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Abstract: Generally, the Cu-bearing direct reduction iron powder (CBDRI) obtained from a direct
reduction-magnetic separation process of waste copper slag contains a high content of impurities
and cannot be directly used to produce Cu-bearing special steel. In this paper, further smelting
treatment of CBDRI was conducted to remove its impurities (such as S, SiO2, Al2O3, CaO and MgO)
and acquire a high-quality Fe–Cu master alloy. The results show that the Fe–Cu master alloy, assaying
95.9% Fe, 1.4% Cu and minor impurities, can be obtained from the smelting process at 1550 ◦C for
40 min with 1.0 basicity. Meanwhile, the corresponding iron and copper recoveries are 98.6% and
97.2%, respectively. Theoretical calculations and experimental results show that appropriate basicity
(0.9~1.1) is beneficial for the recovery of Fe and Cu from a thermodynamic viewpoint due to the
excellent fluidity of the slag in this basicity range. Moreover, the mechanism of desulfurization was
revealed by calculating the sulfide capacity and the desulfurization reaction kinetics. Increasing the
binary basicity of the slag benefits both the sulfide capacity and diffusion coefficient of the sulfur in
the molten slag, resulting in higher desulfurization efficiency and lower S content in the master alloy.

Keywords: Cu-bearing direct reduction iron; smelting; Cu-bearing steel; basicity; sulfide
capacity; desulfurization

1. Introduction

Cu-bearing steel is characterized by high strength, excellent corrosion resistance and high antibacterial
ability [1–4]. Based on this characterization, many kinds of Cu-bearing steels, such as weathering
steel, antibacterial stainless steel and high-strength steel (HSAL serials), have been rapidly developed in
recent years [5–7]. Generally, conventional Cu-bearing steel production methods require the addition of
electrolytic copper to adjust the copper content in the products [8–10]. Unfortunately, with the depletion of
high-grade copper mineral resources in the world, the production costs for electrolytic copper remains high.
This problem could ultimately lead to higher production costs for Cu-bearing steel. However, low-cost
ferroalloy (Fe–Cu alloy) may replace electrolytic copper in the production of the Cu-bearing steels, which
provides the possibility of innovation lowering technology costs.

Copper smelting slag typically contains 40% Fe and 1% Cu and can be considered as an important
secondary resource for utilization [11]. Recently, researchers have proposed processes to recover
valuable metals from copper slag [12–17]. However, those processes mainly focused on Cu recovery
while totally neglecting Fe recovery. Direct reduction process, as a novel process, was developed to
treat the copper slag [8,10,18–22]. In this process, the iron oxides and copper bearing minerals were
reduced to metallic iron and copper. The metallic copper dissolves into metallic Fe lattices to form a
Fe–Cu solid solution (Fe–Cu alloy). The Fe–Cu solid solution can then undergo subsequent grinding
and magnetic separation processes. Therefore, this process can fulfil the comprehensive recovery of
Fe and Cu from copper slag and attain Fe–Cu direct reduction iron powder (CBDRI). CBDRI could
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potentially substitute for scrap steel and electrolytic copper in the production of Cu-bearing steel
and may lead to lower costs for steel production. However, most CBDRI is not suitable for being
directly used in steel production due to its high impurity concentration (SiO2, Al2O3, CaO, MgO and
S), therefore, a necessary extra smelting step to remove those impurities and obtain a higher Fe–Cu
alloy purity is indispensable. There are few investigations, however, on CBDRI for the production of
Cu-bearing steel master alloy via electric furnace smelting.

CBDRI has been successfully prepared from copper smelting slag by a direct reduction-magnetic
separation process as reported in our earlier paper [10]. The aim of this research is to produce a
high-quality Fe–Cu master alloy from CBDRI by a smelting process and directly use the master alloy as
the raw material to produce Cu-bearing steel by an electric arc furnace to replace part of the electrolytic
copper and scrap steel. Additionally, the desulfurization behavior and its mechanism in the smelting
process were revealed in this work.

2. Experimental

2.1. Raw Materials

The Fe–Cu direct reduction iron powder (CBDRI)used in this study was obtained from the direct
reduction and magnetic separation of copper smelting slag. The chemical mass composition of CBDRI
shown in Table 1 and demonstrate that CBDRI contains 90.33% Fe and 1.29% Cu, which are potential
materials for the preparation of copper bearing steel. Some undesirable impurities, such as SiO2,
Al2O3, CaO, and MgO, are also found in the CBDRI. In particular, the S content in CBDRI is as high as
0.3%, which is extremely harmful to the production of Cu-bearing steel. The smelting treatment of the
CBDRI is necessary to ensure the quality of the alloy. Furthermore, the size distribution of CBDRI
presented in Figure 1 shows that the CBDRI is very fine, with over 90% below 0.074 mm.

Table 1. Chemical compositions of CBDRI (wt %).

Fe Cu S MFe SiO2 Al2O3 CaO MgO Na2O C P

90.33 1.29 0.30 87.54 3.62 0.56 1.09 0.29 0.07 0.78 0.012
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Figure 1. Size distribution of CBDRI. Figure 1. Size distribution of CBDRI.

The chemical composition of limestone is shown in Table 2. Limestone containing 55.73% of CaO
was used as both a flux and desulfurizer to adjust the binary basicity (ratio of CaO/SiO2) and remove
sulfur in the smelting process. Its particle size was less than 0.074 mm.
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Table 2. Chemical compositions of limestone(wt %).

CaO Al2O3 SiO2 MgO P S MnO LOI

55.73 1.19 4.13 2.05 0.001 0.001 0.02 41.52

2.2. Experimental Methods

2.2.1. Smelting Process

The smelting tests were performed under a controlled environment in a vertical MoSi2 heating
furnace (schematic diagram of the smelting furnace is shown in Figure 2). The proportion integral
differential (PID)temperature control programme in the furnace was used to limit the temperature
fluctuation range to ±5 ◦C. In each test, 30 g of CBDRI were mixed uniformly with the required
amount of limestone. The mixtures were then loaded into a 50 mL corundum crucible. When the
furnace temperature was raised to the smelting temperature (1515~1600 ◦C), the crucible was quickly
placed into the heating zone of the furnace and smelted for a given period of time (10~60min) under
a N2 atmosphere. At the end of smelting, the crucible was taken out of the furnace and quickly
cooled under the cover via coke breeze. Finally, the crucible was broken to separate and weigh the
Fe–Cu alloy and slag carefully for sample preparation. The samples were then prepared to assay the
chemical compositions.
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The recovery rate of iron and Cu ηwas calculated from Equation (1):

η =
M1 × TM1

M0 × TM0
× 100% (1)

where η is the recovery rate of Fe or Cu; M1 is the mass of the Fe–Cu master alloy; TM1 is the grade of
Fe or Cu in the master alloy; M0 is the mass of CBDRI; TM0 is the grade of Fe or Cu in CBDRI.

2.2.2. Analytic Tests

A thermodynamic package FactSage (Version 7.0) software (GTT-Technologies, Herzogenrath,
Germany) was used to calculate the phase diagram of Fe–Cu-C, SiO2-Al2O3-CaO-MgO and the
viscosity of the molten slag. The phase compositions of the samples were investigated using an X-ray
diffractometer (XRD, D/max 2550 PC, Rigaku Co., Ltd, Tokyo, Japan). Microstructure analyses of
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master alloy were observed by a Leica DMLP optical microscopy, FEI Quata-200 scanning electron
microscope (SEM, TESCAN, MIRA3 LMU, Brno, Czech Republic) and an EDAX energy dispersive
X-ray spectrometer (EDS). The SEM images were recorded in backscatter electron modes operating in
the low vacuum mode at 0.5 Torr and 20 keV.

3. Results and Discussion

3.1. Thermodynamics Calculations of Smelting Process

The thermodynamics calculations for the molten slag and alloy in smelting process were conducted
by FactSage 7.0 to analyse the feasibility for separation between the slag and master alloy. The quaternary
phase diagram of the CaO–MgO–SiO2–Al2O3 primary slag is presented in Figure 3 and shows that the
primary slag possesses the appropriate liquidus temperature at approximately 1450 ◦C.
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In addition, the liquid projection of the ternary alloy was carried out; the results are shown in
Figure 4. The liquidus temperature of this ternary alloy was near 1450 ◦C. Based on the Figures 3 and 4,
the smelting temperature should be 1500~1550 ◦C to ensure a good separation between alloy and slag
and to keep a superheated temperature range.

3.2. Smelting Process of CBDRI

As shown in Table 1, iron and copper, as the main valuable metals in DRI, should be considered
first for recovery. Therefore, the experiments on the effect of smelting conditions on Fe and Cu recovery
and quality of the master alloy were carried out systematically.
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3.2.1. Effect of Smelting Temperature

Undoubtedly, smelting temperature has a significant effect on the smelting process. The effect of
the smelting temperature on Fe and Cu recovery and the quality of the master alloy was investigated.
The results (Figure 5) show that with an increase in the smelting temperature, the Fe and Cu recovery is
elevated and maintained approximately 96%. Additionally, the S content of the master alloy decreased
sharply and was maintained at 0.13%. When the smelting temperature was over 1550 ◦C, all indexes
slightly changed.
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with 0.7 binary basicity).

Generally, high temperatures are beneficial for improving the fluidity and decreasing the
viscosity of molten slag, thus, resulting in a better settling and separation of the alloy particles.
Therefore, the recovery of Fe and Cu increased as the temperature increased. In addition,
the desulfurization reaction in the smelting process is an endothermic reaction, and higher temperatures
are favourable for the desulfurization in view of the thermodynamics principles. Furthermore, based
on dynamics theory, higher temperatures are also capable of promoting the diffusion of S2− and O2−

ions from an alloy phase to a slag phase, and ultimately improve the desulfurization efficiency [23].
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Therefore, the suitable smelting temperature for the smelting of CBDRI is suggested at 1550 ◦C, which
is in accordance with the thermodynamics analysis.

3.2.2. Effect of Smelting Duration

Smelting duration is believed to have a significant effect on the Fe and Cu recovery and the Fe–Cu
master alloy quality. Figure 6 shows the effect of the smelting duration on the Fe and Cu grade and
recovery and the removal of S. As the smelting duration increased from 10 min to 40 min, the Fe and
Cu recovery increased from 94.4% and 93.8% to 98.2% and 95.8%, respectively. Correspondingly, the S
content of the Fe–Cu master alloy presented a decreasing trend from 0.18% to 0.1%. Furthermore, the Fe
and Cu grade of the master alloy changed slightly. When the smelting duration was further prolonged,
the Fe and Cu recovery and S content were improved insignificantly.
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These results imply that the insufficient smelting time cannot ensure that the desulfurization
reaction and the settling of the Fe–Cu master alloy will carry out thoroughly, thus, leading to low metal
recovery and poor alloy quality. Therefore, 40 min is appropriate for the simultaneous recovery of Fe
and Cu and the removal of S.

3.2.3. Effect of Binary Basicity

The influence of binary basicity on Fe and Cu recovery and the removal of S illustrated in Figure 7
and demonstrates that the binary basicity had a prominent effect on the smelting effect. Fe and Cu
recovery first rose and then dropped as the binary basicity increased from 0.3 to 1.5. The recovery
of Fe and Cu reached a maximum value of 98.6% and 97.2%, respectively, at 1.0 basicity when the
basicity changed from 0.3 to 1.5. While the S content of the Fe–Cu master alloy decreased from 0.150%
to 0.039% during the binary basicity test. These results suggest that approximate basicity is in favour
of the separation between the Fe–Cu alloy and slag, and the removal of S.

The influence of binary basicity on the smelting process may be due to changes in slag viscosity.
The contour map of the change in the viscosity at various temperatures and basicity’s is shown in
Figure 8. The map illustrates that raising the temperature or approximately increasing the binary
basicity is beneficial in improving the slag fluidity. It is worth noting that excessively high or low
binary basicity results in a higher viscosity of the molten slag. Limestone can break the silicate and
aluminosilicate bonds, and thereby increase the fluidity of the slag [24]. However, when the basicity
is over 1.1 (e.g., the addition of limestone is excessive), less liquid phase (as seen in Figure 9) and
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more refractory solids, such as Ca2SiO4 (as seen in Figure 3), are generated, therefore, resulting in a
molten slag with poor fluidity, which is detrimental to the smelting kinetics and phase separation.
Ultimately, a basicity over 1.1 leads to low recovery of the Fe and Cu. Moreover, the viscosity of the slag
will tend to be at its minimum when the basicity is controlled in a range of 0.9~1.1. Therefore, based on
the experimental results, the optimum basicity is recommended at 1.0.
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3.3. Mechanism of Desulfurization

It is well known that sulfur has adverse effects on the performance of steel products, such as its
strength, ductility, and toughness [25]. As noted in the above experimental results, the basicity of
the slag plays a significant role in desulfurization during the smelting process. To further reveal the
mechanism of desulfurization, the sulfide capacity of the slag was calculated and the desulfurization
kinetics were investigated.

3.3.1. Sulfide Capacity (CS) of Slag

The sulfide capacity (CS) and equilibrium distribution ratio of sulfur (LS) are important indicators
for measuring the desulfurization capacity of a slag system. In this paper, the optical basicity model
was introduced to predict the CS of various slags with different basicity’s [23,26]. Optical basicity was
calculated by the model shown in Equation (2):

Λ =
n∑

B=1

χBΛB (2)

where Λ is optical basicity, χB is mole fraction of oxide cations, which is also defined as the fraction of
each cationic charge neutralizing the negative charge.

Hence, the χB can be calculated as the following:

χB = noχ
′

B/
∑

noχ
′

B (3)

where χ′B is the mole fraction of oxides, no is the number of oxygen in each oxide component.
Combining Equation (2) with (3), Young’s model was adopted to calculate the sulfide capacity

in Equation (4), because it is an easy calculation, has a wide application scope and a high level of
accuracy [27,28].

lgCS = −13.913 + 42.84Λ −
11710

T
− 0.02223w(SiO2) − 0.02275w(Al2O3) (4)

where CS is the sulfide capacity of slag, Λ is optical basicity; w(SiO2) is mass fraction of SiO2 in slag,
w(Al2O3) is mass fraction of Al2O3 in slag.



Metals 2019, 9, 701 9 of 13

Based on Equation (4), the sulfide capacity of the various slags with different basicity’s can be
calculated and the results are shown in Figure 10. The temperature and basicity have a positive
effect on the sulfide capacity of the slag. The sulfide capacity increases by increasing the basicity and
temperature. This result means that the slag with the higher basicity has a greater ability to hold and
remove more sulfide from the metal phase, resulting in an improvement in desulfurization efficiency
and lower S content in the Fe–Cu master alloy. The results of the theoretical calculations agree with the
experiments shown in Figures 5 and 7.
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3.3.2. Desulfurization Reaction Kinetics of Slag with Different Basicity

As previous work has shown, the desulfurization process consists of five steps: (1) mass transfer
of [S] from the metal phase to the interface between the metal and slag; (2) mass transfer of (O2-) from
the molten slag to the interface between the metal and slag; (3) an interfacial electrochemical reaction at
the interface of the metal and slag; (4) mass transfer of the S2- generated in interfacial chemical reaction
from the interface to the molten slag; (5) mass transfer of O2- generated in the interfacial chemical
reaction from the interface to the molten metal [28,29].

Compared with the diffusion steps, the rate of the electrochemical interfacial reaction is much
faster under a high smelting temperature. In view of that, the overall desulfurization rate is controlled
by the mass transfer. Moreover, the diffusion coefficient of S is tens of times higher than that of
O, and the diffusion coefficient of sulfur in the metal is about two orders of magnitude larger than
that in the slag phase [28–30]. Hence, the control process of the desulfurization reaction is the mass
transfer of S in the slag, which was also confirmed by previous work [28,30–32]. Based on this result,
the desulfurization rate equation can be expressed as the following:

−
d[%S]

dt
=

A
Vm

.K{[%S] − [%S]∗ (5)

where [%S] is the S content of molten metal, [%S]∗ is the S content of the metal-slag interface, K is the
diffusion coefficient, Vm is the volume of molten metal, A is the interface area.

By integrating Equation (5), the following rate formulas could be deduced as follows:

In
[%S]0 − [%S]F
[%S]t − [%S]F

= k
1
H

t (6)



Metals 2019, 9, 701 10 of 13

where [%S]0 is the S content in the molten metal at the initial stage, [%S]t is the S content in the molten
metal at a time (t) during the reaction, [%S]F is the S content in the molten metal under equilibrium
conditions, H is the height of the molten metal, k is the diffusion coefficient, t is the reaction time.

Figure 11 shows the change in sulfur content with time and slag basicity in the alloy samples.
By prolonging the reaction time, the S content in the metal decreased. Additionally, increasing the slag
basicity can also significantly lower the S content in the metal.Metals  10 of 18 
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According to the slope of the line for the fitted curves (as seen in Figure 12), the diffusion coefficient
can be determined, and the results are shown in Table 3. The diffusion coefficient for desulfurization
reaction of 0.7 basicity slag was 0.78 × 10−3 cm/s, whereas increasing the basicity to 1.0 and 1.6,
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the diffusion coefficient elevated to 0.92 × 10−3 cm/s and 1.05 × 10−3 cm/s, respectively. These results
mean that the slag basicity can promote the mass transfer of S in the slag phase and accelerate the
progress of the desulfurization reaction. As a result, the higher basicity allows for better desulfurization
efficiency and lower S content of the Fe–Cu alloy.

Table 3. Diffusion coefficient of sulphur in alloy melt (cm/s).

Items
Basicity R

0.7 1.0 1.6

Diffusion coefficient 0.78 × 10−3 0.92 × 10−3 1.05 × 10−3

3.4. Characterization of the Fe–Cu Master Alloy

The superior Fe–Cu master alloy can be obtained under the optimum smelting conditions of
1550 ◦C, 40 min and 1.0 basicity. The chemical composition of the Fe–Cu master alloy is shown
in Table 4. The alloy contains 95.9% Fe, 1.4% Cu and some minor impurities. The total content of
valuable metals is as high as 97.3%. In addition, the S content of the master alloy decreased to 0.055%.
The final product can be used along with scrap steel for the preparation of Cu-bearing steel by electric
arc furnace.

Table 4. Chemical compositions of Fe–Cu master alloy (wt %).

Fe Cu S SiO2 Al2O3 CaO MgO Na2O P Zn Pb

95.86 1.36 0.055 0.10 0.32 0.053 0.027 0.005 0.01 0.01 0.009

Figure 13 shows the microstructures of master alloy and chemical compositions under SEM and
EDS. These results show that the master alloy is very uniform and pure. Through EDS analysis of a
micro zone, the alloy contains 98.6% Fe and 1.4% Cu, and no obvious impurities were found, which
further confirms the good performance of this master alloy.
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4. Conclusions

Experimental studies for the smelting process of CBDRI to prepare the Cu-bearing steel master
alloy have been carried out in this work, and the mechanism of desulfurization was revealed as well.
The following conclusions can be drawn:

(1) A high quality Fe–Cu master alloy, assaying 95.9% Fe, 1.4% Cu and minor impurities, can be
obtained from the smelting process under the optimum conditions of 1550 ◦C, 40 min and 1.0 basicity.
The corresponding iron and copper recoveries are 98.6% and 97.2%, respectively. Through the smelting
process, the total metal content in the alloy was increased, and the S content was significantly decreased
to 0.05%, which is beneficial to the production of clean steel. It also confirms the necessity of further
smelting for CBDRI.

(2) Suitable basicity of the molten slag favours an increase in the recovery of Fe and Cu, which
results from a rise in the amount of liquid and the improvement in the slag fluidity. In particular,
the optimum binary basicity is in the range of 0.9~1.1.

(3) The theoretical calculation results show that the sulfur capacity of the slag elevated with the
increasing temperature and basicity, which benefits the desulfurization efficiency. The desulfurization
reaction kinetics show that increasing the slag basicity contributes to the diffusion coefficient of the
sulfur in the molten slag.
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