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Abstract: In this work, a titanium–tantalum carbonitride based cermet, with cobalt as the binder phase
and boron as a sintering additive, was developed by a mechanically induced self-sustaining reaction
process using two different methodologies. The boron additive was added to prevent the formation of
brittle intermetallic compounds generally formed during the liquid phase sintering step due to the
excessive ceramic dissolution into the molten binder phase. A systematic study was carried out to
understand the effects of boron addition on the nature of the phases, microstructure, and mechanical
properties of cermets. With the boron addition, the formation of two different boride solid solutions,
i.e., (Ti,Ta)B2 and (Ti,Ta)3B4, was observed. Moreover, the nature of the binder was also modified, from
the (Ti,Ta)Co2 brittle intermetallic compound (for cermets without boron addition) to ductile and tough
(Ti,Ta)Co3 and α-Co phases (for cermets with boron addition). These modifications caused, as a general
trend, the increase of hardness and toughness in cermets.

Keywords: titanium carbonitride; cermet; boron; intermetallic; binder; MSR; powder metallurgy

1. Introduction

Titanium carbonitrides (TiCN) based cermets are potential ceramic-metal composite materials to
replace WC-Co hard metals used in the machining industry, in particular, for high speed semi-finishing
and finishing work operations [1,2]. These interesting applications are possible thanks to the fact that
TiCN-based cermets exhibit high hardness at high temperatures, good thermal stability, relatively
high thermal and electrical conductivities, and excellent creep and wear resistances, among other
properties [3,4]. However, cermets show poor toughness and damage tolerance compared to hard
metals, which must be clearly improved [5].

Current routes used to improve the mechanical properties of cermets are related to the modification
of the microstructure and/or composition by the introduction of secondary carbides of transition metals
(TaC, TaN, NbC, NbN, VC, etc.), ultrafine- or nano-Ti(C,N) powders, and/or different metallic elements
(Co, Ni, Fe, and their alloys, Mo, high entropy alloys, etc.). For example, the introduction of Mo and
VC improves the sinterability and hinders the increase in particle size and, consequently, the density,
hardness, and mechanical strength is enhanced [6–9]. The addition of ZrC slightly increases the
toughness and thermal shock resistance [10], while the introduction of Ni in the binder phase improves
the toughness of cermets, but with a small decrease in hardness [11]. Additionally, the introduction of
Ta in both the ceramic and binder phases causes a marked improvement in oxidation resistance [12–14].

The use of solid solution carbonitrides as the raw ceramic material has also been proposed to
improve the mechanical properties of cermets. These solid solutions are frequently obtained by the
combined carbothermal reduction and nitridation of a mixture constituted by the main titanium
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oxide component and the secondary transition metal oxides [15–17]. However, this method has some
disadvantages, such as the high temperature and the intermediate steps required to synthesize them.
In addition, the as-obtained complex solid solution carbonitrides present large particle size that need to
be reduced by milling and mixing with the corresponding metallic binder phase. All these aspects add
complexity to the powder metallurgical manufacturing process of cermets.

Recently, a new, simple, affordable, and reproducible mechanochemical method, denoted as
mechanically induced self-sustaining reaction (MSR), has been successfully applied for the synthesis of
complex solid solution carbonitrides with optimal stoichiometric control [18,19] and the development of
cermets based on them. The MSR method is a reactive milling process that uses the exothermic nature
of the carbonitride formation to synthesize them from the mixture of transition metal elements and
a carbon source (usually graphite) under a reactive N2 atmosphere. However, for the development of
the titanium carbonitride based cermets, the use of these highly-activated synthesized powders causes
an excessive dissolution of the ceramic particles in the molten metallic binder during the liquid phase
sintering step, inducing the formation of intermetallic compounds that act as the binder phase instead
of the original Co and/or Ni. Although ductile intermetallic phases have been proposed as interesting
candidates for binder in cermets [20], the presence of other brittle intermetallic compounds, such as
those corresponding to the Ti-Ta-Co system, can seriously deteriorate the cermets properties, mainly the
fracture strength and toughness [21].

To solve the excessive dissolution of the ceramic particles during sintering, an interesting approach
based on the introduction of elemental carbon as an additive in the powdered cermets has already been
employed. This addition modifies the carbon activity during sintering and reduces the dissolution of the
solid solution carbonitride phase into the molten binder phase. This method avoids the formation of brittle
intermetallic compounds, improving the toughness of the final cermets [22]. However, as an undesirable
effect, the hardness of cermets decreased due to the formation of a soft and ductile binder phase.

In this work, we present another complementary way to reduce or avoid the formation of brittle
intermetallic compounds based on the introduction of boron as an additive to react with the dissolved Ti
and Ta during sintering. A complete study was carried out to understand the effects caused by the boron
addition on the phases formed, the microstructure, and the mechanical properties of the developed cermets.

2. Experimental Procedure

2.1. Development of Cermets

Titanium metal powder (CAS number 7440-32-6, 99.6% purity, <325 mesh, Strem Chemicals, MA,
USA), tantalum metal powder (CAS number 7440-25-7, 99.9% purity, <325 mesh, Strem Chemicals),
cobalt metal powder (CAS number 7440-48-4, 99.9% purity, <325 mesh, Strem Chemicals), boron
amorphous powder (CAS number 7440-48-2, 98% purity, <2 microns, Sigma-Aldrich), graphite powder
(CAS number 7782-42-5, 99% purity, <50 microns, Strem Chemicals), and N2 (H2O and O2 63 ppm,
Air Liquide, Madrid, Spain) were used as raw materials to develop the titanium carbonitride based
cermets with boron addition.

Two set of (Ti,Ta)(C,N) - 20 wt.% Co - (0–2 wt.%) B cermets were developed by two different
methodologies, which are schematized in Figure 1. In the first one (Figure 1a), the hard-ceramic component
of cermets, with nominal composition of Ti0.8Ta0.2C0.5N0.5, was synthesized in situ by MSR from the
elemental mixture and mixed with the desired amount of the cobalt metal binder phase in a single
milling step. Subsequently, in a second milling step, the boron was added to the powdered cermet
previously produced. In the second methodology (Figure 1b), the carbonitride phase with the same nominal
composition (Ti0.8Ta0.2C0.5N0.5) was first obtained by MSR. Next, in a second milling step, it was mixed
with both the cobalt binder phase and the boron additive.

The MSR process in both methodologies was carried out using a modified planetary ball mill
(Pulverisette 4, Fritsch, Idar-Oberstein, Germany). Fifty grams of a mixture of the elemental Ti, Ta,
Co (this last only for the first methodology), and graphite in the desired stoichiometric ratio were
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placed in a 300 mL tempered steel vial (67HRC) together with 15 tempered steel balls (67HRC, 20 mm
of diameter and 32.6 g per ball). The powder-to-ball mass ratio (PBR) was 1:9.8. The powder mixtures
were milled under 6 atm of high-purity N2 gas at a spinning rate of 400 rpm for both the rotation of the
supporting disc and the superimposed rotation of the vials in the opposite direction. The milling processes
were monitored by continuously measuring the pressure inside the vial. When the self-propagating
reaction associated with the formation of the hard carbonitride ceramic phase occurred, the temperature
increased due to the release of heat from the exothermic reaction, which consequently increased the
total pressure. The ignition time (tig), defined as the critical milling time required to induce the MSR
process, could then be determined from the spike in the recorded time–pressure data. Once ignition
occurred, the milling was continued for 30 min to ensure full conversion and homogenization. Note that
the gas pressure measurement was possible by connecting the vial to a gas cylinder via a rotating union
(model 1005-163-038, Deublin, Waukegan, IL, USA) and a flexible polyamide tube and monitoring it by
a pressure transducer (AKS, Danfoss, Nordborg, Denmark) connected to a paperless recorder (Ecograph
T RSG35, Endress + Hauser, Reinach, Switzerland).
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Figure 1. Representative schemes of the two methodologies (a,b) used to develop the corresponding
sets of (Ti,Ta)(C,N)-Co-B based cermets.

After the MSR reaction, the powdered cermet produced in the first methodology or the hard
ceramic phase (Ti0.8Ta0.2C0.5N0.5), synthesized following the second methodology, were mixed in
a planetary mill (Pulverisette P7, Fritsch, Idar-Oberstein, Germany) with 0.5 and 2 wt.% of boron
(Figure 1a) or 20 wt.% of Co and 0.5 and 2 wt.% of boron (Figure 1b). A total of 6 g of the mixtures
together with 7 tempered steel balls (Ø = 15 mm, m = 13.7 g), PBR of 1:16, were milled at 400 rpm in
a 45 mL tempered steel vial (67HRC) under 6 atm of high-purity He gas (H2O < 3 ppm, O2 < 2 ppm,
and CnHm < 0.5 ppm, Air Liquide). The (Ti,Ta)(C,N) - 20 wt.% Co - (0–2 wt.%) B powdered cermets
were named as pxBy, being “x” the methodology used (according to Figure 1a,b) and “y” the weight %
of boron added (0, 0.5, and 2 wt.%).

The powdered cermets were compacted by uniaxial pressing at 15 MPa for 5 min and cold isostatic
pressing at 200 MPa for 10min to yield cylinders of 13 mm in diameter and 9 mm in height. The green
compacts were finally sintered at an optimized temperature of 1550 ◦C for 60 min (heating and cooling
rates of 5 ◦C/min), under flowing Ar in a horizontal tubular furnace (AGNI Type IGM1360 model
no. RTH-180-50-1H, AGNI). The label used for the sintered cermets was analogous to the powdered
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cermets, replacing the “p” prefix with the “s” prefix, i.e., sxBy, “x” again being the methodology used
and “y” the boron weight %.

2.2. Chemical, Microstructural, and Physical Characterization

X-ray diffraction (XRD) patterns were obtained with a X’Pert Pro instrument (Malvern Panalytical,
Malvern, UK) equipped with a θ/2θ goniometer using Cu Kα radiation (40 kV, 40 mA), a secondary
Kβ filter, and an X’Celerator detector (Malvern Panalytical, Malvern, UK). The diffraction patterns
were scanned from 20◦ to 140◦ (2θ) in a step-scan mode at a step of 0.02◦ and a counting time of
275 s/step. Silicon powder (Standard Reference Material 640c, NIST, Gaithersburg, MD, USA) was
used for calibration of the diffraction line positions. The space group symmetry (SGS) as well as
the lattice parameters of phases were calculated from the whole set of peaks of the XRD pattern
by the free DICVOL06 software, which uses the dichotomy method for powder pattern indexing.
The elucidated structures were compared with those in the PDF-4+ database from the International
Centre for Diffraction Data (ICDD).

Scanning electron microscopy (SEM) images of the sintered cermets were recorded on a S-4800
field emission SEM instrument (Hitachi, Tokio, Japan) in secondary electron mode at an acceleration
voltage of 5 kV. The morphology, structure, distribution, and homogeneity of phases in cermets were
studied. SEM images at different magnifications (1000×, 2000×, and 5000×) were recorded to evaluate
the volume percentage of the ceramic, the binder, and the porosity (Vc, Vb, and ρ, respectively) and
the particle size average and distribution (d) by Image Analysis (IA) using Image-Pro Plus 6.2 software
(Media Cybernetics, Rockville, MD, USA). The Ti, Ta, and Co amounts were measured by X-ray
energy dispersive spectrometry (EDS, Hitachi, Tokio, Japan), using a detector coupled with SEM at an
acceleration voltage of 30 kV. For each sintered cermet, around 30 point measurements were performed.
In addition, EDS-SEM mappings were performed under the same experimental conditions.

2.3. Mechanical Behavior

Hardness measurements were carried out on polished surfaces at an indentation load of 5 kgf
(HV5) using a Zwick 3212 Vickers diamond pyramidal indenter (ZwickRoell, Barcelona, Spain)).
No artefacts from the indentation load effect were observed at 5 kgf. The indentation time was 15 s.
Ten indentations were made for each sintered cermet.

The fracture toughness, KIc, was evaluated by the indentation microfracture (IM) method using
the crack length produced at the corners of Vickers indentations and the equation derived from
Shetty et al. [23]:

KIc = 0.0319·P/(a·l1/2),

where P denotes the load (N), a is the half of the indentation diagonal (m), and l is the crack length measured
from the vertices of the indentation to the crack tip (m). This method has been proven to give reasonable
estimates of KIc in cemented carbides up to values of approximately 15 MPa·m1/2 with maximum deviations
of 20%, compared to fracture toughness data obtained from single-edge-notched-beam specimens [24].
A load of 50 kgf was used to produce cracks with at least half the length of the indentation diagonal, which
is the minimum length required to obtain KIc values independent of the load [25]. Accurate measurements
of crack lengths were made using the above-mentioned scanning electron microscope.

3. Results and Discussion

3.1. Synthesis of the Powdered Cermets with Boron Addition

The XRD patterns of the powders obtained after the MSR process and previous to sintering
are shown in Figure 2. For the first methodology, the three powdered cermets (p1B0, p1B0.5, and
p1B2) showed the formation of a titanium–tantalum carbonitride solid solution (Ti,Ta)(C,N) with
a cubic structure and Fm3m SGS, as observed in a previous work using the same methodology [26].
This statement was made by comparison with the reference patterns TiN (38-1420), TiC (32-1383),
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TaC (35-0801), and TaN (49-1283) in the PDF-4+ database from ICDD. Additionally, in Reference [26],
electron diffraction (ED) and XEDS measurements corroborated the existence of the solid solution.
A small “hump” at ~43◦ 2θ was also observed for the three powdered cermets, which was attributed to
a partially amorphized Co-Ti-Ta alloy, according to a previous work [21].
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The powdered cermets developed by the second methodology, (p2B0, p2B0.5, and p2B2) showed
the same titanium–tantalum carbonitride solid solution (Ti,Ta)(C,N) as for the first methodology [2].
However, the XRD peaks corresponding to the Co binder phase, which was added for the second
milling step, were clearly observed. In this case, the presence of the “hump” was not detected and
suggested that the Co-Ti-Ta alloy above-mentioned was formed as a result of the heat release during
the formation of the carbonitride phase by the MSR reaction. Note the different nature of the binder
phases obtained by both methodologies, which may have significance in the phases developed after
the sintering process and, consequently, in the mechanical properties.

3.2. Sintering of Cermets with Boron Addition

The XRD patterns of sintered cermets are shown in Figure 3. For the first methodology, although
the XRD patterns showed the already mentioned titanium–tantalum carbonitride solid solution,
(Ti,Ta)(C,N), as the major ceramic phase, significance differences were observed between the three
sintered cermets (s1B0, s1B0.5, and s1B2). For the cermet without boron addition (s1B0), a (Ti,Ta)Co2

intermetallic phase with a cubic structure (SGS Fd3m), acting as the binder phase instead of the
starting elemental Co, was indexed. This phase was reported in a previous work and corresponds to
an intermetallic solid solution between TiCo2 (ref. No. 017-0031) and TaCo2 (ref. No. 038-0736) [26].
However, when 0.5 wt.% of boron was added in the second milling step, the XRD pattern ostensibly
changed. The XRD peaks corresponding to (Ti,Ta)Co2 decreased sharply, suggesting that their
percentage diminished when B was added. In addition, another three different phases were detected
that could be indexed to another intermetallic compound with a higher amount of cobalt, (Ti,Ta)Co3

(cubic structure, SGS Pm3m), a solid solution of TiCo3 (ref. No. 023-0938), and TaCo3 (ref. No. 015-0028),
and other two ceramic phases containing boron, (Ti,Ta)B2 and (Ti,Ta)3B4, with hexagonal (SGS P6/mmm)
and orthorhombic (SGS Immm) structures, respectively. They are solid solutions in the TiB2 (ref. No.
035-0741) - TaB2 (ref. No. 038-1462) and Ti3B4 (ref. No. 019-1368) - Ta3B4 (ref. No. 047-1529) systems,
respectively. Therefore, the introduction of boron caused the reaction of this element with titanium
and tantalum to form boride ceramic phases during sintering, decreasing the final Ti and Ta content
in the binder phase, which evolved from 1:2, (Ti,Ta)Co2, to 1:3, (Ti,Ta)Co3, stoichiometry. This trend
of reducing Ti and Ta in the binder was corroborated when 2 wt.% of boron was added. In this case
(Figure 3), not only was the (Ti,Ta)Co3 intermetallic observed, but also the α-Co alloy (cubic structure
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and Fm3m). Moreover, the remnant (Ti,Ta)Co2, with a probably modified Ti/Ta ratio, changed from
a cubic to a hexagonal structure (SGS P6/mmm). Obviously, the peaks corresponding to the boride
phases slightly increased due to the higher amount of boron introduced in the s1B2 cermet.
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For the second methodology, the XRD patterns of the sintered cermets (s2B0, s2B0.5, and s2B2)
showed analogous phases to those observed in the first methodology. The unique different aspect
was the detection of the α-Co alloy, even when only a 0.5 wt.% of boron was added, in contrast with
the first methodology, when this phase was detected for 2 wt.% of boron (s1B2). Note the absence of
Ti and Ta prior to sintering in the binder phase, unlike what happened with the first methodology.
Therefore, boron reacted directly with Ti and Ta dissolved from the ceramic particles during sintering,
forming the corresponding boride phases, i.e., the (Ti,Ta)B2 and (Ti,Ta)3B4. Obviously, when the boron
was consumed as a result of these reactions, the excess of Ti and Ta dissolved into the molten binder
phase caused the formation of hexagonal (Ti,Ta)Co2 and cubic (Ti,Ta)Co3 intermetallic compounds.

SEM images of all sintered cermets are displayed in Figure 4. In these images, it is possible to
observe the typical core-rim microstructure for the (Ti,Ta)(C,N) ceramic phase in cermets obtained from
the first methodology and the practical absence of this ceramic microstructure in those obtained from
the second methodology. This aspect has already been corroborated for the authors in two previous
works [2,26]. EDS point analyses (Table 1) performed in the ceramic phases (marked as points 1 (core)
and 2 (rim) in s1 cermets and 3 in s2 cermets of Figure 4) corroborated that they are a double Ti-Ta
carbonitride solid solution. The composition of (Ti,Ta)(C,N) in s2 cermets matched with the core in
s1 cermets. It was confirmed that the rim phase in s1 cermets was richer in Ti than the core phase,
in agreement with Reference [26]. On the other hand, the binder phases showed different contrasts in
the SEM images, especially in cermets containing boron, suggesting that they are composed of different
metallic phases as indexed by XRD. The EDS point analyses performed in the binder phases (points 4, 5,
and 6 in cermets s1 and 7, 8, 9, and 10 in cermets s2) were in agreement with the presence of (Ti,Ta)Co2

and (Ti,Ta)Co3 intermetallics and α-Co alloy. The slightly different chemical compositions found for
the (Ti,Ta)Co2 intermetallic from EDS results (Table 1) may be related to the different structure observed
in XRD, since Co–Ta and Co–Ti phase diagrams suggest that the hexagonal structure is preferentially
formed over the cubic structure for slightly higher Co compositions. Finally, point EDS analyses on the
dark faceted particles detected in cermets with boron addition, i.e., the s1B0.5, s1B2, s2B0.5, and s2B2
(marked as number 11 in Figure 4), showed a really high Ti composition, a small amount of Ta, and
the total absence of C and N. Thus, this phase was attributed to the borides detected by XRD. It was
impossible to discriminate between (Ti,Ta)B2 and (Ti,Ta)3B4 due to a similar stoichiometry and the
absence of a B signal in EDS analysis.
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Figure 4. Secondary Scanning Electron Microscopy (SEM) images of the sintered (Ti,Ta)(C,N)-Co-B
cermets obtained by: (A) The first methodology (s1B0, s1B0.5, and s1B2) and (B) the second methodology
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Table 1. Semiquantitative transition metals composition (Ti, Ta, and Co) in atomic percentage (at. %)
for both sets of (Ti,Ta)(C,N)-Co-B based cermets: s1B0, s1B0.5, s1B2, s2B0, s2B0.5, and s2B2.

Area Atomic Percentage (at. %) Phase

Ti Ta Co -

1 83.4 ± 2.1 16.6 ± 2.1 - (Ti,Ta)(C,N)-core
2 86.8 ± 1.3 13.2 ± 1.3 - (Ti,Ta)(C,N)-rim
3 83.8 ± 0.5 16.2 ± 0.5 - (Ti,Ta)(C,N)
4 21.5 ± 1.0 10.0 ± 1.0 68.5 ± 1.0 (Ti,Ta)Co2
5 21.1 ± 1.2 15.3 ± 1.2 63.8 ± 1.2 (Ti,Ta)Co2
6 16.7 ± 0.8 8.1 ± 0.8 75.2 ± 0.8 (Ti,Ta)Co3
7 18.4 ± 1.4 12.7 ± 1.4 68.9 ± 1.4 (Ti,Ta)Co2
8 15.3 ± 1.0 20.2 ± 1.0 64.5 ± 1.0 (Ti,Ta)Co2
9 14.7 ± 1.7 10.0 ± 1.7 75.3 ± 1.7 (Ti,Ta)Co3

10 12.4 ± 0.7 2.2 ± 0.7 85.4 ± 0.7 -Co
11 96.5 ± 1.1 3.5 ± 1.1 - (Ti,Ta)B2 or (Ti,Ta)3B4.
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On the other hand, EDS mapping in the s2B2 cermet was made to verify the distribution of phases
observed by XRD in a qualitative way (Figure 5). The high content of Ti (red color) in the ceramic
phase, (Ti,Ta)(C,N), easily allowed its identification. The brightness of the Ta map (green color) in the
ceramic phase was lower due to its lower amount, the nominal Ti/Ta ratio was equal to 4 (Ti0.8Ta0.2).
In addition, the N (orange color) and C (purple color) maps were always associated with this phase,
confirming the formation of the carbonitride phase. Note that the high carbon brightness observed
in the zone marked with a white circle is an artefact caused by the presence of porosity in this area.
As opposite, the Ta brightness was higher in the area where Co was present, corroborating the Ta
presence in the binder phase. It is necessary to comment that, although Ti was also in the binder phase,
its contrast was practically negligible due to the different Ti amount with respect to the carbonitride
phase. Additionally, related to the Co (light blue color) map, three different brightness are observed,
marked as white squares with continuous lines in Figure 5. They correspond to the three binder phases
detected by XRD and point to EDS carried out in those areas, i.e., (Ti,Ta)Co2, (Ti,Ta)Co3, and α-Co.
Finally, dark particles, marked with white squares with dotted lines, showed a high amount of Ti and B,
suggesting they are the boride phases formed during sintering.Metals 2019, 9, x FOR PEER REVIEW 9 of 12 
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Figure 5. Energy-dispersive X-ray spectroscopy (EDS) mapping of the s2B2 sintered cermet. Continuous
line squares: The three binder phases detected, i.e., (Ti,Ta)Co2, (Ti,Ta)Co3, and α-Co. Dotted line squares:
Boride phases, i.e., (Ti,Ta)B2 and/or (Ti,Ta)3B4. Circles: Artefacts caused by the porosity.
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3.3. Physical and Mechanical Properties of Sintered Cermets.

The porosity of the sintered cermets, measured by image analysis (Table 2), showed similar values
for all of them. Porosity of around 2–3 vol.% was determined. Only, for the s1B0 sintered cermet,
a slightly higher value of around 4 vol.% was calculated. This fact could suggest that the presence of
Ti and, particularly, Ta, with a high melting point, in the binder phase in cermets developed by the
first methodology prior to sintering, negatively affected the consolidation step. However, when B was
added, the formation of the borides decreased the Ti and Ta into the binder phase, diminishing their
harmful behaviour.

Table 2. Physical characteristics (volumetric porosity (ρ), average ceramic particle size (d), volumetric
binder phase percentage (Vb), and mechanical properties (Vickers hardness (HV) and fracture toughness
(KIC)) for both sets of (Ti,Ta)(C,N)-Co-B based cermets: s1B0, s1B0.5, s1B2, s2B0, s2B0.5, and s2B2.

Cermet d (µm) Vb (vol.%) ρ (vol.%) HV (GPa) KIC (MPa·m1/2)

s1B0 1.7 ± 0.3 26 ± 3 4.0 ± 0.6 11.9 ± 1.2 4.0 ± 0.6
s1B0.5 1.5 ± 0.5 21 ± 3 1.6 ± 0.5 12.9 ± 0.8 3.6 ± 1.0
s1B2 1.4 ± 0.3 23 ± 2 2.6 ± 1.1 12.8 ± 0.5 4.0 ± 0.5
s2B0 3.1 ± 0.5 28 ± 2 2.2 ± 0.5 14.1 ± 1.0 2.9 ± 0.3

s2B0.5 2.8 ± 0.4 26 ± 2 3.4 ± 0.8 14.0 ± 1.0 5.3 ± 1.0
s2B2 2.4 ± 0.3 26 ± 3 2.8 ± 0.7 16.2 ± 0.8 3.3 ± 0.9

On the other hand, larger (Ti,Ta)(C,N) ceramic particles were observed in s2 cermets than in s1
cermets. The particle size values determined from SEM images are also shown in Table 2. This aspect
is the direct consequence of the dissolution–reprecipitation of the ceramic phase as the main sintering
mechanism in cermets obtained by the first methodology (s1B0, s1B0.5, and s1B2), while the coalescence
of the ceramic particles was also observed in s2 cermets. Another interesting physical characteristic
determined by image analysis was the percentage of binder phase (Table 2). A slight decrease of
the binder phase percentage when boron was added was observed. This fact was attributed to the
formation of the new boride ceramic phases, consequently reducing the amount of Ti and Ta in the
Co-containing binder phase. These two aspects can influence the mechanical properties of cermets
developed with boron addition.

Concerning the mechanical properties, as a general trend, the hardness of cermets increased with
the boron addition, presumably due to the formation of the new boride hard phases. The hardness
improvements reached a 15% for cermet s2B2, compared to s2B0. In s2B0.5 cermet, the opposite effects
of the boride formation and the development of less hard binder phases ((Ti,Ta)Co3 and α-Co) induced
a similar hardness value than the corresponding cermet without boron (s2B0). In addition, the slight
hardness increase of the s2 cermets, compared to s1 cermets, could be attributable to the absence of the
core-rim structure in the first ones, due to the microstructural misfit between the core and the rim [27],
which can produce internal stress and damage the mechanical properties.

In turn, the fracture toughness, measured by the indentation method, remained practically
invariant when boron was added. Thus, although the new binder phases formed when boron
was added ((Ti,Ta)Co3 and α-Co) are more tough than ((Ti,Ta)Co2, formed without boron addition,
the decrease of the binder phase amount counteracted this effect [28]. Only the cermet s2B0.5 showed
a significant increase of fracture toughness with the boron addition, due to the major tough (Ti,Ta)Co3

binder phase, as observed by XRD (see Figure 3). By contrast, the fracture toughness of s2B2 decreased.
This contrary behavior was attributable to the higher boride phases ((Ti,Ta)B2 and (Ti,Ta)3B4) formed,
which reduce the Ti and Ta in the binder phase, in detriment of the (Ti,Ta)Co3 formation.
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4. Conclusions

A systematic study of the effect of boron addition on titanium–tantalum carbonitride based cermets,
developed by MSR process and using two different methodologies, was carried out. The following
conclusions can be made:

(1) The addition of boron to (Ti,Ta)(C,N)-Co based cermets during the sintering step caused the
formation of two different boride solid solutions, i.e., (Ti,Ta)B2 and (Ti,Ta)3B4.

(2) The main mechanism of this process seems to be different for both methodologies. While for the
first methodology the boron mainly reacts with the Ti and Ta presented in the binder phase prior
to the sintering step, for the second methodology, the boron reacted with the Ti and Ta dissolved
from the (Ti,Ta)(C,N) ceramic phase.

(3) This reaction of the boride formation allowed for the decrease of the Ti and Ta amounts in the
binder phase and, consequently, the modification of the binder nature. Particularly, the (Ti,Ta)Co2

brittle intermetallic compound observed for cermets without boron addition evolved to a new
(Ti,Ta)Co3 and α-Co alloy, more ductile and tough than (Ti,Ta)Co2.

(4) As a general trend, the increase of hardness and toughness was due to the formation of new
ceramic phases (borides) and tougher and ductile binder phases, respectively.

(5) This new approach for reducing the amount of transition metals (in this case, Ti and Ta) in
the binder phase of cermets, based on the reaction with boron to synthesize borides, can be
an alternative way to other, already published, approaches focused on reducing the ceramic
dissolution during sintering.

Author Contributions: The two authors of this work have contributed to the same extend in all steps, from the
conceptualization of the research idea to the final writing.

Funding: This work was supported by the Spanish government under Grant No. MAT2014-52407-R, which was
financed in part by the European Regional Development Fund.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Bellosi, A.; Calzavarini, R.; Faga, M.G.; Monteverde, F.; Zancolò, C.; D’Errico, G.E. Characterisation and
application of titanium carbonitride-based cutting tools. J. Mater. Process. Technol. 2003, 143–144, 527–532.
[CrossRef]

2. Chicardi, E.; Córdoba, J.M.; Sayagués, M.J.; Gotor, F.J. Absence of the core–rim microstructure in
TixTa1−xCyN1−y-based cermets developed from a pre-sintered carbonitride master alloy. Int. J. Refract. Met.
Hard Mater. 2012, 33, 38–43. [CrossRef]

3. Chicardi, E.; Torres, Y.; Córdoba, J.M.; Sayagués, M.J.; Rodríguez, J.A.; Gotor, F.J. Effect of sintering time on
the microstructure and mechanical properties of (Ti,Ta)(C,N)-based cermets. Int. J. Refract. Met. Hard Mater.
2013, 38, 73–80. [CrossRef]

4. Zhang, H.; Yan, J.; Zhang, X.; Tang, S. Properties of titanium carbonitride matrix cermets. Int. J. Refract. Met.
Hard Mater. 2006, 24, 236–239. [CrossRef]

5. De la Obra, G.; Avilés, M.A.; Torres, Y.; Chicardi, E.; Gotor, F.J. A new family of cermets: Chemically complex
but microstructurally simple. Int. J. Refract. Met. Hard Mater. 2017, 63, 17–25. [CrossRef]

6. Chicardi, E.; Gotor, F.J.; Medri, V.; Guicciardi, S.; Lascano, S.; Córdoba, J.M. Hot-pressing of
(Ti,Mt)(C,N)–Co–Mo2C (Mt=Ta,Nb) powdered cermets synthesized by a mechanically induced self-sustaining
reaction. Chem. Eng. J. 2016, 292, 51–61. [CrossRef]

7. LaSalvia, J.C.; Kim, D.K.; Meyers, M.A. Effect of Mo on microstructure and mechanical properties of
TiC—Ni-based cermets produced by combustion synthesis—Impact forging technique. Mater. Sci. Eng. A
1996, 206, 71–80. [CrossRef]

8. Wang, J.; Liu, Y.; Zhang, P.; Ye, J.; Tu, M. Effect of VC and nano-TiC addition on the microstructure and
properties of micrometer grade Ti(CN)-based cermets. Mater. Des. 2009, 30, 2222–2226. [CrossRef]

http://dx.doi.org/10.1016/S0924-0136(03)00339-X
http://dx.doi.org/10.1016/j.ijrmhm.2012.02.005
http://dx.doi.org/10.1016/j.ijrmhm.2013.01.001
http://dx.doi.org/10.1016/j.ijrmhm.2005.05.009
http://dx.doi.org/10.1016/j.ijrmhm.2016.04.011
http://dx.doi.org/10.1016/j.cej.2016.02.007
http://dx.doi.org/10.1016/0921-5093(95)09994-8
http://dx.doi.org/10.1016/j.matdes.2008.08.017


Metals 2019, 9, 787 11 of 11

9. Zhang, G.; Xiong, W.; Yang, Q.; Yao, Z.; Chen, S.; Chen, X. Effect of Mo addition on microstructure and
mechanical properties of (Ti,W)C solid solution based cermets. Int. J. Refract. Met. Hard Mater. 2014, 43,
77–82. [CrossRef]

10. Zhang, X.; Liu, N. Effects of ZrC on microstructure, mechanical properties and thermal shock resistance of
TiC–ZrC–Co–Ni cermets. Mater. Sci. Eng. A 2013, 561, 270–276. [CrossRef]

11. Xu, Q.; Ai, X.; Zhao, J.; Gong, F.; Pang, J.; Wang, Y. Effects of metal binder on the microstructure and
mechanical properties of Ti(C,N)-based cermets. J. Alloy. Compd. 2015, 644, 663–672. [CrossRef]

12. Chicardi, E.; Córdoba, J.M.; Gotor, F.J. High temperature oxidation resistance of (Ti,Ta)(C,N)-based cermets.
Corros. Sci. 2016, 102, 125–136. [CrossRef]

13. Chicardi, E.; Córdoba, J.M.; Gotor, F.J. Kinetics of high-temperature oxidation of (Ti,Ta)(C,N)-based cermets.
Corros. Sci. 2016, 102, 168–177. [CrossRef]

14. Chicardi, E.; Gotor, F.J.; Córdoba, J.M. Enhanced oxidation resistance of Ti(C,N)-based cermets containing Ta.
Corros. Sci. 2014, 84, 11–20. [CrossRef]

15. Kwon, H.; Kim, W.; Kim, J. Stability domains of (Ti,W)C and (Ti,W)(CN) during carbothermal reduction of
TiO2/WO3 mixture at 1500K. J. Eur. Ceram. Soc. 2017, 37, 1355–1371. [CrossRef]

16. Qiu, W.; Liu, Y.; Ye, J.; Fan, H.; Qiu, Y. Effects of (Ti,Ta,Nb,W)(C,N) on the microstructure, mechanical
properties and corrosion behaviors of WC-Co cemented carbides. Ceram. Int. 2017, 43, 2918–2926. [CrossRef]

17. Zhou, W.; Zheng, Y.; Zhao, Y.; Zhang, G.; Dong, Z.; Xiong, W. Fabrication of Ti(C,N)-based cermets by in situ
carbothermal reduction of MoO3 and subsequent liquid sintering. J. Am. Ceram. Soc. 2017, 100, 1578–1587.
[CrossRef]

18. De la Obra, A.G.; Gotor, F.J.; Chicardi, E. Effect of the impact energy on the chemical homogeneity of
a (Ti,Ta,Nb)(C,N) solid solution obtained via a mechanically induced self-sustaining reaction. J. Alloy. Compd.
2017, 708, 1008–1017. [CrossRef]

19. Córdoba, J.M.; Avilés, M.A.; Sayagués, M.J.; Alcalá, M.D.; Gotor, F.J. Synthesis of complex carbonitride
powders TiyMT1−yCxN1−x (MT: Zr, V, Ta, Hf) via a mechanically induced self-sustaining reaction. J. Alloy.
Compd. 2009, 482, 349–355. [CrossRef]

20. Alvarez, M.; Sánchez, J.M. Spark plasma sintering of Ti(C,N) cermets with intermetallic binder phases. Int. J.
Refract. Met. Hard Mater. 2007, 25, 107–118. [CrossRef]

21. Chicardi, E.; Torres, Y.; Córdoba, J.M.; Hvizdoš, P.; Gotor, F.J. Effect of tantalum content on the microstructure
and mechanical behavior of cermets based on (TixTa1−x)(C0.5N0.5) solid solutions. Mater. Des. 2014, 53,
435–444. [CrossRef]

22. Chicardi, E.; Torres, Y.; Sayagués, M.J.; Medri, V.; Melandri, C.; Córdoba, J.M.; Gotor, F.J. Toughening of
complete solid solution cermets by graphite addition. Chem. Eng. J. 2015, 267, 297–305. [CrossRef]

23. Coric, D.; Curkovic, L. Statistical analysis of Vickers indentation fracture toughness of Y-TZP ceramics.
Trans. FAMENA 2017, 41, 1–16. [CrossRef]

24. Spiegler, R.; Schmauder, S.; Sig, L. Fracture toughness evaluation of WC–Co alloys by indentation testing.
J. Hard Met. 1990, 1, 158–174.

25. Warren, R.; Matzke, H. Indentation Testing of a Broad Range of Cemented Carbides. In Science of Hard
Materials; Viswanadham, R.K., Rowcliffe, D.J., Gurland, J., Eds.; Springer Publishing: New York, NY, USA,
1983; pp. 563–582.

26. Chicardi, E.; Córdoba, J.M.; Sayagués, M.J.; Gotor, F.J. Inverse core–rim microstructure in (Ti,Ta)(C,N)-based
cermets developed by a mechanically induced self-sustaining reaction. Int. J. Refract. Met. Hard Mater. 2012,
31, 39–46. [CrossRef]

27. Ahn, S.Y.; Kim, S.W.; Kang, S. Microstructure of Ti(CN)–WC–NbC–Ni Cermets. J Am. Ceram. Soc. 2001, 84,
843–849. [CrossRef]

28. Park, C.; Nam, S.; Kang, S. Enhanced toughness of titanium carbonitride-based cermets by addition of
(Ti,W)C carbides. Mater. Sci. Eng. A 2016, 649, 400–406. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.ijrmhm.2013.11.004
http://dx.doi.org/10.1016/j.msea.2012.11.003
http://dx.doi.org/10.1016/j.jallcom.2015.05.059
http://dx.doi.org/10.1016/j.corsci.2015.10.001
http://dx.doi.org/10.1016/j.corsci.2015.10.006
http://dx.doi.org/10.1016/j.corsci.2014.03.007
http://dx.doi.org/10.1016/j.jeurceramsoc.2016.11.008
http://dx.doi.org/10.1016/j.ceramint.2016.09.124
http://dx.doi.org/10.1111/jace.14691
http://dx.doi.org/10.1016/j.jallcom.2017.03.109
http://dx.doi.org/10.1016/j.jallcom.2009.04.012
http://dx.doi.org/10.1016/j.ijrmhm.2006.03.004
http://dx.doi.org/10.1016/j.matdes.2013.07.039
http://dx.doi.org/10.1016/j.cej.2015.01.022
http://dx.doi.org/10.21278/TOF.41201
http://dx.doi.org/10.1016/j.ijrmhm.2011.09.003
http://dx.doi.org/10.1111/j.1151-2916.2001.tb00750.x
http://dx.doi.org/10.1016/j.msea.2015.10.025
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Experimental Procedure 
	Development of Cermets 
	Chemical, Microstructural, and Physical Characterization 
	Mechanical Behavior 

	Results and Discussion 
	Synthesis of the Powdered Cermets with Boron Addition 
	Sintering of Cermets with Boron Addition 
	Physical and Mechanical Properties of Sintered Cermets. 

	Conclusions 
	References

