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Abstract: Corrosion resistance has been the main scope of the development in high-alloyed low
carbon austenitic stainless steels. However, the chemical composition influences not only the passivity
but also significantly affects their metastability and, consequently, the transformation as well as the
cyclic deformation behavior. In technical applications, the austenitic stainless steels undergo fatigue
in low cycle fatigue (LCF), high cycle fatigue (HCF), and very high cycle fatigue (VHCF) regime at
room and elevated temperatures. In this context, the paper focuses on fatigue and transformation
behavior at ambient temperature and 300 ◦C of two batches of metastable austenitic stainless steel
AISI 347 in the whole fatigue regime from LCF to VHCF. Fatigue tests were performed on two types
of testing machines: (i) servohydraulic and (ii) ultrasonic with frequencies: at (i) 0.01 Hz (LCF), 5 and
20 Hz (HCF) and 980 Hz (VHCF); and at (ii) with 20 kHz (VHCF). The results show the significant
influence of chemical composition and temperature of deformation induced α´-martensite formation
and cyclic deformation behavior. Furthermore, a “true” fatigue limit of investigated metastable
austenitic stainless steel AISI 347 was identified including the VHCF regime at ambient temperature
and elevated temperatures.

Keywords: austenitic stainless steel; metastability; LCF; HCF; VHCF; ambient and elevated
temperatures

1. Introduction

In the early stages of the development of stainless steels, the passivity of the material and, therefore,
its “stainlessness” was the main scope of development [1,2]. Chemical passivity of steels in many
environmental conditions is achieved by alloying at least about 11 wt% chromium to the base material.
Due to an excellent combination of mechanical and technological properties, as well as corrosion
resistance, austenitic stainless steels are the most prevalent group of stainless steels—widely used for
components in nuclear power and chemical plants as well as a great variety of industrial, architectural
and biological applications [3–6]. Since the chromium contents of typical austenitic stainless steels
exceed 16 wt%, their equilibrium microstructure at room temperature would be fully ferritic, if no
other austenite stabilizing alloying elements were added to the material. Elements most often used
to obtain an austenitic microstructure are nickel, manganese, carbon and nitrogen. Because carbon
has a very high affinity with chromium, chromium carbides are prone to develop particularly at
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high temperatures. This can reduce the chromium solid solution content in the austenitic matrix to
less than 11 wt% and, consequently, lead to localized loss of stainlessness, especially at, or close to,
the grain boundaries, resulting—under certain conditions—in intercrystalline corrosion. Therefore,
in order to assure the corrosion resistivity of austenitic stainless steels, a very low carbon content and/or
alloying with elements of a higher affinity with carbon, (e.g. niobium or titanium) are required [4].
In some cases, the ferromagnetic body centered cubic (bcc) δ-ferrite can be obtained in the paramagnetic
face centered cubic (fcc) γ-austenitic microstructure directly after the manufacturing or melting
process [7–10]. Indeed, δ-ferrite is a stable phase and its volume fraction does not change during
mechanical loading. Generally, the influence of the chemical composition of Cr-Ni stainless steels on
the initial microstructure at ambient temperature (AT) obtained after solution annealing heat treatment
can be roughly estimated from the Cr und Ni content using the Maurer diagram [1]. Furthermore,
the Schaeffler diagram provides more detailed information based on Cr and Ni equivalents taking
other alloying elements besides Cr and Ni into account and is generally used for determining welding
microstructures in Cr-Ni stainless steels [11].

The change in chemical composition not only influences the passivity of austenitic stainless
steel but also significantly affects the metastability of austenite [12–16], meaning it is susceptible
to undergoing phase transformations. Hence, the paramagnetic γ-austenite can transform by
plastic deformation to a more stable microstructure, i.e. paramagnetic hexagonal close-packed
(hcp) ε-martensite and/or body cubic centered (bcc) α´-martensite [17–24]. Scheil, one of the earliest
researchers in this field, investigated the γ-austenite to α´-martensite transformation by measuring
magnetic properties [25]. The change in magnetic properties by phase transformation can be used for
non-destructive detection of α´-martensite as well as for monitoring fatigue processes in metastable
austenites [26]. However, δ-ferrite, in the initial state of metastable austenite, has to be clearly
separated from deformation-induced α´-martensite because both phases are ferromagnetic [7–10].
Deformation-induced phase transformations in metastable austenite affect significantly the fatigue
process and are influenced by chemical composition [12–16], temperature [14,27–30] (encompassed by
stacking fault energy (SFE) [31–39]), as well as grain size [32,40–43] strain amplitude [29,44–47] strain
rate [48–50] and strain/stress state [51]. Additionally, SFE in fcc materials influences the slip character
of dislocation, which has been summarized in the cyclic deformation map as a function of SFE and
plastic strain amplitude given in [52–54]. For low SFE, independent of strain (stress) amplitude,
the planar slip character occurs but for materials with higher SFE, a dependency of strain (stress)
amplitude on dislocation slip character exists. High strain (stress) amplitude in the low cycle fatigue
(LCF) regime leads to the development of the cell dislocation structure, which correlates with the
wavy slip character of dislocation. The decrease of strain (stress) amplitude results in the formation
of persistent slip bands in the high cycle fatigue (HCF) regime. Between the LCF and HCF regimes
and lower and higher SFE, mixed dislocation structures can be observed [52–54]. A cyclic dislocation
structure map of fcc materials with different SFE is not currently available for the very high cycle
fatigue (VHCF) regime. The relationship between dislocation slip character and SFE described above
was found for stable fcc materials [52–54]. In the case of metastable fcc austenite, SFE influences not
only the dislocation slip character but also the deformation-induced phase transformation in ε and/or
α´-martensite [17–24] as well as the formation of twins [55–57]. Figure 1 summarizes the microstructural
changes in metastable austenitic Cr-Ni stainless steels due to cyclic mechanical loading, supported by
TEM micrographs, which influence the cyclic deformation behavior of metastable austenitic stainless
steels and consequently fatigue life. In this context, the present paper focuses on microstructural
changes in metastable austenitic stainless steels, their cyclic deformation and transformation behavior
at ambient and elevated temperatures in the whole fatigue regime from LCF to VHCF.
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Figure 1. TEM micrographs with deformation and transformation microstructures of cyclically 
loaded metastable austenitic stainless steels: (a) typical dislocation density of the initial state after 
solution annealing, AISI 348 [58]; (b) cell dislocation structure (wavy slip character) at Nf in AISI 348 
fatigued with σa = 280 MPa, R = −1 at AT with f = 5 Hz [58]; (c) dislocation accumulation in one 
direction (planar slip character) at Nf in AISI 348 fatigued with σa = 260 MPa, R = −1 at AT with f = 5 
Hz [58]; (d) stacking faults (SF) at Nf in AISI 304 fatigued with εa,t = 0.325%, R = -1 at AT with f = 5 Hz 
[58]; (e) twins in AISI 347 fatigued with σa = 160 MPa, R = −1 at T = 300 °C with f = 980 Hz at N = 5 × 
108, (f) ε- and αd-martensite at Nf in AISI 321 fatigued with σa = 330 MPa, R = −1 at AT with f = 5 Hz 
[59]. 

2. Materials 

The investigated material was metastable austenitic stainless steel AISI 347 (X10CrNiNb1810, 
1.4550) in two batches (A and B). The chemical composition of both batches is given in Table 1, which 
corresponds to German and international standards [60,61]. However, it is important to note that 
these standards do not take into consideration the metastability of the austenitic microstructure, but 
focus on the stainlessness of the steel. It is known that the same type of austenitic stainless steel can 
exist in significantly different states of metastability [16] up to a fully stable state. The material’s 
metastability can be characterized by experimentally estimated equations, which describe the 
martensitic start (MS) or deformation-induced transformation temperature (Md) as well as the 
stacking fault energy (SFE), according to the chemical composition of austenitic stainless steels. In 
the literature, several equations for MS [13], Md30 [14] and SFE [34] are given. Table 1 gives examples 
of these metastability parameters according to the following equations: 

Md30,Angel in °C = 413 – 462 · (C+N) – 13.7 · Cr – 9.5 · Ni – 8.1 · Mn – 18.5 · Mo – 9.2 · Si (1) 

MS,Eichelmann in °C = 1350 – 1665 · (C+N) – 42 · Cr – 61 · Ni – 33 · Mn – 28 · Si (2) 

SFE in mJ/m2 = 25.7 + 2 · Ni – 0.9 · Cr – 1.2 · Mn + 410 · C – 77 · N – 13 · Si (3) 

The investigated austenitic stainless steel batches are in a metastable state (Md30 is in the range 
of ambient temperature). Md30 is the temperature at which 50 vol% of αd-martensite is developed by 
30% of true plastic deformation [14] and was introduced for the comparison of the metastability of 
austenitic stainless steels. However, the deformation-induced phase transformation from γ-austenite 
in to αd-martensite can also take place at higher temperatures than Md30 [46,58,59,62,63]. The amount 
of deformation induced αd-martensite depends: (i) on the initial conditions, given by production 
process, such as chemical composition and initial microstructure e.g. the grain size of austenite, 
dislocation arrangements/density, precipitations and (ii) on loading parameters, like deformation 
temperature, amount of plastic deformation, as well as the stress and strain state/rate. Therefore, 
determining the true Md-temperature above which no αd-martensite formation takes place is not 
practically possible. In order to take into account both aspects specified above (i and ii) on the 
susceptibility of forming αd-martensite in metastable austenite, a method based on dynamically 
applied local plastic deformation and magnetic measurement was developed [16]. The parameter 
established by this method as Iξ correlates very well with the grade of αd-martensite formation 
during cyclic loading and allows to distinguish the susceptibility of austenitic stainless steels, which 
have the same chemical composition and grain size, to undergo phase transformation. The 

Figure 1. TEM micrographs with deformation and transformation microstructures of cyclically loaded
metastable austenitic stainless steels: (a) typical dislocation density of the initial state after solution
annealing, AISI 348 [58]; (b) cell dislocation structure (wavy slip character) at Nf in AISI 348 fatigued
with σa = 280 MPa, R = −1 at AT with f = 5 Hz [58]; (c) dislocation accumulation in one direction
(planar slip character) at Nf in AISI 348 fatigued with σa = 260 MPa, R = −1 at AT with f = 5 Hz [58];
(d) stacking faults (SF) at Nf in AISI 304 fatigued with εa,t = 0.325%, R = -1 at AT with f = 5 Hz [58];
(e) twins in AISI 347 fatigued with σa = 160 MPa, R = −1 at T = 300 ◦C with f = 980 Hz at N = 5 × 108,
(f) ε- and α´-martensite at Nf in AISI 321 fatigued with σa = 330 MPa, R = −1 at AT with f = 5 Hz [59].

2. Materials

The investigated material was metastable austenitic stainless steel AISI 347 (X10CrNiNb1810,
1.4550) in two batches (A and B). The chemical composition of both batches is given in Table 1,
which corresponds to German and international standards [60,61]. However, it is important to note that
these standards do not take into consideration the metastability of the austenitic microstructure, but
focus on the stainlessness of the steel. It is known that the same type of austenitic stainless steel can exist
in significantly different states of metastability [16] up to a fully stable state. The material’s metastability
can be characterized by experimentally estimated equations, which describe the martensitic start (MS)
or deformation-induced transformation temperature (Md) as well as the stacking fault energy (SFE),
according to the chemical composition of austenitic stainless steels. In the literature, several equations
for MS [13], Md30 [14] and SFE [34] are given. Table 1 gives examples of these metastability parameters
according to the following equations:

Md30,Angel in ◦C = 413 - 462 · (C+N) - 13.7 · Cr - 9.5 · Ni - 8.1 ·Mn - 18.5 ·Mo - 9.2 · Si (1)

MS,Eichelmann in ◦C = 1350 - 1665 · (C+N) - 42 · Cr - 61 · Ni - 33 ·Mn - 28 · Si (2)

SFE in mJ/m2 = 25.7 + 2 · Ni - 0.9 · Cr - 1.2 ·Mn + 410 · C - 77 · N - 13 · Si (3)

The investigated austenitic stainless steel batches are in a metastable state (Md30 is in the range of
ambient temperature). Md30 is the temperature at which 50 vol% of α´-martensite is developed by
30% of true plastic deformation [14] and was introduced for the comparison of the metastability of
austenitic stainless steels. However, the deformation-induced phase transformation from γ-austenite in
to α´-martensite can also take place at higher temperatures than Md30 [46,58,59,62,63]. The amount of
deformation induced α´-martensite depends: (i) on the initial conditions, given by production process,
such as chemical composition and initial microstructure e.g. the grain size of austenite, dislocation
arrangements/density, precipitations and (ii) on loading parameters, like deformation temperature,
amount of plastic deformation, as well as the stress and strain state/rate. Therefore, determining the
true Md-temperature above which no α´-martensite formation takes place is not practically possible.
In order to take into account both aspects specified above (i and ii) on the susceptibility of forming
α´-martensite in metastable austenite, a method based on dynamically applied local plastic deformation
and magnetic measurement was developed [16]. The parameter established by this method as Iξ
correlates very well with the grade of α´-martensite formation during cyclic loading and allows to
distinguish the susceptibility of austenitic stainless steels, which have the same chemical composition
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and grain size, to undergo phase transformation. The Iξ parameter of the two investigated batches of
AISI 347 is given in Table 1. Table 2 summarizes the mechanical properties of the investigated material
at ambient temperature (AT) and T = 300 ◦C as well as α’-martensite content after specimen failure.

Table 1. Chemical composition in weight % and metastability parameters.

AISI 347 C N Nb Cr Ni Mn Mo Si Md30
◦C MS

◦C SFE mJ/m2 Iξ FE%

Batch A 0.040 0.007 0.62 17.6 10.6 1.83 0.29 0.41 25 −189 39 0.25
Batch B 0.024 0.019 0.41 17.3 9.3 1.55 0.19 0.63 46 −81 27 0.66

Table 2. Mechanical properties and α’-martensite content after specimen failure (ξ).

AISI 347 Rp0.2 in MPa UTS in MPa A in
% ξ in FE%

Batch A, AT 242 569 66 4.41
Batch A, 300 ◦C 180 357 36 0.00

Batch B, AT 220 621 51 33.22
Batch B, 300 ◦C 155 428 37 0.00

Shown in Figure 2 are light and electron microscopy micrographs of longitudinal sections of the
initial microstructure of the investigated materials in the solution-annealed state and after plastic
deformation. Specimens from batch A were extracted from an original nuclear power plant surge line
pipe with an outside diameter of 333 mm and a wall thickness of 36 mm. The pipe was manufactured
seamless, drilled from the inside, turned from the outside and delivered in a solution-annealed state
(1050 ◦C / 10 min / H20), such that in the initial state no α‘-martensite was detected. Note that the surge
line pipe was investigated in the as-manufactured condition and has not been previously used in a
nuclear power plant. The material of batch B was provided as rolled bars with a diameter of 25 mm in
a solution-annealed state. A fully austenitic microstructure was obtained by additional annealing at
1050 ◦C for 35 minutes and quenching in helium atmosphere.
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Figure 2. Optical micrographs of longitudinal sections using Bloech & Wedl I etching (a,e) initial
state, (b,f) after plastic deformation as well as EBSD grain maps of (c,g) initial state and (d,h) after
plastic deformation.

In Figure 2a the optical micrograph of the initial state of batch A is shown. This micrograph
was taken after color etching using a Bloech & Wedl I etching agent, which is able to visualize
local inhomogeneities in chemical composition [15]. A homogeneous distribution of the Cr and
Ni content was detected in the microstructures of batch A. Furthermore, plastic deformation of
batch A led to the homogeneous development of α´-martensite in the austenite matrix during plastic
deformation (see Figure 2b,d). An electron backscatter diffraction (EBSD) micrograph of the initial state
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of both batches (Figure 2c,g) revealed a one-phase microstructure with annealing twins, typical for
austenitic stainless steels. The same etching and observation techniques were used for characterizing
the microstructure of batch B. In the case of batch B, the etching agent revealed local chemical
inhomogeneities caused by slight variations of the Cr and Ni content as blue and brown bands
(Figure 2e), which could not be removed during solution annealing. The blue band correlates with a
lower Ni and higher Cr content, while the brown bands indicate higher Ni and lower Cr contents [15].
The band structure with a corresponding local metastability of austenitic microstructure led to a
pronounced α´-martensite formation in regions with higher Cr content (Figure 2f). The local chemically
induced band structure could not be observed in scanning electron micrographs using EBSD technique
(Figure 2h). Instead, the EBSD image shows a homogeneous crystallographic microstructure in both
cases, whereas the deformation-induced α´-martensite formation after plastic deformation can be
clearly detected by EBSD images (Figure 2d,h). The comparison of EBSD grain maps (Figure 2c,g) of
both batches presented a clear difference in the grain size. Quantitative evaluation yielded a mean
grain size of 120 µm for batch A and of 17 µm for batch B, respectively.

3. Methods

To investigate the fatigue behavior of metastable austenitic stainless steels at ambient and elevated
temperatures from the LCF to VHCF regime, servohydraulic and ultrasonic fatigue systems were used.
The test temperature of T = 300 ◦C was achieved using an inductive heating system and control based
on measurement by a type-K ribbon thermocouple in the center of the gauge length. The isothermal
LCF and HCF tests at ambient temperature (AT) and T = 300 ◦C were performed with an MTS 100 kN
servohydraulic testing system using load frequency of f = 0.01 Hz (LCF), 5 Hz and 20 Hz (HCF), see
Figure 3a and b. The VHCF tests at T = 300 ◦C were performed with f = 980 Hz at an MTS 1 kHz
servohydraulic testing system (Figure 3c). The VHCF tests at AT were realized in an ultrasonic fatigue
testing system developed and built up at the authors’ institute [64,65] (Figure 3d) with an operating
frequency f = 20 kHz. In order to characterize the cyclic deformation behavior in the LCF and HCF
regime, respectively, an extensometer (AT and T = 300 ◦C) and thermocouples (only AT) were used.
The area of each hysteresis loop describes the cyclic plastic strain energy dissipated per unit volume
during a given loading cycle, which is mainly dissipated into heat and, hence, results in a change in
specimen temperature [66,67]. Temperature was measured with one thermocouple in the middle of the
gauge length (T1) and two reference thermocouples at the elastically loaded specimen shafts (T2, T3).
The temperature change induced by cyclic plastic deformation was calculated according to:

∆T = T1 − 0.5·(T2 + T3) (4)

The in situ detection of fatigue induced α´-martensite formation was done by magnetic
FeritscopeTM (FISCHER, Windsor, CT, USA) measurements at AT (see Figure 3a). Due to the higher
permeability of ferromagnetic ferrite compared to paramagnetic austenite, the response of the material
to magnetic induction increases with the ferrite content. Using a non-destructive magnetic method,
the FeritscopeTM measures the relative permeability of a material in the alternating magnetic field of
its probe. This provides a ferrite content signal (FE%), which is also influenced by the curvature of the
specimen’s surface and stress-strain state. Furthermore, to determine the ferromagnetic α´-martensite
content in vol%, the Feritscope™ signal (FE%) needs to be multiplied by a factor of 1.7 [68]. Because the
calibration factor was determined only for α´-martensite contents below 55 FE%, in the following
diagrams the magnetically determined α´-martensite is indicated as ξ in FE% without calculating the
vol% of α´-martensite. Furthermore, within one load cycle, the magnetic properties of α´-martensite are
influenced by stress/strain due to the Villari effect (inverse magnetostriction), which describes a change
of the magnetic susceptibility of ferromagnetic material due to mechanical stresses [26]. Therefore, an
arithmetic mean value per load cycle of the measured Feritscope™ signal is given in the diagrams.
For specimens loaded in LCF, HCF and VHCF tests at T = 300 ◦C and in VHCF tests at AT, ex situ
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Feritscope™measurements were performed. The fatigue tests at AT and T = 300 ◦C were total strain
controlled in LCF regime and stress controlled in the HCF regime. The VHCF tests at T = 300 ◦C were
stress controlled and the ultrasonic VHCF tests at AT performed in displacement-control. All tests
were performed in symmetric push-pull conditions with load ratio R = −1.
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Figure 3. Schematic representation of the experimental setup for fatigue tests in the LCF and HCF
regime at (a) AT and (b) at T = 300 ◦C, as well as in the VHCF regime at (c) T = 300 ◦C and (d) at AT.

VHCF testing of metastable austenitic stainless steels at ambient temperature using an ultrasonic
fatigue system is more challenging than for stable metallic materials because of transient material
behavior and significant self-heating of specimens. Due to the formation of high strength α’-martensite
in softer austenite, less damping of the oscillation amplitude takes place, resulting in higher displacement
amplitude. Therefore, an unstable displacement amplitude occurred. A representative pulse sequence
from the VHCF fatigue test on a fully austenitic microstructure in its initial state and after cyclic loading
up to N~2 × 106 clearly shows the challenge in performing the fatigue test with constant load amplitude
(Figure 4). The first pulses were characterized by an oscillation plateau with a constant amplitude
level during each pulse (Figure 4a). These results underline the necessity of a correct specimen design
using FEM simulation to ensure fully reversed loading conditions with the maximum stress amplitude
in the center of the gauge length and the maximum oscillation amplitude at the specimen´s end
(see Figure 3d) [65]. However, due to fatigue-induced α’-martensite formation, the initial amplitude
plateaus changed to pulses with an increasing displacement level (Figure 4b). This had to be leveled
out by appropriate parameter adjustments during phase transformation. Further details can be found
in further papers (see [65,69]).

Besides adjusting the proportional, integral and derivative (PID) parameters during VHCF tests,
the deformation-induced specimen temperature increase has to be limited. Figure 5a shows the
development of displacement for a pulse/pause ratio of 0.5 s/2.5 s, which is typically used for stable
metallic materials [64], and which results in an effective load frequency feff = 3300 Hz. The progress of
the specimen´s temperature is also plotted (Figure 5). It can be clearly seen that a pulse/pause ratio of
0.5 s/2.5 s cannot be used for fatigue testing of metastable austenite at ambient temperature because
within two pulses the temperature increased to 200 ◦C (Figure 5a). To keep the specimen´s temperature
below 50 ◦C, a change of temperature below 25 K and therefore a pulse/pause ratio of 0.06 s/2.94 s had
to be used (Figure 5b). This led to an effective frequency of feff = 400 Hz. Theoretically, to achieve the
limit of the number of cycles Nl = 2 × 109 for a fatigue test with feff = 400 Hz, about 58 days would
be required. In reality, with the development of α’-martensite, cyclic hardening of materials takes
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place, which reduces cyclic plasticity. Consequently, the development of the specimen’s temperature
decreases, and fatigue testing could be performed with a higher pulse/pause ratio with feff = 1650 Hz.
The adjustment of PID parameters was also less critical given that saturation of α’-martensite was
achieved in the cycle regime of N~108 (see Figure 10).
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4. Results

Fatigue tests were performed with specimens from AISI 347 batch A taken from an original surge
line pipe. Specimens from rolled bars from AISI 347 batch B represented the more metastable material
and were used for selected fatigue tests to show the influence of metastability on the deformation
and phase transformation behavior in the LCF regime as well as for characterizing HCF behavior at
ambient temperature.

4.1. LCF Behavior

4.1.1. Ambient Temperature

Single step (constant amplitude) tests under total-strain control were performed in the LCF
regime with total strain amplitudes 0.6% ≤ εa,t ≤ 1.6%, load frequency f = 0.01 Hz and triangular
waveform. Figure 6 presents the development of stress amplitude (σa), the change in specimen



Metals 2019, 9, 704 8 of 18

temperature (∆T) and α’-martensite formation (ξ) for batch A and, additionally, the results from
the test with total strain amplitude εa,t = 1.0% for batch B. The cyclic deformation behavior of the
investigated steel at ambient temperature was fundamentally determined by deformation-induced
austenite-α´-martensite transformation. After a load-dependent number of cycles N, the formation
of α´-martensite started and increased continuously with increasing cycle number until specimen
failure (Figure 6c). The σa,N-curves (Figure 6a) illustrate the associated cyclic hardening processes,
which led to a maximum stress amplitude for εa,t ≥ 1.2% in the range of the tensile strength σf =

569 MPa (batch A) of the solution-annealed material. Cyclic hardening was detected by temperature
measurement, temperature increases in total-strain controlled fatigue tests being indicative of increases
of plastic strain energy. Because of very low load frequency, the maximal change in the specimen
temperature was below 3 K, which corresponds with an absolute temperature of about 28 ◦C and
consequently bears no significant influence on the formation of α´-martensite. Figure 6c shows the
development of α´-martensite content during the fatigue tests discussed above. After an incubation
period, which depended on the total strain amplitude, the α´-martensite volume fraction increased
continuously with the number of cycles. With increasing εa,t, the onset of α´-martensite formation
was shifted to lower N, and a higher volume fraction of α´-martensite was measured at specimen
failure. To characterize the influence of metastability of nominally the same type of austenitic stainless
AISI 347 steel, specimens from batches B were cyclically loaded with total strain amplitude εa,t = 1%.
Both batches A and B showed a continuous cyclic hardening, however, with different gradients after
the first ten cycles. In the cycle range 10 < N < 100, batch A showed only a slight increase of stress
amplitude, while batch B underwent a larger increase of σa, which correlated directly with a significant
development of α’-martensite (Figure 6c) from 1 FE% to 41 FE%. As mentioned in the methods section
above, ferromagnetic α’-martensite was measured in situ during fatigue testing using a FeritscopeTM

sensor, for which readings above 60 FE% could be inaccurate due to lack in instrument linearity and
calibration difficulties at high α’-martensite contents. For this reason, measured data in the range
above 60 FE% were plotted as dashed lines in Figure 6c. After a high rate of σa increase between N = 10
and N = 100, batch B showed a decrease in the stress amplitude rate dσa/dN. However, further cyclic
hardening took place which led to specimen failure at σa = 760 MPa, which is 120 MPa higher than the
tensile strength of this material in its as-received state (Table 2). Batch A also showed evidence of a
correlation between the development of α’-martensite and an increase in stress amplitude. However,
the start of α’-martensite formation occurred at a higher number of cycles in comparison to batch B
and the α’-martensite content was found to be, at the same number of cycles, significantly lower with
the maximum value at specimen failure ξ = 30 FE%. The results of these tests clearly depicted how
substantial the differences can be between the formation of deformation-induced α’-martensite in
the same type of austenitic stainless steel due to differences in chemical composition and grain size
and consequently the material’s metastability. It should be noted that both batches had a chemical
composition within the range given in international standards for the investigated steel type.
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4.1.2. Elevated Temperature T = 300 ◦C

Single step total-strain control fatigue tests in the LCF regime at 300 ◦C were performed with total
strain amplitudes 0.8% ≤ εa,t ≤ 1.6%, a load frequency f = 0.01 Hz and triangular waveform. Figure 7
presents the development of the stress amplitude σa versus the number of cycles N. At 300 ◦C the
cyclic deformation behavior of the investigated steel was characterized by initial cyclic hardening,
followed by slight cyclic softening before the final stress amplitude drop associated with macro
crack propagation. The microstructural changes due to cyclic plastic deformation are described
elsewhere [46,63]. At these load parameters, no α´-martensite formation occurred and, compared to
ambient temperature, the stress amplitude was significantly lower (compared Figure 6a with Figure 7).
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4.2. HCF Behavior

For fatigue tests in the HCF regime, stress-controlled single step tests were performed. Typically,
in order to obtain the limited number of cycles Nl in the range of 106–107 cycles, test frequencies in
the range 5 Hz ≤ f ≤ 20 Hz are used for metallic materials. For Nl = 2 × 106 with a load frequency
of f = 5 Hz, about 5 days, for Nl = 2 × 107 with a load frequency f = 20 Hz, about 12 days would be
required. Usually, higher test frequencies can be used for HCF tests at ambient temperature (AT) of
metallic materials but when investigating the fatigue behavior of metastable austenitic stainless steels,
self-heating of the specimens has to be taken into account. Even if external cooling of the specimen is
undertaken, significant increases in specimen temperature cannot be suppressed [70,71]. Hence, in this
study, test frequencies for fatigue tests at nominally ambient temperature were f = 5 Hz (batch B) and
for T = 300 ◦C f = 20 Hz (batch A).

4.2.1. At Nominally Ambient Temperature

To characterize the cyclic deformation and transformation behavior during cyclic loading in the
HCF regime, specimens taken from batch B were cyclically loaded in stress-controlled single step tests
with stress amplitudes in the range 225 MPa ≤ σa ≤ 280 MPa. In Figure 8a the resulting developments
of plastic strain amplitude εa,p are plotted against the number of cycles N. The εa,p,N curves illustrate
pronounced cyclic hardening after a short period of initial cyclic softening. Cyclic hardening is caused
by an increase in dislocation and stacking fault density, as well as by formation of deformation-induced
α´-martensite (Figure 8b). A positive influence of α´-martensite formation on fatigue life was observed,
because austenite-α´-martensite transformation causes cyclic hardening, which significantly reduces
plastic strain amplitude. Similarly, total-strain controlled fatigue tests in the LCF regime (Figure 6),
after an incubation period dependent on stress amplitude, resulted in a continuously increasing volume
fraction of α´-martensite over the number of cycles. With increasing stress amplitude, the onset of
α´-martensite formation was shifted to lower N and higher α´-martensite fractions were measured at
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specimen failure. This development of α´-martensite in stress-controlled tests was comparable to the
results given in [16] as well as for total-strain controlled fatigue tests shown in Figure 6c. However,
with 1.7 FE% < ξ < 8.8 FE% the maximum values of α´-martensite at specimen failure/ultimate number
of cycles were significantly lower compared to total strain-controlled LCF tests. The change in the
specimen temperature during the fatigue tests is shown in Figure 8c. As in the LCF tests, changes in
temperature were used to detect cyclic deformation behavior. However, in the stress-controlled fatigue
tests, an increase in temperature correlated with an increase of the σ-ε hysteresis loop area, indicating
cyclic softening, whereas a decrease in temperature correlated with a decrease of the σ-ε hysteresis loop
area, and characterized cyclic hardening. Besides using ∆T to characterize cyclic deformation behavior,
information about the general amount of self-heating is provided (Figure 8c). In consideration of
Equation (4), a maximum specimen temperature of 102 ◦C was achieved while the value of ∆T signal
shows 53 K. As is known, temperature has a significant influence on deformation-inducedα´-martensite
formation and consequently fatigue life. In literature [5,72–79] the fatigue life of metastable austenitic
stainless steels is given as S-N curves obtained by fatigue testing with load frequencies up to 150 Hz.
Obviously, specimen temperatures in HCF tests with frequency higher as 2 Hz were higher than
ambient temperature; however, the information about the specimen temperatures is not at all times
given. To obtain HCF results at true AT or at temperatures around 25 ◦C–30 ◦C, fatigue tests with
significantly lower frequency, e.g. f = 0.2 Hz, have to be performed. This requires 115 days of test
duration to achieve NL = 2 × 106, i.e. a duration that is impractical for systematic investigation of
HCF behavior due to high resource expenses. In conclusion, to obtain representative results in the
HCF regime in a reasonable time, it is necessary to perform fatigue tests of metastable austenite with
variable test frequencies during single step fatigue tests, which effectively suppress self-heating of
e.g. ∆Tmax < 10 K. Therefore, it has to be noted that the presented results (and many others given in
literature [5,72–79], especially regarding the development of α´-martensite and its influence on fatigue
life) are influenced by specimen temperature, which needs to be taken into consideration.
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4.2.2. Elevated Temperature T = 300 ◦C

Figure 9 shows the development of plastic strain amplitude during fatigue loading of HCF
specimens from batch A at 300 ◦C with a frequency f = 20 Hz. As these fatigue tests were performed at
elevated temperature, a higher test frequency can be used to achieve a reasonable short testing time.
At the beginning of the fatigue tests, cyclic softening was detected for all stress amplitudes followed by a
saturation state for stress amplitudes 165 MPa ≤ σa ≤ 200 MPa and finally crack growth up to specimen
failure. Inversely, the stress amplitude of 160 MPa, after initial softening up to about 2 × 104 cycles, led
to cyclic hardening, which reduced plastic strain amplitude down to zero. Consequently, macroscopic
elastic cyclic loading occurred and at this stress amplitude the limit number of cycles Nl = 2 × 107 was
achieved without failure. Ex situ magnetic Feritscope™measurements quantified 0.13 FE% for this
specimen and 0.00 FE% for all loadings > 160 MPa. That is, for only a small load amplitude at 300 ◦C,
a change in the cyclic deformation behavior occurred from softening/saturation to cyclic hardening.
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This change in cyclic deformation character was also observed during total strain-controlled fatigue
tests and detected in situ using electromagnetic induced ultrasonic signals in the specimen [46,47,63].
At 300 ◦C, the investigated batch A showed no α´-martensite formation during monotonic tensile
loading (see Table 2) as well as in LCF [46,47,63] and HCF regimes at “higher” loading amplitudes
(see Figures 7 and 9). As mentioned in the introduction, the cyclic deformation behavior of metastable
austenitic steels depends on load parameters such as stress amplitude, frequency, and temperature,
and results in different microstructural changes from planar dislocation slip, over wavy slip, until
the development of stacking faults, twins, as well as ε and α´-martensite (see. Figure 1). As the
volume fraction of α´-martensite measured by Feritscope™ is relatively low (ξ = 0.13 FE%) further
microstructural changes have to play a role in the cyclic hardening of metastable austenitic steel at low
stress amplitude in fatigue testing at 300 ◦C, which are still not entirely investigated and explained.
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4.3. VHCF Behavior

VHCF behavior was investigated at AT using an ultrasonic fatigue system (Figure 3d) at stress
amplitudes 180 MPa ≤ σa ≤ 283 MPa, and a load frequency f = 20 kHz, while at T = 300 ◦C a
servohydraulic test system was used and stress amplitudes 120 MPa ≤ σa ≤ 190 MPa were applied at a
load frequency f = 980 Hz. All VHCF tests were performed on specimens from batch A.

4.3.1. Ambient Temperature

As σ-ε hysteresis measurements are (to date) not realizable during ultrasonic fatigue testing,
and due to the macroscopically elastic behavior in the lower HCF/VHCF regime, the cyclic deformation
behavior cannot be characterized using conventional data like εa,p, N curves. However, in situ
measurement of further physical data, such as changes in the specimen temperature before and after a
pulse sequence, dissipated energy and generator power, as well as “quasi in situ” measurement of
magnetic properties, can be used to describe the cyclic deformation and transformation behavior of
metastable austenites during fatigue testing in the VHCF regime. Figure 10 shows the aforementioned
data and, in addition, the displacement amplitude as well as load frequency during an ultrasonic
fatigue test with a stress amplitude of 250 MPa. After an approximately stationary phase up to N = 106,
cyclic hardening occurred which could be detected by a strong increase in α’-martensite content. As
mentioned before, and illustrated in Figure 4, α’-martensite formation promotes transient material
behavior. To keep the displacement amplitude close to a constant value of 9.5 µm, corresponding to
a stress amplitude of 250 MPa, the PID parameters of the ultrasonic testing system were stepwise
readjusted. The cyclic hardening of the material resulted in lower self-heating illustrated by a decreasing
change in temperature. This aspect enabled longer pulse and shorter pause times which resulted in a
higher effective frequency. As described in Section 3, a stepwise increase of the pulse pause ratio up to
0.72 s/0.8 s, which represents an effective frequency feff = 1650 Hz, led to achieving the ultimate number
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of cycles within 25 days. After N = 1 × 108 load cycles, a lower α‘-martensite formation rate dξ/dN
occurred and until the limiting number of cycles a saturation state with a stabilized α‘-martensite
content of ξ = 2.2 FE% was reached. At the same time, temperature as well as displacement amplitude
remained constant. In this phase, further adjustments of the displacement control were not necessary.
The S-N curve resulting from single step tests is given in Figure 12c. Cyclic plastic deformation of
metastable austenite at ambient temperature led to significant changes in phase distribution from
single-phase austenitic to two-phase austenite/α´-martensite microstructures. At ambient temperature,
and at all load amplitudes σa > 240 MPa, formation of α’-martensite in the range 0.3 FE% ≤ ξ ≤
2.3 FE% took place. However, at smaller stress amplitudes σa < 240 MPa no deformation induced
α’-martensite was measured. Fatigue failure only occurred in the HCF regime and no specimen failed
in the VHCF regime beyond N = 107 load cycles. Accordingly, a true fatigue limit exists for metastable
austenite [80,81].
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4.3.2. Elevated Temperature T = 300 ◦C

High precision stress-strain hysteresis measurement suitable to quantify microplastic deformations
at low load amplitudes is, as with ultrasonic fatigue, impossible for tests using servohydraulic systems
with a load frequency f = 980 Hz. The S-N Woehler curve resulting from constant amplitude fatigue
tests at this frequency at 300 ◦C is given in Figure 12c. Similar to the HCF behavior at 300 ◦C at low stress
amplitude, a very low volume fraction of α’-martensite was detected in the specimen which achieved
the limit number of cycles Nl = 5 × 108. Since the Ferritscope™ sensor cannot be used in situ at this
testing temperature, the kinetics of α’-martensite development was analyzed by an interrupted VHCF
test with a stress amplitude of 160 MPa. At defined load cycles, ex situ Feritscope™measurements
were taken at the specimen surface at ambient temperature. Figure 11 shows no α´-martensite up to
N = 1 × 107. The onset of α´-martensite formation occurred between N = 1 × 107 and N = 1 × 108.
At N = 1 × 108 0.12 FE% and at N = 5 × 108 0.13 FE% were measured without specimen failure. As the
measured volume fraction of α´-martensite was very low, further microstructural changes had to play
a role in the cyclic hardening of metastable austenitic steel in the VHCF regime at 300 ◦C.
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5. Summary

Figure 12 summarizes the results from fatigue tests on AISI 347 in LCF, HCF and VHCF regimes
at AT and 300 ◦C in the form of S-N curves. The influences of metastability of two different batches
of AISI 347 on cyclic deformation behavior are clearly seen in LCF tests at ambient temperature
(see Figure 6). The determined total strain-controlled fatigue life in the LCF regime at AT and 300 ◦C
is similar (Figure 12a). However, significantly different cyclic deformation behavior was observed.
At AT, cyclic hardening due to α´-martensite formation took place and the transformation from a
single-phase austenitic to two-phase austenite/α´-martensite microstructure developed. The results
epitomize a “dynamical composite material” with changing volume fraction and distribution of
“reinforcements” during cyclic loading. At 300 ◦C in the LCF regime, no α´-martensite was measured
and cyclic deformation behavior showed slight initial cyclic hardening followed by saturation/softening.
Despite significantly different cyclic deformation behavior and resulting stress amplitudes in AT and T
= 300 ◦C, respectively, similar fatigue lifetimes were estimated. However, the specimens loaded at
AT achieved stresses higher than the ultimate tensile strength. A positive influence of α´-martensite
formation on fatigue life was observed in stress-controlled fatigue tests in the HCF regime (Figure 12b)
where austenite-α´-martensite transformation caused hardening, which significantly reduced the
plastic strain amplitude and led to increased fatigue life. The α´-martensite formation occurred in
all fatigue tests at AT. At 300 ◦C, albeit specimens loaded with low stress amplitude showed a very
small volume fraction of α´-martensite. These specimens achieved the limit number of cycles without
failure. A comparison of the S-N curves from tests at AT with T = 300 ◦C clearly showed a decrease in
fatigue strength with an increase of temperature (Figure 12b). Similar behavior was observed for VHCF
tests at AT and 300 ◦C (Figure 12c). At AT, higher fatigue strength existed, which correlated with the
development of α´-martensite at each load amplitude. At 300 ◦C, only specimens with the formation
of a low volume fraction of α´-martensite achieved the limit of the number of cycles without failure.
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6. Conclusions

The present study characterized fatigue behavior of metastable austenitic stainless steels in the
LCF, HCF and VHCF regimes at two temperatures, i.e. ambient temperature and 300 ◦C. Based on the
acquired results, the following conclusions were drawn:

• The metastability of austenitic Cr-Ni steels can, even within the specifications given in international
standards, e.g. for AISI 347 stainless steel, strongly vary due to relatively small changes in
chemical composition.

• Different metastability of austenitic stainless steel affects the cyclic deformation and, consequently,
the fatigue lifetime behavior.

• This is caused by the fact that during fatigue, various deformation (planar or wavy slip character,
formation of stacking faults, twinning) and transformation (γ -> ε, γ -> ε ->α´, γ ->α´) mechanisms
with different peculiarity take place.

• The investigated metastable austenitic stainless steel AISI 347 showed a true fatigue limit in the
VHCF regime at AT and 300 ◦C.

• Further microstructural investigations have to be performed with focus on the development
of deformation/transformation mechanism maps dependent on metastability parameters, e.g.
stacking fault energy and loading parameters, in the LCF, HCF and VHCF regimes in accordance
with deformation maps known in the literature [52–54] for stable materials.
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