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Abstract: The pyrometallurgical processes for primary copper production have only off-line and
time-demanding analytical techniques to characterize the in and out streams of the smelting and
converting steps. Since these processes are highly exothermic, relevant process information could
potentially be obtained from the visible and near-infrared radiation emitted to the environment.
In this work, we apply spectral sensing and multivariate data analysis methodologies to identify
and classify copper and iron sulfide minerals present in the blend from spectra measured during
their combustion in a laboratory drop-tube setup, in which chemical reactions that take place in
flash smelting furnaces can be reproduced. Controlled combustion experiments were conducted
with two industrial concentrates and with high-grade mineral species as well, with a focus on
pyrite and chalcopyrite. Exploratory analysis by means of Principal Component Analysis (PCA)
applied on the spectral data depicted high correlation features among species with similar elemental
compositions. Classification algorithms were tested on the spectral data, and a classification accuracy
of 95.3% with a support vector machine (SVM) algorithm with a Gaussian kernel was achieved.
The results obtained by the described procedures are shown to be very promising as a first step in
the development of a predictive and analytical tool in search of fitting the current need for real-time
control of pyrometallurgical processes.

Keywords: copper concentrate; pyrometallurgy; flash smelting; combustion; classification; spectroscopy;
PCA; SIMCA; PLS-DA; k-NN; support vector machines

1. Introduction

The flash smelting process was developed in Finland in the late 1940s, and it has become one of the
main copper production technologies in the world, given its high production and fast implementation
capabilities at industrial and commercial scales. This process has attracted the interest of researchers
for more than five decades, from the first works that allowed understanding the mineralogy and
combustion kinetics of specific mineral particles, to modern works focused on the development and
application of computer fluid dynamics (CFD) models [1–3].

Mineral oxidation at high temperatures is the core in such processes, since it involves complex
energy and mass transfer mechanisms, as well as gaseous and intermediate species production.
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The research related to this combustion process has tried to uncover the chemical and physical
behaviors of those mineral particles present in copper concentrates in flash smelting conditions [4–6].
The species involved during the combustion absorb and emit energy with specific characteristics, which
can be used to retrieve information about the process condition [7]. In particular, optical information
at specific wavelengths has been used to describe the oxidation of the main sulfide minerals such as
chalcopyrite (CuFeS2) and pyrite (FeS2) [4,6], to estimate ignition temperatures [8–10], single particle
temperature [4,6], and to model particle size distributions [11].

In the combustion research field, visible and near-infrared (VIS-NIR) spectroscopic techniques are
applied to characterize and retrieve relevant process information, e.g., Keyvan et al. [12,13] estimated
natural gas flame temperature by means of the two-color pyrometry method; Romero et al. [14]
developed a real-time temperature and composition monitoring system for natural gas flames in a glass
production process; and Cai et al. [15] used least squares regression methods to fit coal flame spectral
emission by means of using gray body models based on Planck’s radiation law, with temperature and
emissivity as regression parameters.

Recently, researchers have reported on spectral measurements from laboratory-scale experiments
of copper concentrate combustion [16], and exploratory results depicted some spectral features related
to the combustion process, such as CuxO spectral emissions at 606 nm and 616 nm, as well as a
direct correlation among sulfur content in samples and broad band spectral intensity amplitudes.
Furthermore, chemometrics techniques, i.e., analytical tools applied for the chemical characterization
of samples, appear as a great tool to gain new insights from great volumes of data such as spectral
data. One of these applications was shown in the work of Stumpe et. Al. [17]. The researchers
achieved classifying different slag species coming from the steel industry by means of PCA and
SIMCA (Soft Independent Modelling of Class Analogy) models applied to the mid-infrared spectra.
Finally, industrial equipment applying radiometric techniques to control copper pyrometallurgical
processes has been developed, the Optical Process Controller (OPC) monitoring system manufactured
by Scandinavian Emissions Technology (Semtech) company. They discovered that lead species such as
PbS and PbO can be used as tracers to follow the conversion process state [18,19].

In this work, classification and exploratory analysis algorithms are applied to characterize
high-grade sulfide minerals by means of their VIS-NIR spectral radiation emitted from controlled
combustion experiments. Spectral information is measured in absolute radiometric amplitudes with
a previously-calibrated spectrometer and algorithms such as PCA, SIMCA, PLS-DA (Partial Least
Squares-Discriminant Analysis), k-Nearest Neighbors (k-NN), and SVM are applied to visualize the
spectral information behavior and to develop predictive classification models, so a short overview about
these methods is introduced in the next section. Classification model performance and comparisons
are evaluated during the training and validation process with cross-validation techniques, accuracy,
and error metrics.

The work is organized as follows: in Section 2, a description of the combustion setup and
an overview about the sensing techniques, preprocessing, and classification algorithms are given;
in Section 3, the results are discussed, and in Section 4, some conclusions and future work are outlined.

2. Materials and Methods

In Figure 1, the experimental setup is depicted. This experimental setup was installed in
the Metallurgical Engineering Department at the Universidad of Concepción, Concepción, Chile.
The system mainly consisted of: (i) gas and solid feeding systems; (ii) a reaction zone heated by an
electrical furnace; and (iii) an optical sensing system.
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Figure 1. Experimental setup for combustion experiments.

The solid feeding system consisted of a LAMBDA DOSER® (Lambda CZ s.r.o., Brno, Czech
Republic) of 0.2 L, with a feeding rate controller. Solids were fed by means of a water-cooled lance
manufactured of stainless-steel; this system also refrigerates the optical fiber installed through the center
to measure the radiation emitted in the zenithal position of the incandescent cloud of particles during
combustion. The reaction zone was made with a stainless-steel tube of a 0.12-m inner diameter with a
thickness of 3 mm, vertically positioned and heated on the surface by a controlled electrical furnace
able to reach 1473 K. The furnace temperature was monitored by means of a K-type thermocouple.
The process gas entering the reaction zone was a mixture of oxygen and nitrogen, and flows were
controlled with mass flow controllers.

In Figure 2, the general data acquisition and preprocessing pipeline is depicted. Particles during
combustion emitted radiation from the reaction zone, and the radiation was guided to a spectrometer by
a cooled optical fiber probe (Avantes Inc., Louisville, CO, USA) specially designed for high-temperature
environments. In this work, the VIS-NIR spectrometer USB4000 (Ocean Optis Inc., Dunedin, FL,
USA) was used to acquire the spectral data in the range from 400–900 nm with an average spectral
resolution of ~0.22 nm; also, the spectrometer was calibrated to measure the emitted radiation in
absolute irradiance units (µW/(cm2

·nm)). The monitoring, acquisition, and spectrometer configuration
stages were controlled with software developed in LabView™ (National Instruments Corporation,
Austin, TX, USA ). Moreover, from a spectral point of view, it was assumed that the main spectral
features were emitted by particles in ignition and that hot gasses inside the reaction zone, e.g., SO2, N2,
and O2, were optically transparent in the analyzed spectral range.

In order to manipulate the spectral data, the applied algorithms assumed the data as a matrix
XMxN with columns representing the variables or sampling wavelengths, λi, I = 1, . . . , N, with each
row representing a spectrum, Ij, j = 1, . . . , M, measured at some instant, as depicted in Figure 2. In this
work, the number of acquired spectra for each experiment was related to material availability, and a
total of N = 2576 discrete wavelengths in the 400–900 nm range were analyzed.

After the data were acquired, further preprocessing could be necessary to compensate for external
perturbations such as particles size distribution and unstable feeding rates. Such methodologies are
described next.
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Signal processing and algorithm implementations were conducted in MATLAB® (The MathWorks,
Inc., Natick, MA, USA) [20], with the PLS Toolbox 5.2 (Eigenvector Research, Inc., Manson, WA,
USA) [21] and the Classification Learner App from the Machine Learning ToolboxTM (MATLAB®).
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2.1. VIS-NIR Spectral Signal Preprocessing

Spectral radiation emitted by objects at a high temperature are described by a continuous radiation
spectral feature, Ibb(λ,T), that follows a black body emission as a function of wavelength and object
temperature. This radiation can be modeled by Planck’s radiation law [16]. Since real bodies are
not ideal emitters, an emissivity function, ε, that measures thermal energy emission efficiency was
added to the model; thus, Ic(λ,T) = ε·Ibb(λ,T). This emissivity function can be wavelength independent
(gray bodies) or wavelength dependent (real bodies). Moreover, in combustion processes, line,
Id, and molecular, Im, emissions can be produced; thus, a measured spectrum can be modeled as
I(λ,T) = ε·Ibb(λ,T) + Id(λ) + Im(λ) + n, with n being a normally-distributed noise component.

As mentioned earlier, the acquired spectra require some preprocessing due to experimental issues,
which produce high variance among spectral intensities at different acquisition times. In spectroscopy,
some of the techniques suitable for external perturbation corrections are mainly divided into two
groups: (i) transformation methods over spectral samples like MSC (Multiplicative Scatter Correction)
and SNV (Standard Normal Variate) normalization methods, an; (ii) signal smoothing coupled with
derivative procedures such as the Savitzky–Golay (SG) algorithm. An exhaustive description of the
aforementioned methods can be found in [22]. It has been shown in works by some authors that
applying preprocessing algorithms improves the performance in regression or classification models
developed from the data [23].

2.2. Principal Component Analysis

After the preprocessing stage, an exploratory analysis was performed. For this purpose, PCA [24]
was implemented with MATLAB® and the PLS Toolbox. The goal of this method was to approximate
the data matrix XMxN by the product of two matrices:

X = T·LT (1)
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where T is the score matrix with M rows and d columns equal to the number of Principal Components
(PCs), and the L matrix is the loading matrix with d columns and N rows. This analysis allows
reducing the dimensionality of the original data to visualize their behavior easily in a reduced space;
it also allows assessing the most important variables that contribute to the variance in the original
dataset. This exploratory method is also the base for classification algorithms such as the SIMCA and
PLS-DA methods.

2.3. Classification Methods

In this work, the k-NN, SIMCA, PLSDA, and SVM classification methods were implemented.
To implement such methods, a spectral training set was needed, with each spectrum representing a
known class or category, e.g., 0 and 1 for chalcopyrite and pyrite, respectively, then, by having this
set or by developing the classification model, predictions on new spectral samples can be performed.
Figure 3 summarizes a general implementation of the classification algorithms to conduct predictions
for new data.
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The k-NN method classifies an unknown spectrum by taking a distance measure (Euclidean or
Mahalanobis distance) to its nearest neighbors, of known categories. Therefore, an unknown sample is
classified according to the classes of its closest neighbors [25]. The SIMCA method [26] calculates a PCA
model on each spectral training dataset belonging to a known class. Then, it defines boundaries around
the reduced sample space for each class with a given probability, commonly of 95%, which allows
classes to overlap and, thus, a sample to belong to one or more categories with a defined probability.

The PLS-DA method is an adaptation of the Partial Least Squares regression method (PLS). In this
method, the target class or dependent variables are required; thus, a matrix Y is generated containing
the encoded classes as 0 and 1. PLS-DA reduces the dimensionality of measured variables, but in this
case, through partial least squares. Once the new Latent Variables (LVs) are calculated, the discriminant
analysis is carried out, and the boundaries between the classes are established. The classification of new
samples in the discriminant analysis is based on their probability to belong to one or another class: the
class with higher probability is assigned to the sample [27]. Finally, the SVM method constructs linear
decision surfaces over the original input vectors (samples) or mapped vectors into a high-dimension
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feature space through the implementation of kernel functions; in this work, two different types of
kernel functions were investigated: linear and Gaussian (RBF) [28].

For the accuracy of the trained model, confusion matrices (also known as misclassification matrices)
are presented [24]. These tables summarize the classification performance by depicting the number
of: False Positive estimations (FP); False Negative estimations (FN); True Positive estimations (TP)
and True Negative estimations (TN). This allows a more detailed analysis than the mere proportion of
correct classifications (accuracy). Then, Matthews’s correlation coefficient (MCC) is also estimated; this
metric can be estimated from the confusion matrix as:

MCC =
TP × TN − FP× FN√

(TP + FP)( TP + FN )( TN + FP )( TN + FN )
(2)

For the defined metric, Equation (2), MCC takes values between –1 and +1: MCC = +1 represents
a perfect prediction; MCC = −1 indicates a total disagreement between the predicted and observed
classes, and value of MCC = 0 represents a prediction no better than a random prediction. Note that
this metric can be only used in binary classification problems, in our case, we were only predicting the
presence of chalcopyrite or pyrite, since they are the main mineralogical species present in the copper
concentrates analyzed in this work.

2.4. Raw Materials and Experimental Design

Raw materials used in this work consisted of high-grade sulfide minerals mainly present in copper
concentrates. Table 1 depicts these species together with their p80 size parameter, chemical formula,
and abbreviations. Some of them were acquired from Ward’s Natural Science and Northern Geological
Suppliers, others by means of local suppliers.

Table 1. List of sample minerals.

Minerals Abbreviations Formula p80

Chalcopyrite Cpy CuFeS2 37 µm
Pyrite Py FeS2 35 µm

Bornite Bn Cu5FeS4 32 µm
Covelline Cv CuS 32 µm
Chalcocite Cs Cu2S 37 µm
Pyrrhotite Po FeS 35 µm
Enargite Enr Cu3AsS4 42 µm

Minerals were prepared with standard laboratory procedures to achieve dry and similar size
distributions. The mineralogy and size distribution of the samples were determined by means of X-Ray
Diffraction (XRD) and laser diffraction, respectively. Table 2 shows the qualitative analysis produced
by the XRD method.

Table 2. Qualitative results by X-ray diffraction.

Sample Mineralogical Composition

Cpy Py Bn Cs Cv Po Enr

Chalcopyrite *** Tr - * - - -
Pyrite - *** - - - - -

Bornite * - *** - - - -
Chalcocite * - - *** - - -
Covelline Tr - - * *** - -
Pyrrhotite - * - - - *** -
Enargite Tr? Tr - - - - ***

*** = most abundant phase, ** = abundant phase, * = minority phase, - = no presence, Tr = trace phase,
? = uncertainty phase.
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Two different copper concentrates were also used as raw material, and their mineralogical
composition is shown in Table 3.

Table 3. Mineralogical composition of copper concentrate measured with a QEMSCAN®.

Mineral (%) Concentrate A Concentrate B

Chalcopyrite 32.7 66.7
Pyrite 45.5 16.5

Bornite 3.2 2.1
Covelline 0.8 0.1

Quartz 0.9 1.7
Muscovite 1.3 2.0

Others 15.6 10.9

The experimental design considered the combustion of mineral samples under fixed operating
conditions for all experiments, and such conditions were assessed as optimal from exploratory
experiments to ensure high signal to noise ratios, while the values were: a furnace operating
temperature of 1273 K and an 80%v O2, 20%v N2 process gas. Nitrogen and oxygen flows were
adjusted accordingly to ensure laminar flow conditions inside the drop-tube. For each experiment,
0.03 kg of sample were fed to the drop-tube.

Finally, combustion products were collected by means of a receptacle located at the bottom of the
drop-tube; the receptacle was water cooled to stop as fast as possible the chemical transformations in
order to have representative samples from the high-temperature oxidation process., and the products
were treated to conduct further analysis by QEMSCAN® (Quantitative Evaluation of Minerals by
SCANning electron microscopy, FEI Company, Hillsboro - Oregon, USA) technology.

3. Results and Discussion

In Figure 4, average measurements of calibrated spectra from each species are depicted, and
differences among spectral intensities along the sensed spectral range are observed, with pyrite
emission producing the highest intensity pattern. Moreover, the pyrite spectrum shows a pronounced
peak at 588 nm and a doublet at 765.8–769.3 nm, and the same peaks appear in the pyrrhotite, but with
less intensity. These signals were associated with sodium and potassium emissions, respectively, in
previous works [16]. On the other hand, the chalcopyrite spectrum shows slightly perceptible peaks,
while the other mineral species show only continuum spectral patterns.
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In order to compare the emission spectra from the different mineral species, a single measurement
matrix was constructed containing all the data, following the structure described in Figure 2. Because
the size of the measurement matrix was very large, the application of principal component analysis
(PCA) was chosen as an alternative to visualize the patterns of possible mineral species. Results
from PCA application are depicted in the scatterplot of Figure 5. The score analysis shows four very
marked groups, two related to chalcopyrite and pyrite emissions, one produced by pyrrhotite scores,
slightly overlapping on the pyrite spectra, and one group with the other species, which indicates a
high correlation among their spectral emission patterns.

Metals 2019, 9, x FOR PEER REVIEW 8 of 13 

 

 

Figure 4. Average emission spectra recorded during the combustion of seven different minerals. 

In order to compare the emission spectra from the different mineral species, a single 

measurement matrix was constructed containing all the data, following the structure described in 

Figure 2. Because the size of the measurement matrix was very large, the application of principal 

component analysis (PCA) was chosen as an alternative to visualize the patterns of possible mineral 

species. Results from PCA application are depicted in the scatterplot of Figure 5. The score analysis 

shows four very marked groups, two related to chalcopyrite and pyrite emissions, one produced by 

pyrrhotite scores, slightly overlapping on the pyrite spectra, and one group with the other species, 

which indicates a high correlation among their spectral emission patterns. 

 

Figure 5. PC1–PC2 scores from PCA applied to the mean centered data matrix. 

The pyrrhotite scores’ behavior can be explained by the fact that at temperatures above 873 K, 

the oxidation of chalcopyrite and pyrite occurs mainly through the decomposition of sulfur to 

produce FeS according to the reactions: 

CuFeS2(s) + 1/2O2(g) →  1/2Cu2S(s) +  FeS(s) +  1/2SO2(g) (3) 

FeS2(s) + O2(g)  →  FeS(s) +  SO2(g) (4) 

The spectra from the combustion of the sulfides presented in the previous equations can be 

confused with the spectra of the sulfide mineral species. As mentioned earlier, the overlapping 
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The pyrrhotite scores’ behavior can be explained by the fact that at temperatures above 873 K, the
oxidation of chalcopyrite and pyrite occurs mainly through the decomposition of sulfur to produce
FeS according to the reactions:

CuFeS2(s) + 1/2O2(g) → 1/2Cu2S(s) + FeS(s) + 1/2SO2(g) (3)

FeS2(s) + O2(g) → FeS(s) + SO2(g) (4)

The spectra from the combustion of the sulfides presented in the previous equations can be confused
with the spectra of the sulfide mineral species. As mentioned earlier, the overlapping among the
score groups produced by bornite, chalcocite, covelline, and enargite [29–31] emissions can be justified
by the fact that the product of their thermal decomposition is Cu2S (reactions thermodynamically
favorable under the temperature attained by the combustion flames in each experiment), as shown in
the following reactions:

Cu5FeS4 → 5/2Cu2S + FeS + 1/4S2(g), (5)

Cu3AsS4 → 3/2Cu2S + 1/2 As2S3 + 1/2S2(g), (6)

CuS → 1/2Cu2S + 1/4S2(g), (7)

Moreover, the results of PCA applied on copper sulfide spectra had a very marked separation with
the chalcopyrite scores; in this case, this separation was given by the PC1, with most of chalcopyrite
scores located on the negative side of PC2.

In Table 4, the mineralogical composition of the combustion products is summarized. It can be
seen that products from enargite and covelline combustion have a high content of the Cu2S phase
(chalcocite). On the other hand, bornite and chalcocite partially reacted, and they also depicted low
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intensity profiles, so their radiation was prone to be overshadowed by the radiation emitted by the
furnace walls.

Table 4. Mineralogical composition of sulfide combustion products determined by QEMSCAN®.

Products (%) Py Po Cpy Enr Bn Cv Cs

Delafossite 0.04 0.02 33.70 0.70 0.62 0.24 0.36
FeOx 82.25 94.33 22.90 1.24 3.34 0.51 0.55

Chalcocite 0.00 0.00 2.52 52.01 19.38 77.38 83.27
Cuprite 0.00 0.00 1.43 28.92 18.44 16.63 15.68
Bornite 0.03 0.00 7.80 0.18 44.53 0.33 0.02
Enargite 0.00 0.00 0.00 15.41 0.25 0.00 0.00
Covellite 0.00 0.00 0.01 0.10 8.84 3.13 0.05

Other 17.68 5.65 31.64 1.44 4.60 1.78 0.07

In Figure 6a, the plot of PCs loadings depicts the variables’ (wavelengths) behavior for pyrite
and chalcopyrite combustion spectra. The peaks mentioned above and less intense peaks at 779.1 and
793.9 nm are observed. These peaks have been previously reported and may be associated with iron
species [16]. These peaks are also observed in the loadings obtained with PCA using only pyrite spectra.
For chalcopyrite spectra, loadings depict peaks at 606 and 616 nm (Figure 6b), and they are associated
with the presence of copper oxides [32]. Note that loading vectors only give an idea of the wavelengths’
contribution to spectral data variance and that in any case, their amplitude can be interpreted as a
relative concentration in the original spectra; however, they can be seen as a first approach to elucidate
the structure of spectral patterns hidden in the data because of their weak emissions. Loading analysis
for other species presented no relevant spectral patterns, so they are not shown in this work.
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chalcopyrite combustion.

Due to the promising results obtained with PCA, supervised classification methods such as k-NN,
PLS-DA, SIMCA, and SVM were applied. In this section, only chalcopyrite and pyrite emissions are
considered for analysis. To accomplish this, a training matrix was constructed from the emission
spectra that presented the best differentiation between mineral species, as depicted in Figure 3. Under
this assumption, 750 chalcopyrite and 750 pyrite spectra were chosen randomly. Finally, trained
classification models were evaluated on 500 spectra from chalcopyrite and pyrite combustion, spectra
from Copper Concentrate A and Copper Concentrate B combustion, and finally, spectra from mixtures
of pyrite/chalcopyrite in proportions of 30% Cpy-70% Py and 70% Cpy-30% Py combustion.
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From the set of applied preprocessing methods, the mean centering approach was chosen since it
presented a good justification of the accumulated variance from exploratory PCA analysis with a good
segregation of sample scores and low values of the root mean squared error of cross-validation for the
different methods’ implementation. In this work, a 10-fold cross-validation method was implemented
to estimate the optimum parameters of the trained models. Table 5 summarizes the optimum assessed
parameters for each implemented method.

Table 5. Calibration of the models depicting optimum parameters and performances evaluated with a
10-fold cross-validation procedure.

Model Optimum Parameters MCC

k-NN 2 neighbors 1

SIMCA 2 PCs for each species 0.983

PLS-DA 7 LVs 1

SVM Fine Gaussian kernel 1

Table 6 summarizes the results of predictions over the test matrices by using the optimal models,
the values of the MCC metric, and confusion matrices. It can be seen that during the predictions, the
k-NN model was not considered appropriate for the detection of pyrite combustion spectra, because
it had a low specificity (a large number of false positive samples); the same issue is observed with
SIMCA, with higher rates of false positives for both species; the PLS-DA and SVM methods show the
best classification results for the sulfide mineral species’ predictions. In the case of predicting the class
of copper concentrates, Concentrate A was mainly classified with a higher presence of pyrite, and the
opposite can be observed for Concentrate B, which was accurate by considering their mineralogical
composition; see Table 3. The same results can be observed from the binary mixture combustion, and
the algorithms predicted the high presence of pyrite or chalcopyrite species, accordingly.

Table 6. Prediction of chalcopyrite, pyrite, concentrates, and sulfide mixture by the trained models.

Model
Model Prediction

Cpy Py ConA ConB Py 70%-Cpy 30% Py 30%-Cpy 70%

k-NN
MCC 0.886 - -

Cpy 227 6 250 250 250 240
Py 23 244 0 0 0 10

SIMCA
MCC 0.721 - -

Cpy 240 64 0 241 207 84
Py 40 186 250 9 43 166

PLS-DA
MCC 0.900 - -

Cpy 236 11 2 244 235 160
Py 14 239 248 6 15 90

SVM
MCC 0.953 - -

Cpy 250 12 6 250 249 235
Py 0 238 244 0 1 15

4. Conclusions

From the results, it can be concluded that depending on the degree of reaction of sulfide species,
the spectra emitted can show patterns that allowed them to be differentiated, such as the pyrite and
pyrrhotite spectra in which emission peaks can be observed at 588, 765.8, and 769.3 nm, while species
like chalcopyrite required a multivariate analysis to uncover these peaks. In this case, by applying



Metals 2019, 9, 1017 11 of 12

PCA to the spectral datasets, peaks related to copper phases (606 and 616 nm) and others related to
the oxidation of iron sulfides (779.1 and 793.9 nm) were found. These results allowed evaluating the
efficiency of the classification models by means of methods such as k-NN, SIMCA, PLS-DA, and SVM.
With all these methods, a good degree of prediction was observed against pyrite and chalcopyrite
spectra, while applying these methods to the spectra of copper concentrates’ combustion or binary
mixtures, the results were accurate in the sense that a higher presence of the two analyzed species
was predicted. Finally, the classification results with an SVM approach and with a Gaussian mapping
function of the original spectra generated the best classification results with 95.3% accuracy. In future
work, we will extend this analysis to perform regression predictions so that an estimation of the
proportion of sulfide mineral species during combustion in real scenarios can be performed.

Author Contributions: Conceptualization, W.D. and C.T.; methodology, W.D., G.R., C.T., and V.P.; software, W.D.;
validation, W.D., C.T., and V.P.; formal analysis, W.D., C.T., and P.C.; investigation, W.D.; resources, E.B., R.P.; data
curation, C.T. and V.P.; writing, original draft preparation, W.D.; writing, review and editing, C.T., V.P., E.B., W.D.,
P.C., and R.P.; visualization, W.D.; supervision, C.T.; project administration, E.B.; funding acquisition, R.B. and E.B.

Funding: This research was funded by the CONICYT, Anillo Minería ACM170008, and by Fondef IT under
Grant Number 16M10029. The work of C. Toro was supported by the CONICYT Fondecyt/Postdoctorate grant
under Project Number 3170897. The work of Pablo Coelho was supported by CONICYT PAI/CONVOCATORIA
NACIONAL SUBVENCIÓN A LA INSTALACIÓN EN LA ACADEMIA, 2018 (77180078).

Acknowledgments: We thank the Metallurgical Engineering Department at the University of Concepción for
giving access to their facilities, allowing us to conduct the experiments reported in this work.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; n\or in the decision to
publish the results.

References

1. Jorgensen, F.R.A.; Segnit, E.R. Mineralogy of the products of the flash smelting of chalcopyrite. In Proceedings
of the 25th International Geological Congress, Sidney, Australia, 16–25 August 1976; pp. 575–576.

2. Jorgensen, F.R.A.; Segnit, E.R. Copper flash smelting simulation experiments. Proc. Australas. Inst. Min.
Metall. 1977, 261, 39–46.

3. White, M.; Haywood, R.; Ranasinghe, D.J.; Chen, S. The development and application of a cfd model of
copper flash smelting. In Proceedings of the Eleventh International Conference on CFD in the Minerals and
Process Industries, Melbourne, Australia, 7–9 December 2015.

4. Jorgensen, F.R.A. Combustion of pyrite concentrate under simulated flash-smelting conditions. Trans. Inst.
Min. Metall. Section C 1981, 90, C1–C9.

5. Jorgensen, F.R.A. Heat transfer mechanism in ignition of nickel sulphide concentrate under simulated flash
smelting conditions. Proc. Australas. Inst. Min. Metall. 1979, 271, 21–25.

6. Sohn, H.Y.; Chaubal, P.C. The ignition and combustion of chalcopyrite concentrate particles under
suspension-smelting conditions. Metall. Trans. B 1993, 24, 975–985. [CrossRef]

7. Howell, J.R.; Menguc, M.P.; RSiegel, R. Thermal Radiation Heat Transfer, 6th ed.; CRC Press: Boca Raton, FL,
USA, 2015; pp. 441–488.

8. Jorgensen, F.R.A.; Zuiderwyk, M. Two-colour pyrometer measurement of the temperature of individual
combusting particles. J. Phys. E Sci. Instrum. 1985, 18, 486–491. [CrossRef]

9. Morgan, G.J.; Brimacombe, J.K. Kinetics of the flash converting of MK (chalcocite) concentrate. Metall. Mater.
Trans. B 1996, 27, 163–175. [CrossRef]

10. Wilkomirsky, I.; Otero, A.; Balladares, E. Kinetics and reaction mechanisms of high-temperature flash
oxidation of molybdenite. Metall. Mater. Trans. B 2010, 41, 63–73. [CrossRef]

11. Laurila, T.; Hernberg, R.; Oikari, R.T.; Mikkola, P.; Ranki-Kilpinen, T.; Taskinen, P. Pyrometric temperature
and size measurements of chalcopyrite particles during flash oxidation in a laminar flow reactor. Metall.
Mater. Trans. B 2005, 36, 201–208. [CrossRef]

12. Keyvan, S.; Rossow, R.; Romero, C. Blackbody-based calibration for temperature calculations in the visible
and near-IR spectral ranges using a spectrometer. Fuel 2006, 85, 796–802. [CrossRef]

http://dx.doi.org/10.1007/BF02660989
http://dx.doi.org/10.1088/0022-3735/18/6/006
http://dx.doi.org/10.1007/BF02915042
http://dx.doi.org/10.1007/s11663-009-9313-4
http://dx.doi.org/10.1007/s11663-005-0021-4
http://dx.doi.org/10.1016/j.fuel.2005.08.033


Metals 2019, 9, 1017 12 of 12

13. Keyvan, S.; Rossow, R.; Romero, C.; Li, X. Comparison between visible and near-IR flame spectra from
natural gas-fired furnace for blackbody temperature measurements. Fuel 2004, 83, 1175–1181. [CrossRef]

14. Romero, C.; Li, X.S.; Keyvan, S.; Rossow, R. Spectrometer-based combustion monitoring for flame
stoichiometry and temperature control. Appl. Thermal Eng. 2005, 25, 659–676. [CrossRef]

15. Cai, X.; Cheng, Z.; Wang, S. Flame measurement and combustion diagnoses with spectrum analysis. AIP Conf.
Proc. 2007, 914, 60–66.

16. Arias, L.; Torres, S.; Toro, C.; Balladares, E.; Parra, R.; Loeza, C.; Villagrán, C.; Coelho, P. Flash smelting
copper concentrates spectral emission measurements. Sensors 2018, 18, 2009. [CrossRef] [PubMed]

17. Stumpe, B.; Engel, T.; Steinweg, B.; Marschner, B. Application of PCA and SIMCA statistical analysis of FT-IR
spectra for the classification and identification of different slag types with environmental origin. Environ. Sci.
Technol. 2012, 46, 3964–3972. [CrossRef] [PubMed]

18. Persson, W.; Wendt, W.; Demetrio, S.J. Use of optical on-line production control in copper smelters.
In Proceedings of the 4th International Conference COPPER 99-COBRE 99, Phoenix, AZ, USA, 10–13 October
1999; pp. 491–503.

19. Persson, W.; Wendt, W. Optical spectroscopy for process monitoring and production control in ferrous and
non-ferrous industry. In Modeling, Control, and Optimization in Ferrous and Non-Ferrous Industry, Proceedings of
the Materials Science & Technology 2003 Conference, Chicago, IL, USA, 9–12 November 2003; The Minerals, Metals
& Materials Society: Pittsburgh, PA, USA, 2003; pp. 177–191.

20. MATLAB. Available online: https://la.mathworks.com/products/matlab.html (accessed on 21 July 2019).
21. PLS_Toolbox, Eigenvector. Available online: https://eigenvector.com/software/pls-toolbox/ (accessed on

21 July 2019).
22. Rinnan, A.; van den Berg, F.; Engelsen, S.B. Review of the most common pre-processing techniques for

near-infrared spectra. TrAC Trends Anal. Chem. 2009, 28, 1201–1222. [CrossRef]
23. Parente, A.; Sutherland, J.C. Principal component analysis of turbulent combustion data: Data pre-processing

and manifold sensitivity. Combust. Flame 2013, 160, 340–350. [CrossRef]
24. Lindon, J.C.; Tranter, G.E.D.; Koppenaal, D. Encyclopedia of Spectroscopy and Spectrometry, 2nd ed.; Academic

Press: Oxford, UK, 2016; pp. 1704–1709.
25. Otto, M. Chemometrics: Statistics and Computer Application in Analytical Chemistry, 3rd. ed.; John Wiley & Sons:

Weinheim, Germany, 2016; pp. 135–211.
26. Ballabio, D.; Grisoni, F.; Todeschini, R. Multivariate comparison of classification performance measures.

Chem. Intell. Lab. Sys. 2018, 174, 33–44. [CrossRef]
27. Chevallier, S.; Bertrand, D.; Kohler, A.; Courcoux, P. Application of PLS-DA in multivariate image analysis.

J. Chemometr. 2006, 20, 221–229. [CrossRef]
28. Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 5, 273–297. [CrossRef]
29. Chaubal, P.C.; Sohn, H.Y. Intrinsic kinetics of the oxidation of chalcopyrite particles under isothermal and

nonisothermal conditions. Metall. Mater. Trans. B 1986, 17, 51–60. [CrossRef]
30. Padilla, R.; Fan, Y.; Wilkomirsky, I. Decomposition of enargite in nitrogen atmosphere. Can. Metall. Q. 2001,

40, 335–342. [CrossRef]
31. Dunn, J.G.; Muzenda, C. Thermal oxidation of covellite (CuS). Thermochim. Acta 2001, 369, 117–123. [CrossRef]
32. Gole, J.L. Oxidation of small metal and metalloid molecules. In Gas-Phase Metal Reactions, 1st ed.; Fontjin, A.,

Ed.; Elsevier: New York, NY, USA, 1992; pp. 596–597.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.fuel.2003.12.002
http://dx.doi.org/10.1016/j.applthermaleng.2004.07.020
http://dx.doi.org/10.3390/s18072009
http://www.ncbi.nlm.nih.gov/pubmed/29932156
http://dx.doi.org/10.1021/es204187r
http://www.ncbi.nlm.nih.gov/pubmed/22390718
https://la.mathworks.com/products/matlab.html
https://eigenvector.com/software/pls-toolbox/
http://dx.doi.org/10.1016/j.trac.2009.07.007
http://dx.doi.org/10.1016/j.combustflame.2012.09.016
http://dx.doi.org/10.1016/j.chemolab.2017.12.004
http://dx.doi.org/10.1002/cem.994
http://dx.doi.org/10.1007/BF00994018
http://dx.doi.org/10.1007/BF02670818
http://dx.doi.org/10.1179/cmq.2001.40.3.335
http://dx.doi.org/10.1016/S0040-6031(00)00748-6
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	VIS-NIR Spectral Signal Preprocessing 
	Principal Component Analysis 
	Classification Methods 
	Raw Materials and Experimental Design 

	Results and Discussion 
	Conclusions 
	References

