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Abstract: The problem of hydrogen embrittlement in ultra-high-strength steels is well known.
In this study, slow strain rate, four-point bending, and permeation tests were performed with
the aim of characterizing innovative materials with an ultimate tensile strength higher than
1000 MPa. Hydrogen uptake, in the case of automotive components, can take place in many
phases of the manufacturing process: during hot stamping, due to the presence of moisture in the
furnace atmosphere, high-temperature dissociation giving rise to atomic hydrogen, or also during
electrochemical treatments such as cataphoresis. Moreover, possible corrosive phenomena could be a
source of hydrogen during an automobile’s life. This series of tests was performed here in order to
characterize two press-hardened steels (PHS)—USIBOR 1500® and USIBOR 2000®—to establish a
correlation between ultimate mechanical properties and critical hydrogen concentration.

Keywords: hydrogen embrittlement; ultra-high-strength steels; automotive; press-hardened steels;
hydrogen-induced delayed fracture; diffusible hydrogen

1. Introduction

There is tension between the priority of maintaining and, if possible, increasing the safety
of drivers and passengers and the necessity of reducing CO2 emissions and, thus, the weight of
vehicles. To resolve this issue, an increasing amount of work is being done on researching and
characterizing new high-grade materials which can potentially reduce emissions. Higher mechanical
performances are needed to reduce sheet thickness, and serious hydrogen embrittlement susceptibility
is the natural consequence.

Advanced high-strength steels (AHSS) exhibit both considerable mechanical properties and good
formability. During the production process, hydrogen can be adsorbed in various phases: during
electrolytic processes as pickling, electroplating, cataphoresis, and phosphating or even through
the moisture present during welding or heat treatment, which can cause hydrogen absorption in
the material.

Press-hardened steels (PHS) are hot-formed steels used in automobile structural and safety
components, as they present high homogeneity of mechanical properties and excellent fatigue
resistance. Their manufacturing process consists mainly of the austenitizing of blanks in an oven,
followed by martensitic quenching in a water-cooled stamping tool.

The main source of hydrogen for this kind of material comes from the hot stamping process: atomic
hydrogen comes from the dissociation of water at high temperatures, with consequent adsorption and
absorption in the steel bulk and its entrapment after water-cooling quenching.
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The hydrogen present in the material can diffuse and concentrate in microstructural vacancies
or defects, thus cracking the metal lattice. This phenomenon, which is related to hydrogen charging
before service, is called internal hydrogen embrittlement (IHE). In this type of attack, the surface is not
involved [1].

The most well-known mechanisms that attempt to explain the interaction and behavior of
hydrogen [2] with steel are hydrogen-enhanced decohesion (HEDE) and hydrogen-enhanced local
plasticity (HELP). The former assumes that hydrogen contributes to the tensile strength: the higher
the hydrogen concentration and the higher the hydrogen pressure, the greater the decohesion of steel
atoms. The latter suggests that hydrogen, moving towards crack tips where hydrostatic stress is higher,
promotes dislocation motions and reduces their interaction energy with internal obstacles, with the
consequent formation of microvoids.

Another, more complex mechanism is the so-called adsorption-induced dislocation emission
(AIDE). According to this theory, hydrogen adsorption facilitates nucleation of dislocations that can
readily and easily move away from the crack tip under the effect of applied stress. The dislocation
emission produces crack-advance and crack-opening, resulting in crack growth [3].

In thus study, the traditional testing methods described in the literature to investigate hydrogen
embrittlement were evaluated in order to identify which is most suitable for specific applications.

Two different conditions were studied and compared in this work: (1) the slow strain rate test
(SSRT), which consists of applying very slow deformation to the material in order to provide hydrogen
the time necessary to move and concentrate in the plastic zone; (2) the four-point bending (4 PB) test,
which was used to investigate the static behavior of materials.

In addition, a permeation test campaign was performed to evaluate the diffusion coefficient and
its dependence on thermal treatment.

The aim of this work was to determine a practical and easily applicable methodology to study the
susceptibility to hydrogen embrittlement of ultra-high-strength steels used in the automotive industry.

2. Materials and Methods

2.1. Materials

The material under investigation was a patented ultra-high-strength aluminum–silicon-coated
boron steel which is used in structural and safety automobile components [4]. Two grades were studied:
one with an ultimate tensile strength (UTS) of 1500 MPa (USIBOR 1500®) and the other of 2000 MPa
(USIBOR 2000®). Their compositions are shown in Table 1.

Table 1. Chemical compositions of the two steels (wt %).

Material C Si Mn P S Al B Ti Cr

USIBOR 1500® 0.19 0.21 1.13 0.015 0.008 0.0038 0.003 0.031 0.19
USIBOR 2000® 0.38 0.19 1.21 0.013 0.006 0.032 0.0032 0.024 0.28

These materials were subjected to a hot-forming process at a temperature between 900 and 950 ◦C
for a period of 240–600 s and then cooled at a rate of about 50 ◦C/s in the pressing tool to give a
martensitic microstructure.

After thermal treatment, the microstructure was completely martensite, due to which its
susceptibility to hydrogen embrittlement increased.

The mechanical properties, such as yield strength (Rp,02), ultimate tensile strength (Rm), and
elongation at break (A50), of the two materials are shown in Table 2.

The difference in the mechanical properties is imputed to the considerable carbon content in
USIBOR 2000®.

FEM images were obtained using an SEM FEI Quanta 450 ESEM FEG (FEI, Hillsboro, OR, USA).
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Table 2. Mechanical properties of the materials under investigation.

Material Rp,02 (MPa) Rm (MPa) A50 (%)

1500 Grade 1252 1485 7.3
2000 Grade 1510 1881 6.2

2.2. Hydrogen Charging

In this study, charging was achieved electrochemically. Samples were immerged in an
electrochemical solution and a current between the cathode (the sample) and the anode (a platinum
mesh) was imposed to simulate the cataphoresis process. The solutions used contained NaCl and
NH4SCN [5]. The variation and combination of the applied current and the solution’s composition,
in terms of the recombination’s poison (NH4SCN) concentration, allowed for varying the amount of
hydrogen absorbed by the material.

In this work, NH4SCN varied in the range of 0.03–0.3% and the current in the range of
0.25–1 mA/cm2 to avoid surface damage such as cracks at the interface between the coating and the
steel due to a high local hydrogen concentration.

Each sample was further treated by placing it in the laboratory furnace and heating it at 150 ◦C
for 10 min, which simulated the paint baking industrial process. In this way, uniform hydrogen
distribution was achieved inside the material and, according to [6], not a considerable amount of
hydrogen was desorbed.

Figure 1 shows the electrochemical device used for hydrogen charging.
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Figure 1. Electrochemical cell for hydrogen charging.

2.3. Slow Strain Rate Tests

The slow strain rate tests were performed in air, after hydrogen charging, according to ASTM
G129 [7]. The crossbar speed was set to 0.001 mm/s and the slow rate corresponded to a very low
deformation rate. In this way, hydrogen was able to migrate towards the fracture zone.

The geometrical and dimensional characteristics of the samples used in these tests were in
accordance with standards [8] and are shown in Figure 2.
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2.4. Four-Point Bending Tests

The experimental method included 4 PB tests to evaluate the susceptibility of the steel to
hydrogen-induced delayed fracture. These tests were carried out according to ASTM F-1624 [9], and
the dimensions of the samples are shown in Figure 3.
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Figure 3. Dimensions and geometry of (a) four-point bending test samples without a hole and (b) with
a hole.

The loading procedure consisted of progressive stress that always increased in the elastic range.
Starting from 50% of Rp,02, this load was maintained for 24 h. Then, it was increased every 2 h up to
90% of Rp,02.

It must be noted that, in case of sample failure, the hydrogen content was immediately evaluated
by a hot extraction method to correlate the concentration of hydrogen with the critical load.

Once the 90% of Rp,02 was reached, this load was maintained for another 24 h, and if the sample
did not fail, it was declared “safe”.

Figure 4 shows the device used to carry out the four-point bending tests.
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2.5. Permeation Tests

Permeation tests were carried out according to ISO 17081:2004 [10], with the aim of characterizing
materials in terms of the hydrogen diffusion coefficient and by means of an innovative instrument
patented by Letomec S.r.l., which uses a solid-state hydrogen-sensitive sensor [11]. The sample was
placed between an electrochemical cell and the probe of the instrument and a current between the
cathode (sample) and the anode (a platinized titanium mesh) was applied (test solution 3% NaCl with
0.3% NH4SCN and current density 0.5 mA/cm2). As the discharge of hydrogen occurred on the surface
in contact with the solution, hydrogen was then adsorbed and diffused throughout the specimen
thickness. Figure 5 shows the scheme of the instrument.

The reaction of hydrogen discharge took place in the sample’s surface M in contact with the solution:

H2O + M + e− →MHads + OH−. (1)
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In this way, according to Volmer’s theory [12], the atoms of hydrogen could be adsorbed by
the material and, in the next moment, be absorbed in the bulk or recombine to produce molecular
hydrogen (moving away in the form of gas bubbles).

The absorbed hydrogen reached the exit surface where the sensor’s probe was located, and it left
the sample passing through the probe and being detected. As a result, the typical permeation curve
was obtained.
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2.6. Hydrogen Measurement

For 4 PB and SSR tests, the concentration of hydrogen was evaluated by a hot extraction method
by means of a Leco DH603 instrument (Leco, St. Joseph, MO, USA). Samples were heated at 265 ◦C in
order to guarantee the complete desorption of diffusible hydrogen [13].

3. Results

3.1. Slow Strain Rate Tests

The slow strain rate tests were carried out on precharged samples. After sample fracture, the
content of hydrogen was measured, as detailed in the previous paragraphs.

Figures 6 and 7 report the characteristics of the two different materials.
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Figure 7. SSRT for USIBOR 2000®.

In the figures above, CH,C represents the critical concentration obtained by the inflection point of
the regression curve. The threshold value (red dashed line) represents 70% of the ultimate tensile load
of the material, and the corresponding hydrogen concentration is the traditional critical value for the
examined material. The error bars depend on the sensitivity of the Leco DH603, equal to ±0.1 ppmw,
while on the y-axis, the error value is 5%, derived from the uncertainty of the measurement of the
sample’s thickness.

3.2. Four-Point Bending Tests

Figure 8 shows the 4 PB test results for USIBOR 1500® and Figure 9 shows those related to
USIBOR 2000®. CH,C is again the critical concentration found as the inflection point (and equal to m3

in the regression Equation (7)). As for the SSR tests, the materials presented a first asymptote for low
concentrations, a dramatic fall corresponding to the critical concentration, and a second asymptote
corresponding to the saturation effect [14].
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3.3. Permeation Tests

Sample thickness was equal to 1.4 mm in this particular case for both materials. The two
steels underwent permeation tests before and after hot stamping treatment to study the effect of
microstructure transformation. Figure 10 shows the comparison of the results.
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Table 3 shows the diffusion coefficients for the two different materials under investigation.
According to international literature [15], the differences underlined before are evident.

Table 3. Diffusion coefficient for the two grades steels as a function of thermal treatment.

Material
Diffusion Coefficient (m2/s)

Before Hot Stamping After Hot Stamping

1500 Grade 3.39 × 10−10 4.50 × 10−11

2000 Grade 1.36 × 10−10 3.25 × 10−11

3.4. SEM Images

In Figure 11 SEM images are shown, and the typical intergranular fracture surface of SSRT samples
is illustrated.

For both pictures, the magnification is 5000× and the hydrogen content absorbed by the samples
was 2.1 and 0.5 ppmw, respectively.
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4. Discussion

The diffusion phenomenon is regulated by Fick’s laws, and even the movement of hydrogen
atoms inside steel can be described using the same equations. Nevertheless, the experimental test
results demonstrated behavior somewhat distant from the ideal theory. This difference was due to the
presence of hydrogen traps inside the metal lattice, such as dislocations, grain boundaries, precipitates,
and so on.

Traps influence the diffusion of atoms in the bulk and they are divided in two categories: reversible
and irreversible, depending on their own binding energy. Irreversible traps are those that release
hydrogen at a temperature higher than 1000 ◦C, while, according to the literature, reversible traps lose
hydrogen at a lower temperature; in particular, for USIBOR, it is equal to 265 ◦C [13].

According to McNabb et al.’s (1963) model [16], traps saturate and the equations that rule this
phenomenon are shown below [15]:

∂C
∂t = D∂2C

∂x2 −Nr
∂ν
∂t −Ni

∂w
∂t

∂ν
∂t = KrC(1− ν) − pν
∂w
∂t = KiC(1−w)

(2)

where C is the hydrogen concentration (atoms/m3); D is the hydrogen diffusion coefficient (m2/s) in
pure iron; Nr and Ni are the concentrations of reversible and irreversible traps, respectively (atoms/m3);
ν represents the occupied reversible trap fraction, while w refers to irreversible traps; t and x are the
time and space variables, respectively; Kr is the trapping rate for reversible traps (m3/atoms s); Ki is the
same for irreversible traps; and p is the release rate for reversible traps.

As can be noticed in Table 3 and according to [15], traps are dislocations generated from the
phase transformation during the quenching process, and here, the diffusion was always faster in
USIBOR 1500® than in USIBOR 2000® because of the considerable amount of carbon in the higher
grade; moreover, the thermal treatment reduced the diffusion coefficient of hydrogen.

The embrittling process [17] is related to the interaction of atomic hydrogen with interatomic
bonds, and when the cohesive strength of the material is overcome, crack propagation occurs, which
refers to the I mode of crack growth according to mechanical fracture. At the crack tip, the presence of
a high pressure gradient increases the solubility of hydrogen in the lattice due to lattice expansion,
resulting in a hydrogen flux towards this region.

According to the HEDE model, the cohesive strength is affected only by lattice hydrogen CL and
its dependence is shown in the following equation:

σc
N(CL) = σc

N

(
1− a1θs + a2θ

2
s

)
(3)
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where a1 and a2 are empirical constants and θs is defined as

θs =
CL

CL + exp
(
−

∆H
RT

) (4)

where ∆H is equal to 30 kJ/mol, R is the gas constant, and T is the absolute temperature.
The hydrogen concentration tends to accumulate next to the crack tip because of the higher

hydrostatic stresses, according to the well-known Beck’s law [18]:

C = CL exp
(VHσH

RT

)
(5)

where VH is the molar volume of hydrogen in the lattice, equal to 2 × 10−6 m3/mol; σH is the hydrostatic
stress; R is the gas constant; T is the absolute temperature; CL is the concentration of hydrogen without
stress; and C is the concentration near the crack tip in the presence of stress [19].

The accumulation of hydrogen in potential cracking initiation sites depends on the strain–stress
time gradient and diffusion coefficients [20]:

∂C
∂t

= D∇2C + D
VH

R(T − Tz)
∇C∇p + D

VH

R(T − Tz)
C∇2p (6)

where C is the hydrogen concentration, D is the diffusion coefficient, Tz is the absolute zero temperature,
and p is the hydrostatic stress.

In international literature, it is possible to find various studies of numerical and theoretical
simulations in order to explain hydrogen embrittlement phenomena [20].

In the automotive industry, very thin sheets (0.5–2 × 10−3 m) are used, which is the reason why a
more practical approach is reasonable.

The extrapolation of a regression curve (Figures 6 and 7) can describe the behavior of steel [21,22],
and the corresponding equation was derived here as

UTS (MPa) = m1 −m2 × arctg
(

CH −m3

m4

)
(7)

From the function’s study, the point where the second derivative was equal to zero had abscissa
equal to CH = m3, which is very close to the value of the critical hydrogen concentration, obtained
according to [23], for both steels.

Similarly, for the four-point bending tests and from the mathematical expressions, the critical
hydrogen concentration was found for both materials, the results of which are summarized in Table 4.

Table 4. Critical hydrogen concentrations of the different mechanical tests.

Material USIBOR 1500® USIBOR 2000®

4 PB Hole 0.61 0.37
4 PB No Hole 0.71 0.54
SSRT 0.74 0.64

Samples subjected to high stress intensification, due to the hole, required less average hydrogen
concentration to reach the local hydrogen accumulation that leads to fracture.

For SSRT specimens, the deformation rate was higher than the diffusion and the hole created
an intensity factor close to 1. For this reason, the accumulation of hydrogen in the SSRT sample was
negligible. In contrast, the presence of the hole in the 4 PB samples constituted the worst condition.
The 4 PB samples without the hole showed a concentration closer to SSRT specimens, despite the
difference in test duration, due to the absence of the stress gradient.
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Figure 12 shows the evolution of the hydrogen concentration at the crack tip as a function of
test time.Metals 2019, 9, x FOR PEER REVIEW 10 of 11 

 

 
Figure 12. Hydrogen accumulation at the crack tip during the test. Note: simulation refers to USIBOR 
1500®. 

5. Conclusions 

From the different mechanical tests performed on USIBOR 1500® and USIBOR 2000®, the 
following conclusions can be derived: 

• These steels are sensitive to hydrogen delayed fracture and the grade 2000 is considerably more 
sensitive than grade 1500. 

• The 4 PB tests with the hole were the most severe because the failure occurred with a minimum 
average concentration. 

• The hydrogen diffusion strongly decreased after the hot stamping and quenching process 
because of the martensite formation; moreover, because of the greater amount of carbon, grade 
2000 presented slower diffusion. 

• The differences in critical hydrogen concentration values for the mechanical tests were due to 
two factors: 

1. The effect of the deformation rate in the SSRT, which provided hydrogen with little time to 
diffuse near the crack tip. 

2. The presence of the hole in the 4 PB samples induced stress gradients that, coupled to time, 
created hydrogen accumulation near the crack tip. 

• Finally, the 4 PB samples with the hole were absolutely the most realistic at simulating the risk 
of hydrogen embrittlement for this type of material. However, the SSRT is a quick method to 
compare the behavior of different materials in the presence of hydrogen. 

Author Contributions: S.C., R.V., and M.V. designed and conceived the experiments; M.V., S.C., and L.B. 
performed the experiments; all the authors analyzed data; M.M.T. provided the materials; M.V. and R.V. wrote 
the paper. 

Funding: This research work was implemented under the umbrella of the Formplanet Project—Sheet Metal 
Forming Testing Hub, HORIZON 2020 Grant Agreement ID: 814517. 

Acknowledgments: The authors wish to thank Eng. Barile and Eng. Thierry (Arcelor Mittal) for materials, and 
Bernardo Monelli and PhD student Francesco Aiello for the FEM simulation. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. San Marchi, C.; Michler, T.; Nibur, K.A.; Somerday, B.P. On the physical differences between tensile testing 
of type 304 and 316 austenitic stainless steels with internal hydrogen and in external hydrogen. Int. J. 
Hydrogen Energy 2010, 35, 9736–9745,doi:10.1016/j.ijhydene.2010.06.018. 

Figure 12. Hydrogen accumulation at the crack tip during the test. Note: simulation refers to
USIBOR 1500®.

5. Conclusions

From the different mechanical tests performed on USIBOR 1500® and USIBOR 2000®, the following
conclusions can be derived:

• These steels are sensitive to hydrogen delayed fracture and the grade 2000 is considerably more
sensitive than grade 1500.

• The 4 PB tests with the hole were the most severe because the failure occurred with a minimum
average concentration.

• The hydrogen diffusion strongly decreased after the hot stamping and quenching process because
of the martensite formation; moreover, because of the greater amount of carbon, grade 2000
presented slower diffusion.

• The differences in critical hydrogen concentration values for the mechanical tests were due to
two factors:

1. The effect of the deformation rate in the SSRT, which provided hydrogen with little time to
diffuse near the crack tip.

2. The presence of the hole in the 4 PB samples induced stress gradients that, coupled to time,
created hydrogen accumulation near the crack tip.

• Finally, the 4 PB samples with the hole were absolutely the most realistic at simulating the risk
of hydrogen embrittlement for this type of material. However, the SSRT is a quick method to
compare the behavior of different materials in the presence of hydrogen.
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