hoop is assumed to be 345 MPa; (d) B = beam failure; BJ = beam joint failure (joint failure after
beam yield); and J = joint failure (joint failure before beam yield.

Appendix D. Summary of Beam–Column Connection Tests

Table A3 lists the main analysis parameters of 50 existing beam–column joints that were used to verify the proposed equations.
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Table A3. Analysis Parameters of Existing Test Specimens.

Research
Team

Specimens

Joint Hoop
Ratio

Joint Aspect
Ratio

Area
Ratio

Strength
Ratio

Mechanical
Reinforcement Ratio SDI at 2.5% SDI at 3.5% Failure Mode

ρj, (%) hb
hc

Ac
Ab

∑
Mc∑
Mb

As,topfy

bbdf
′

c

Rsps

Rs

Rsps

Rs
Test Result

Fuji and
Morita (1991)

[17]

A1 0.52 1.14 1.21 1.24 0.50 0.62 0.69 J
A2 0.52 1.14 1.21 2.02 0.19 0.41 0.62 J
A3 0.52 1.14 1.21 1.24 0.50 0.65 0.72 J
A4 0.69 1.14 1.21 1.24 0.50 0.69 0.72 J

Joh et al. (1991
[16])

HL 1.27 1.17 1.29 2.41 0.09 0.03 0.04 B
MH 0.55 1.17 1.29 2.41 0.09 0.03 0.05 B
B9 1.1 1.17 1.29 2.41 0.10 0.05 0.07 B

B10 1.1 1.17 1.29 2.41 0.10 0.06 0.09 B
B11 1.1 1.17 1.29 2.41 0.10 0.07 0.10 B

Noguchi and
Kashiwazaki

(1992) [38]

J1 0.66 1.00 1.50 1.53 0.24 0.40 0.48 BJ
J3 0.66 1.00 1.50 1.48 0.17 0.37 0.41 J
J4 0.66 1.00 1.50 1.53 0.24 0.37 0.48 BJ
J5 0.66 1.00 1.50 1.37 0.26 0.31 0.40 J
J6 0.66 1.00 1.50 1.47 0.27 0.30 0.33 J

Oka and
Shiohara

(1992) [39]

J1 0.46 1.00 1.25 1.72 0.15 0.40 0.60 BJ
J7 0.46 1.00 1.25 2.12 0.13 0.10 0.13 B

J10 0.46 1.00 1.25 1.35 0.34 0.44 0.58 J

Kimamura et al.
(2000) [18]

No.1 0.15 1.00 1.39 1.7 0.24 0.47 0.53 J
No.2 0.31 1.00 1.39 1.7 0.24 0.51 0.44 J
No.3 0.62 1.00 1.39 1.7 0.24 0.42 0.44 J
No.4 0.31 1.00 1.39 2.56 0.16 0.11 0.11 B
No.5 0.62 1.00 1.39 2.56 0.16 0.08 0.08 B

Li and Leong
(2014) [40]

NS1 0.71 1.11 1.08 2.11 0.07 N/A 0.09 B
AS1 0.71 1.11 1.08 3.59 0.07 N/A 0.03 B
NS2 0.48 1.11 1.08 1.86 0.03 N/A 0.10 B
AS2 0.48 1.11 1.08 3.9 0.03 N/A 0.03 B
NS3 0.71 1.11 1.08 2.35 0.07 N/A 0.09 B
AS3 0.71 1.11 1.08 3.83 0.07 N/A 0.03 B
NS4 0.57 1.11 1.08 2.82 0.03 N/A 0.11 B
AS4 0.57 1.11 1.08 5.15 0.03 N/A 0.03 B
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Table A3. Cont.

Research
Team

Specimens

Joint Hoop
Ratio

Joint Aspect
Ratio

Area
Ratio

Strength
Ratio

Mechanical
Reinforcement Ratio SDI at 2.5% SDI at 3.5% Failure Mode

ρj, (%) hb
hc

Ac
Ab

∑
Mc∑
Mb

As,topfy

bbdf
′

c

Rsps

Rs

Rsps

Rs
Test Result

Hwang et al.
(2014) [41]

C1-400 1.34 0.91 1.57 1.67 0.31 0.18 0.20 BJ
C2-600 1.34 0.91 1.57 1.68 0.27 0.14 0.18 BJ
C3-600 1.34 0.91 1.41 1.22 0.27 0.15 0.19 BJ
C4-600 1.34 0.91 1.57 1.88 0.27 0.16 0.19 BJ

Melo et al.
(2014) [42]

IPA-1 0 1.67 0.60 0.94 0.06 0.60 0.82 J
IPA-2 0 1.67 0.60 0.99 0.04 0.40 0.75 J
IPB 0 1.67 0.60 0.96 0.06 0.50 0.62 J
IPE 0 1.67 0.60 1.23 0.06 0.36 0.75 J
ID 0 1.67 0.60 0.88 0.07 0.52 0.77 J

Alaee and Li
(2017) [43]

IN80 0.71 1.11 1.08 1.71 0.05 0.14 0.11 B
IH80 0.57 1.11 1.08 2.18 0.06 0.26 0.20 BJ

IH80A 0.57 1.11 1.08 3.75 0.06 0.05 0.05 B
IN100 0.71 1.11 1.08 1.72 0.04 0.26 0.20 BJ
IH100 0.71 1.11 1.08 2.19 0.05 0.31 0.29 BJ
IH60 0.57 1.11 1.08 2.29 0.06 0.31 0.25 BJ

IH60A 0.57 1.11 1.08 3.23 0.06 0.09 0.07 B

Yang and
Zhao (2018)

[44]

CL1 1.17 1.25 0.91 1.23 0.13 0.27 0.61 BJ
CL2 1.54 1.25 1.07 1.24 0.19 0.37 0.73 BJ
CL3 1.60 0.89 1.58 1.37 0.23 0.41 0.73 BJ
CL4 1.54 1.25 1.07 1.14 0.16 0.34 0.61 BJ
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