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Abstract: Plates (37 mm thick) of 6005A-T6 aluminum alloy were butt joined by a single-sided and
double-sided friction stir welding (FSW). The 3D residual stresses in the joints were determined using
neutron diffraction. The microstructures were characterized by a transmission electron microscope
(TEM) and electron backscatter diffraction (EBSD). In the single-sided FSW specimen, there were
acceptable mechanical properties with a tensile strength of 74.4% of base metal (BM) and low
residual stresses with peak magnitudes of approximately 37.5% yield strength of BM were achieved.
The hardness is related to the grain size of the nugget zone (NZ), and in this study, precipitations
were dissolved due to the high heat input. In the double-sided FSW specimen, there were good
mechanical properties with a tensile strength of 80.8% of BM, but high residual stresses with peak
magnitudes of approximately 70% yield strength of BM were obtained. The heat input by the second
pass provided an aging environment for the first-pass weld zone where the dissolved phases were
precipitated and residual stresses were relaxed.

Keywords: residual stresses; friction stir welding; neutron diffraction; aluminium alloys;
hardness; precipitation

1. Introduction

Aluminium alloy 6005A, a β-precipitation (Mg2Si) strengthened heat treatable alloy, is widely used
in rail transportation industries due to its excellent corrosion resistance and extrusion characteristics [1,2].
The welding joints to connect the extruded sheets and plates are usually the weak regions since the
welding heat input introduces the microstructural changes deteriorating the mechanical properties and
residual stresses causing fatigue cracks and stress-induced corrosion [3,4]. Therefore, sound welding is
required to join extruded aluminium alloy sheets and plates.

Friction stir welding is a solid-state joining technique, which involves both plastic and thermal
deformations [5,6]. In this process, process parameters, such as tool rotation and traverse speeds,
need to be optimized to get good quality joints. The effect of tool rotation and traverse speeds, on
microstructural changes and residual stresses of friction stir welding (FSW) aluminium alloys, have
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been studied widely [1–4,7–34]. Simar et al. reported that the β” originally present in the base metal
(BM) fully dissolved in the nugget zone (NZ) and coarsened in the heat affected zone (HAZ) of
6005A-T6 aluminium FSW joint [1]. They also explained the softened region around the weld center.
Dong et al. studied the effect of welding speed on microstructures and the mechanical properties of
6005A-T6FSW joints, reporting an increased tendency of tensile properties with increasing the welding
speed [4]. Wang et al. concluded that the 6061-T6 aluminum FSW joints made at low welding speed
exhibited lower residual stress, due to a change in microstructure and stress relaxation that occurred as
a result of the longer heating time associated with the low welding speed [8]. Therefore, microstructure,
mechanical properties and residual stresses should be considered together to obtain the optimized
FSW process. However, most studies have focused on the effects of welding speed and rotation speed
on either microstructures and mechanical properties, or residual stresses in aluminium sheets and
thin plates.

Nonetheless, FSW has been applied to the production of large prefabricated aluminium panels
in high speed railcars, which helps to reduce the weight and improve the integrity of aluminium
sheets. To join thick 6005A aluminium plates using FSW, a better understanding of residual stresses
and microstructure is required. However, the residual stresses and microstructures have not been
studied in thick 6005A-T6 aluminium alloy plates joined by single-sided and double-sided FSW.

Among the methods of residual stress measurement, neutron diffraction can nondestructively
characterize the 3D residual stress distribution of engineering materials [35,36]. The deep penetration
capability of neutrons into most metallic materials makes neutron diffraction a powerful tool for
determining residual stresses through welds. The E3 residual stress diffractometer at HZB is one such
high-performance neutron residual stress instrument, capable of experimental measurement of 3D
residual stress distributions [37]. This instrument was chosen to characterize the residual stresses in
thick 6005A-T6 aluminium alloy FSWs.

In this work, thick 6005A-T6 aluminium alloy plates (37 mm thick) were studied to determine
the single-sided and double-sided FSW residual stress distributions using neutron diffraction.
In addition, microstructures and mechanical properties were studied to characterize welding behavior.
This experimental study was carried out to understand the 3D residual stress distributions and
microstructural changes. This study can be helpful in the design of welding strategies.

2. Experimental Details

2.1. Materials

The base metal used in this investigation was 37 mm thick 6005A-T6 aluminium alloy with the
chemical composition and mechanical properties shown in Table 1. The dimensions of the 6005A-T6
test plates are shown in Figure 1.

Table 1. The chemical composition and mechanical properties of 6005A aluminium alloy.

Chemical Composition (wt.%) Mechanical Properties

Mg Si Fe Cu Mn Cr Ti Zn Al
Yielding
Strength

(MPa)

Tensile
Strength

(MPa)

0.54 0.62 0.19 0.07 0.14 0.01 0.01 0.02 Bal. 250 200

Further, FSW was carried out on a LM-FSW-5025 machine (China FSW Center, Beijing, China). For
the single-sided FSW, the tool consisted of a 35 mm diameter shoulder with a pin length of 36.5 mm
and a root diameter of 18 mm. The single-sided FSW process was performed with a rotation speed
of 350 rpm and a traverse speed of 40 mm/min. The down force was approximately 8–9 kN. For the
double-sided FSW, the tool consisted of a 32 mm diameter shoulder with a pin length of 18 mm and a
root diameter of 14.4 mm. To apply the second pass of the FSW, the plates were rotated around their
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welding axes after completing the first weld. All welding passes were conducted with a rotation speed
of 650 rpm and a traverse speed of 200 mm/min. The down force was approximately 13–14 kN.
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The temperature of the NZ was estimated using the following relation [38]:

T
Tm

= K
(

w2

v× 104

)α
(1)

where Tm is the melting temperature of 6005A aluminium alloy 654 ◦C, exponent α is a dimensionless
constant selected as 0.05, K is a dimensionless constant selected as 0.7, ν is the traverse speed and
ω is the rotation speed [39]. According to Equation (1), the temperature of the nugget zone in the
single-sided FSW is 431.4 ◦C, while in the double-sided, FSW is 423.5 ◦C.

2.2. Neutron Diffraction

Due to the high penetration ability of thermal neutrons, neutron diffraction is an excellent
engineering tool for providing 3D residual stresses nondestructively in bulk components. Therefore,
neutron diffraction was applied to characterize the residual stresses in thick 6005A-T6 aluminium alloy
FSWs, and was performed on the dedicated residual stress neutron diffractometer E3 at HZB, Germany.

As shown in Figure 1, the middle section with 200 mm in length was cut using electrical
discharge machining (EDM, LA350, SSG, Suzhou, China) from the specimen for a neutron diffraction
measurement. The longitudinal direction (LD), transverse direction (TD) and normal direction (ND)
were assumed to be the principal directions in the bulk of the components and were measured as three
orthogonal directions. The points along three lines, L1, L2 and L3, in the cross section were chosen to
characterize the residual stresses, as shown in Figure 1. The diffraction peaks of the marked points
were measured with the scattering vector parallel to three orthogonal directions. The peak positions,
2θ, were analyzed using the least square Gaussian fitting method [40].

The measurements were made using the Al(311) Bragg reflection, which is the strongest diffraction
reflection and also is weakly affected by intergranular strains [36]. The E3 is equipped with a perfectly
bent Si(400) crystal monochromator providing a wavelength of 1.47Å. Therefore, the Al(311) reflection
was at a scattering angle of 2θ~74◦. Figure 2 shows the experimental setup on E3 for the measurement
of the transverse component. The gauge volume was defined by an incident primary slit with 3 mm
and a secondary radial collimator with 2 mm. The height of the primary slit was set to 10 mm for
transverse and normal measurements, and 3 mm for longitudinal measurements.
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The elastic lattice strains εi in the i-direction (i = LD, TD, ND) were calculated using the following
equation [36]:

εi =
di − d0

d0
(2)

The elastic strains were converted to residual stresses (σLD, σTD, σND) using the generalized
Hooke’s law [36]:

σi =
Ehkl

1 + vhkl

[
εi +

vhkl
1− 2vhkl

(εLD + εTD + εND)

]
(3)

where i is the LD, TD or ND component corresponding to the three orthogonal directions. The diffraction
elastic constants (E311) of 69 GPa and Poisson’s ratio (ν311) of 0.35 were computed using the Kröner
model via the software, IsoDEC [41].

To obtain a precise stress-free reference lattice parameter, d0, is an important part of the
diffraction-based, residual strain/stress experiment. To address a possible issue of d0 variation
due to microstructural changes, a full stress analysis was performed on 5-mm slices made by EDM
from the specimen. The measurements were repeated in the same positions as for the specimen. Then,
in an approximation of a biaxial stress state and the condition of the through thickness component
(longitudinal in this case) to be zero (σLD = 0), the calculation of the stress-free parameters was made
according to the following equation:

d0 =
1− vhkl
1 + vhkl

dLD +
vhkl

1 + vhkl
(dTD + dND) (4)

As well as the TD and ND stress components in the slice as a by-product of the analysis,

σTD =
Ehkl

1 + vhkl
[εTD − εLD], σND =

Ehkl
1 + vhkl

[εND − εLD]. (5)

2.3. Microstructure Characterization

The metallographic samples were cut perpendicular to the welding direction using EDM
to avoid thermal degradation. The optical microstructure examination was performed on an
Olympus microscope.

In order to compare the difference in precipitation, the microstructure examination in the NZ
was conducted by a transmission electron microscope (TEM, Tecnai G2 F20, FEI, Hillsboro, OR, USA).
The metallographic samples were polished down to a thickness of 80~100 µm. The final thickness
reduction was obtained by electro-polishing with a HNO3 solution (HNO3 30% in volume in methanol
at ~30 ◦C under 9V).
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The electron backscatter diffraction (EBSD) samples were examined in a high resolution Philips
XL30 field emission gun (FEG) SEM (Philips, Amsterdam, The Netherlands) interfaced to an HKL
Channel EBSD orientation mapping system. The resulting EBSD orientation maps, with a step size of
0.1–0.25 µm and an area of 145 × 127 µm, were used to characterize the grain structures present in the
NZ at three positions on cross sections along the weld center line, namely, the top (10 mm above the
mid plane), the center (at the mid plane), and the bottom of the nugget (10 mm below the mid plane).
The maps were processed using in house software (VMap) to determine the grain size.

2.4. Mechanical Properties

The hardness tests were performed using the Vicker hardness method, using a load of 500 g
applied for 10 s. Three lines were chosen on the transverse section of the welds with a distance of 1 mm
between neighboring measured points, as shown in Figure 1. The specimens were cut to 3-mm slices
to release the residual stress, which minimized the influence of residual stress on the hardness test.

The tensile tests on welded specimens were performed on the transverse, i.e., perpendicular to the
welding direction. Eight samples were cut using EDM from the single-sided FSW and double-sided
FSW. The transverse cross-section of the tensile samples is shown in Figure 3. These tensile samples
were 25 mm thick, 6 mm wide and 200 mm long, with an initial gauge length of 100 mm. The tensile
test was carried out on a universal electronic tensile testing machine (MTS Landmark) with a crosshead
moving speed of 2 mm/min. The range of load cell is ±100 KN.
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3. Results and Discussion

Heat-treatable aluminium alloys derive much of their strength from the presence of fine precipitates.
As residual stresses and microstructures are of great significance in determining weld performance,
they were studied together for thick 6005A-T6 aluminium alloy FSWs.

3.1. Microstructural Evolution

Figure 4 shows the macrostructure of the 6005A-T6 single-sided and double-sided FSW joints.
The NZ, thermo-mechanically affected zone (TMAZ), HAZ and BM are divided by the dotted lines.
The TMAZ is more optically distinct on the advancing side and more diffuse on the retreating side in
both specimens. The microstructures, including grain size and precipitation at the marked positions in
Figure 4, are discussed further.Metals 2019, 9, x FOR PEER REVIEW 6 of 13 
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3.1.1. Features in the Single-Sided FSW

Figure 5 shows the grain map and the corresponding grain size distribution, TEM and its diffraction
pattern in the single-sided FSW. The average grain size in the NZ was 9.16, 8.49 and 7.38 µm on L1,
L2 and L3 line respectively. It is often suggested that the microstructure in the NZ is the result of
continuous dynamic recrystallization supported by dynamic recovery [6]. The recrystallized grain size
is mainly affected by the heat input in the welding process [6]. More heat input generated in the upper
NZ and less heat input in the bottom NZ, which resulted in the larger grain size (9.16 µm) in the upper
NZ and smaller grain size (7.38 µm) in the bottom NZ.

In order to study the microstructural evolution, the BM was observed by TEM, as shown in Figure 6.
The BM contains a high density of fine hardening precipitates, as reported in the literature [6]. In the
6005A-T6 single-sided FSW, no precipitation was observed in the NZ. It is inferred that precipitations
in the NZ were dissolved due to the friction heat and plastic deformation.

3.1.2. Features in the Double-Sided FSW

Figure 7 shows the grain map and the corresponding grain size distribution, TEM and its diffraction
pattern in the double-sided FSW. The average grain size in the NZ was 7.48, 6.25 and 9.69 µm on L1,
L2 and L3 lines respectively. The grain size in the first pass is much larger than that in the second
pass. No precipitation was observed in the NZ of the second-pass region and the middle region.
As compared to the BM, fewer precipitations were observed in the NZ of the first-pass region.
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The precipitations were dissolved in the second-pass NZ, while the precipitations were observed
in the first-pass NZ. As the parameters were the same for the first and second pass, the authors inferred
that the precipitations in the NZ were dissolved during the process of dynamic recrystallization in
the first weld pass. The heat input by the second weld pass provided the aging temperature that
the strengthening phases were precipitated in the first-pass NZ with grain growth occurring at the
same time.
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3.1.3. Comparison of Grain Size between Single-Sided and Double-Sided FSWs

The grain size of the NZ in the single-sided FSW is larger than the second pass of the double-sided
FSW. The temperature of the NZ in the single-sided FSW is 7.9 ◦C higher than the double-sided
FSW. The higher temperature is useful to activate the dynamic recrystallization and grain growth.
This comparison verified the effect of the heat input on the recrystallized grain size.

3.2. Mechanical Properties

3.2.1. Hardness Distribution

Figure 8 shows the hardness profiles in the weld zone of single-sided and double-sided FSWs.
The obtained profiles follow the general features with a central plateau and two valleys, which is a
typical hardness behavior for all FSW heat treatable aluminium alloys [6].
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In the single-sided FSW, the minimum hardness on three lines is nearly the same with a value of
approximately 54 HV and all appear in the HAZ. The valleys on L1 line, L2 line and L3 line are located
approximately 20, 15 and 10 mm away from the weld center, respectively. The distance between two
valleys decreases towards the bottom of the weld, which corresponds to the shape of the rotating
pin. The average hardness of the NZ (central plateau) is 59.2, 62.8 and 66.4 HV on L1, L2, L3 lines,
respectively. The hardness in the NZ increases in the order of the upper, middle and bottom regions.
With the absence of precipitation in the NZ, fine grains usually benefit the strength [6]. Therefore,
the hardness of NZ in the bottom region (grain size 7.38 µm) is 12.2% larger than that in the upper
region (grain size 9.16 µm).

In the double-sided FSW, the hardness is generally larger than the single-sided FSW. The minimum
hardness on three lines is nearly the same with approximately 58 HV and all appear in the HAZ.
The valleys on L1 line, L2 line and L3 line are located approximately 18, 13 and 17 mm away from the
weld center, respectively. The average hardness of the NZ (central plateau) is 66.0, 71.1 and 76.9 HV
on L1, L2 and L3 lines respectively. The hardness of the middle NZ is 7.7% larger than that of the
second-pass NZ. This is caused by the grain size in the middle NZ with 6.25 µm and in the second-pass
NZ with 7.48 µm. The hardness of the first-pass NZ is approximately 16.5% larger than the second-pass
NZ. The second-pass NZ has no precipitation and smaller grains, while the first-pass NZ has a small
quantity of precipitations and larger grains. It is concluded that the strengthening precipitations
overwhelm larger grain size in controlling the hardness.

3.2.2. Tensile Strength

The tensile strength of a single-sided FSW and a double-sided FSW was 186 ± 1 MPa and
202 ± 2 MPa, equivalent to 74.4% and 80.8% of BM (250 MPa), respectively. The larger tensile strength
coincides with the larger hardness of the double-sided FSW. Figure 9 shows the fracture location of
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the single-sided FSW and the double-sided FSW. In the single-sided FSW, the fracture occurred in the
HAZ of the advancing side. In the double-sided FSW, the crack initiated in the HAZ of the advancing
side of the second pass and propagated to the HAZ of the retreating side of the first pass.
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3.3. Residual Stresses

Figure 10 shows the residual stresses determined by neutron diffraction in the 6005A-T6 aluminium
alloy single-sided and double-sided FSWs. In both specimens, the longitudinal and transverse residual
stress distributions agreed with the typical ‘M’ shape pattern of FSW aluminum alloys [6]. The normal
residual stresses were observed with little variations, especially on L3 line of the single-sided FSW
which remained near to a value of zero. Notably, the average uncertainty of the obtained stresses is
approximately ±13 MPa in these measurements.
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3.3.1. Features in the Single-Sided FSW

In the single-sided FSW, the residual stresses along the three lines have a similar distribution in
both trend as well as magnitude. σLD is generally equal to σTD and larger than σND. The maximum
tensile σLD and σTD are nearly the same, approximately 75 MPa. This stress value amounts to 37.5% of
the yield strength of Al-6005A-T6 alloy, which is 200 MPa at room temperature.

The introduction of residual stresses is inevitable due to severe thermomechanical deformation
by FSW. Therefore, it is important to control the amount of residual stress. Hassan et al. reported an
optimum combination of rotational and travel speeds that gave the best mechanical performance [11].
This optimum condition shifted to a higher rotational speed when the travel speed was increased. High
heat input associated with low traverse and high rotation speeds leads to more extensive softening in
the weld region, resulting in an overall reduction in the magnitude of the longitudinal residual stress.
It seems difficult to get both optimized mechanical properties and residual stresses. However, the
present 6005A-T6 single-sided FSW achieved an acceptable condition for comprising the mechanical
properties with a tensile strength of 74.4% of BM and residual stresses with peak magnitudes of
approximately 37.5% yield strength of BM.

3.3.2. Features in the Double-Sided FSW

In the double-sided FSW, σLD is generally larger than σND and σTD. There is large difference
between σLD magnitudes on the three lines, as shown in Figure 11. The maximum tensile σLD is
approximately 140 MPa on L1 line (xt = −10), 115 MPa on L2 line (xt = 0) and 110 MPa on L3 line
(xt = 10) respectively. These stress values amount to 70%, 57.5% and 55% of the yield strength of
BM. The residual stress profiles of the L1 line and L2 line show obvious asymmetric distributions.
The highest stresses of those lines occur on the advancing side of the NZ compared to the retreating
side. The maximum residual stress in the upper weld zone is 140 MPa, 27% larger than the bottom
weld zone, where the stress is 110 MPa. As the parameters were the same for the first and second pass,
an inference was made that the peak magnitude of residual stress produced by the first weld pass
was approximately 140 MPa. The heat input by the second weld pass provided the post-treatment
environment of stress relaxation for the first-pass weld zone.Metals 2019, 9, x FOR PEER REVIEW 11 of 13 
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Although the tensile strength of the double-sided FSW was a little higher than the single-side
FSW, the longitudinal residual stresses in the double-sided FSW are much larger than the single-sided
FSW, as shown in Figure 11.

4. Summary and Conclusions

In this study, residual stresses, microstructures and mechanical properties of the 6005A-T6
single-sided and double-sided FSWs were studied. The 3D residual stresses were characterized using
neutron diffraction. The microstructures were observed by TEM and EBSD.
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In the 6005A-T6 single-sided FSW, there were acceptable mechanical properties with tensile
strength 74.4% of BM, and low residual stresses with peak magnitudes of approximately 37.5% yield
strength of BM were achieved. This indicated a good quality of weld with such low residual stresses.
However, good mechanical properties with a tensile strength of 80.8% of BM, but high residual stresses
with peak magnitudes of approximately 70% yield strength of BM were obtained in the 6005A-T6
double-sided FSW.

In the 6005A-T6 single-sided FSW, there was no precipitation in the NZ. The hardness of the
NZ is related to the grain size. The less hardness at the upper NZ and high hardness at the bottom
NZ coincided with the larger grain size at the upper NZ and smaller grain size at the bottom
NZ, respectively.

In the 6005A-T6 double-sided FSW, there were lower residual stresses and larger hardness in the
first-pass weld zone, but higher residual stresses and smaller hardness in the second-pass weld zone.
This was due to the heat input by the second weld pass which provided an aging environment for the
first-pass weld zone, where the dissolved phases were precipitated and residual stresses were relaxed.
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