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Abstract: A method of conventional roasting pretreatment combined with ultrasonic enhanced
leaching with ammonium acetate was proposed to solve the difficult problem of lead in electrolytic
manganese anode mud. The effects of concentration, liquid–solid ratio, temperature, leaching time
and rotating speed on the leaching process under conventional and ultrasonic conditions were studied,
and the lead leaching rate can be as high as 93.09% under optimized process parameters. A leaching
kinetic model under conventional and ultrasonic conditions was established to explore the restrictive
links of the leaching process. The results show that the leaching process under both conventional
and ultrasonic conditions is controlled by diffusion, and the activation energies are 29.40 kJ/mol and
26.95 kJ/mol for the conventional and ultrasound enhance leaching processes, respectively.

Keywords: electrolytic manganese anode mud; ultrasound enhance; roasting; dynamics modeling;
lead

1. Introduction

Manganese and lead are important industrial raw materials that are widely used in our daily
lives [1]. In the process of producing manganese, the method of carbothermal reduction smelting of
electric arc furnaces is mainly used. Manganese with impurities continues to be refined by electrolytic
refining [2]. However, in the electrolytic refining process, a large amount of electrolytic manganese
anode mud is produced with a lead content of about 7%. During the return smelting process of
electrolytic manganese anode mud, the lead evaporates first and causes the purity of manganese to
decrease [3,4]. Therefore, the removal of lead from electrolytic manganese anode mud becomes the key
and difficult point of utilization of electrolytic manganese anode mud. Studying the characteristics of
electrolytic manganese anode mud and its resource utilization are of great significance for reducing
environmental pollution and the sustainable development of the electrolytic manganese industry.

In recent years, a large amount of research has been conducted on the comprehensive utilization of
electrolytic manganese anode mud. Tang et al. [5] analyzed the mineralogical characteristics of anode
mud and the form of impurities in anode mud, and a method involving high-temperature volatilization
is proposed to remove impurities such as Pb, Sn, and S in the anode mud. Although this method has a
certain impurity removal effect, it consumes a lot of energy and pollutes the environment. Tao et al. [6]
proposed the use of a mixture of dilute sulfuric acid and a small amount of NaCl (wt = 5%) to activate
the anode mud and then use hydrometallurgical leaching to remove lead. Although the cost is low and
the process is environmentally friendly, the efficiency is relatively low and the lead cannot be removed
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from the anode mud to a great extent. Hydrometallurgy is the most widely used method in extraction
of non-ferrous metals. Compared with pyrometallurgy, more complex, lower grade minerals can be
handled [7,8]. Moreover, there is no production of soot, which fundamentally eliminates the pollution
of lead and sulfur dioxide to the surrounding environment in the hydrometallurgical recovery process.
In addition, this treatment method has good development prospects due to high leaching rate and
low energy consumption [9,10]. It was proved that hydrometallurgy is feasible, but more stringent
experimental conditions such as high temperature and high concentration were needed. Therefore,
the ultrasonic waves introduced in this paper attempt to enhance the leaching process and make the
experimental conditions milder [11].

Ultrasonic waves are sound waves with special frequency [12]. The wide applications of ultrasonic
waves in the field of hydrometallurgy are attributed to the cavitation effect generated from their
use [13]. Shen et al. successfully improved the leaching rate of indium by employing a high
temperature–ultrasonic acid leaching method, and the leaching time was decreased when there was
ultrasound assistance [14]. Sayan et al. [15] found that the content of TiO2 increased by about 20% by
ultrasonic leaching compared with the conventional method. Brunelli and Dabalà [16] found that the
zinc leaching rate increased significantly after ultrasonic treatment in the process of zinc-containing
31.34% arc furnace soot. However, the leaching of low-grade raw materials consumes a large amount
of solvent and the leaching time is too long; therefore, the introduction of ultrasound into the leaching
process has important practical significance for hydrometallurgy.

In this work, roasting pretreatment combined with ultrasonic enhanced leaching of lead from
electrolytic manganese anode mud was proposed to solve the difficult problem of the presence of lead
in electrolytic manganese anode mud. A kinetic model was established to analyze the restrictive steps
of the leaching process of lead. Studying the characteristics of electrolytic manganese anode mud and
its resource utilization is of great significance for reducing environmental pollution and promoting its
sustainable development.

2. Materials and Methods

2.1. Materials

The electrolytic manganese anode mud was provided by Zhongxindameng of Guangxi province
Ltd. of China. Which were washed several times with an appropriate amount of sodium
dodecylbenzenesulfonate. After drying at 373 K for 2 h, the raw material was transferred to an
abrasive machine for 30 min, and then sieved through a 200-mesh sieve for use.

The brief chemical composition of the electrolytic manganese anode mud is shown in Table 1. As
shown in Table 1, the main elemental components in the electrolytic manganese anode mud were Pb,
Mn, Ca, O, S, and Fe, and the Pb content is 6.06%. X-ray diffraction (XRD, X’Pert3 powder, Sichuan,
China) and scanning electron microscopy (SEM, Phenom pro.X, Sichuan, China) analysis of the raw
materials are shown in Figures 1 and 2, respectively. The XRD pattern of the electrolytic manganese
anode mud, as shown in Figure 1, shows that the matching (mainly determined according to the peak
position) contains a large number of phases, which may contain MnO2, PbSO4, CaSO4 or Fe2Mn8O16.
After the corresponding peaks of different angles are matched with the standard card, the MnO2

in the electrolytic manganese anode mud should be a mixed crystal form composed of α-MnO2,
β-MnO2, γ-MnO2 and δ-MnO2. In addition, its XRD pattern is turbulent, the peak shape is wide, and
the crystallinity of the anode mud is not high, which indicates that the MnO2 diffraction analysis of
the anode mud is based on the characteristics of the amorphous phase. It can be seen that α-MnO2,
δ-MnO2, and γ-MnO2 with a space tunnel structure were adsorbed to accommodate Pb and K plasma,
and formed a typical colloidal system. Figure 2 shows the surface scanning distribution of seven
elements in the electrolytic manganese anode mud: Mn, S, Pb, O, Ca, and Fe. By comparing the surface
scanning maps of Pb, O and S, some locally overlapping regions in the electrolytic manganese anode
mud were found, indicating PbSO4 is present in the electrolytic manganese anode mud. At the same
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time, for Mn and O, large areas overlap, indicating many manganese oxides. Comparing the surface
scanning patterns of Ca, S and O in Figure 2, similar distribution characteristics have found, indicating
that CaSO4 also exists in the electrolytic manganese anode mud.

Table 1. Elemental composition of the electrolytic manganese anode mud (wt. %).

Element Pb Mn S O Ca Fe

Content (wt. %) 6.06 57.58 3.91 28.04 1.58 1.06
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Figure 2. Scanning electron microscopy (SEM) and element distribution map of the electrolytic
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2.2. Experimental Procedure and Instrument

All raw materials were pretreated by conventional roasting which was carried out in a laboratory
atmosphere tubular resistance furnace (SK-G06123K, Tianjin Zhonghuan Laboratory Furnace Co., Ltd.,
Tianjin, China). A schematic diagram of the conventional heating tubular electric furnace and the
corresponding exhaust gas treatment device is shown in Figure 3.
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crucible; 5 = furnace; 6 = sample; 7 = quartz tube; 8 = water; 9 = ammonia solution; 10 = dilute NaOH
solution; 11 = water; 12 = small vacuum pump).

The pretreated electrolytic manganese anode mud was subjected to a leaching experiment in
a 250 mL beaker at a constant rate of 300 rpm in a water bath. Ultrasonic waves were introduced
for enhanced leaching. The ultrasonic equipment (SKTC-500, Nanjing Ningkai Instrument Co., Ltd.,
Nanjing, China) was selected from the domestic SKTC-500 model and the frequency was 19 kHz
to 20.5 kHz. The 15 g of pretreated electrolytic manganese anode mud and the ammonium acetate
leaching solution having a concentration of 1–3 mol/L, and are added to the container at a liquid to
solid ratio of 7:1–11:1. When the magnetic stirring begins, the leaching experiment begins. The other
instruments used in the experiment were a 78HW-3 thermostatic magnetic stirrer (Yuhua Instrument
Co., Ltd., Gongyi, China) with a temperature of 298–353 K, a vacuum drying oven (101A-3, Chongming
Experimental Instrument Factory, Shanghai, China) and a SHZ-3 water circulation vacuum pump
(Yuhua Instrument Co., Ltd., Gongyi, China). Figure 4 shows the connection diagram of the ultrasonic
experimental device.
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2.3. Calculation of Lead Leaching Rate

The electrolytic manganese anode mud was filtered after leaching to obtain filter residues, the filter
residues were analyzed to obtain lead content, and the lead leaching rate was calculated as follows:

ηPb =
m1 ×w1 −m2 ×w2

m1 ×w1
× 100% (1)
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where w1 is lead content in electrolytic manganese anode mud, wt. %; w2 is lead content in the filter
residue, wt. %; m1 is the mass of the electrolytic manganese anode mud, g; m2 is the mass of the filter
residues after drying; and ηpb is the leaching rate of lead.

3. Results and Discussions

3.1. Roasting Pretreatment Experienment

The pretreatment of electrolytic manganese anode mud by roasting at different temperatures in a
tubular resistance furnace was studied. Nitrogen gas was introduced into the tubular resistance furnace
at a rate of 100 L/h, feeding 500 g each time, and the heating rate was controlled at 288 K/min, and
maintained at the specified temperature for 30 min. Under the conditions of leaching temperature at
333 K, ammonium acetate concentration at 2 mol/L, liquid–solid ratio fixed at 10:1, and rotating speed
at 300 rpm, the leaching experiments were carried out. The results (Figure 5) show that the leaching
rate of lead in electrolytic manganese anode mud pretreated by roasting is obviously higher than that in
a non-roasting process. The lead leaching rate was only 25.98% in 100 min under unroasted conditions,
while the leaching rate of manganese anode mud was increased to 88.87% when the electrolytic
manganese anode mud was pretreated by 1123 K roasting. It can be seen that roasting significantly
promotes the process of lead leaching in electrolytic manganese anode mud. This is mainly because the
electrolytic manganese anode mud is heated to promote the thermal stress between the useful mineral
and the gangue, causing cracks in the mineral particles. The dissociation effect that is difficult to achieve
by the conventional calcination method is achieved, the reaction area of the useful mineral interface is
increased, and the reaction contact area with the leaching solvent is increased [17,18]. Considering the
relationship between leaching rate and economy, the subsequent leaching experiments were carried
out under the premise of 1123 K high temperature roasting pretreatment.
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3.2. Characterization of Roasted Electrolytic Manganese Anode Mud

X-ray diffraction (XRD) and Scanning Electron Microscope Energy with Dispersive Spectrometer
(SEM-EDS) analysis of the electrolytic manganese anode mud after roasting were carried out to
investigate the effect of roasting pretreatment on the leaching process. Figure 6 shows the XRD
spectra of the 1123 K roasted electrolytic manganese anode mud. It can be seen from Figure 6 that
the characteristic peaks of MnO2 are missing, and characteristic peaks of Mn2O3 and Mn3O4 appear,
indicating that a phase transformation of the electrolytic manganese anode mud occurs after 1123 K high
temperature roasting. Figure 7 shows the morphologies of the 1123 K roasting electrolytic manganese
anode mud. In addition, the element distribution of Mn, Pb, S, O, Fe and Ca in the corresponding
regions is determined by element mapping. As shown in Figure 7, the dense structure, in which the
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materials exist in the mineral phase, is destroyed. Moreover, compared with the multi-block results of
the raw materials, the electrolytic manganese anode mud exhibits a loose agglomeration phenomenon
after the roasting pretreatment. It can be seen that the Pb, S and O elements have similar distribution
characteristics, which can be considered as PbSO4. Mn, Fe and O elements have the same distribution
characteristics in the local region, which means that MnFeO2 exists in the locally distributed region.
Ca, S, O elements shows good distribution characteristics, indicating the presence of a small amount of
CaSO4 in the electrolytic manganese anode mud.
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It is concluded that the main reasons for poor lead removal following the leaching process of
unroasted anode mud are as follows: (1) there is space resistance between Ac− and anode mud in
solution, which causes Ac− and the impurities encapsulated in anode mud (Pb2+, Pb4+) to not fully
complex, affecting the leaching effect of lead [19]; (2) lead in the anode mud participates in the lattice
composition of manganese oxide, and its bond energy is greater than the binding force of Pb and Ac−.
Lead was released from the crystal lattice of the mud following pretreatment with 1123 K roasting, and
the main impurity element is taken from the anode. At the same time, MnO2 is transformed into the
finer Mn2O3 and Mn3O4, which promote lead leaching [20].

3.3. Effects of Ammonium Acetate Concentration

The concentration of the leaching reagent is an important factor affecting the leaching rate during
the leaching process [21]. The higher the initial concentration, the greater the leaching speed. Figure 8
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shows the effect of different ammonium acetate concentrations on the leaching rate of lead under
conventional and ultrasonic conditions. The leaching process conditions are as follows: the reaction
temperature of 353 K, the reaction time is 60 min, the rotating speed is 300 rpm, ultrasonic power
is fixed at 450 W and the liquid–solid ratio is fixed at 8:1. It can be seen from Figure 8 that the lead
leaching rate increases significantly with the increase of ammonium acetate concentration under both
conventional and ultrasonic conditions. When the ammonium acetate concentration is 2 mol/L, the
lead leaching rate reaches a large value of 78.62%, which is 27.68% higher than the ammonium acetate
concentration of 1 mol/L in 60 min under conventional conditions. Moreover, the leaching rate is 10%
higher than the conventional conditions under ultrasonic conditions on average. This is because the
cavitation effect of the ultrasonic waves breaks up the solid particles of the reactants, increases the
specific surface area of the reaction, and increases the mass transfer rate, which is beneficial to the
leaching reaction and improves the leaching rate [22]. Considering the relationship between the cost of
ammonium acetate and the leaching rate, the ammonium acetate concentration was selected as 2 mol/L
as a parameter for subsequent experiments.
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3.4. Effects of Liquid to Solid Ratio

The liquid–solid ratio of the leaching pulp affects both the leaching reagent consumption and the
viscosity of the slurry, thereby affecting the leaching efficiency and subsequent treatment [23]. The
viscosity of the minerals can be reduced by increasing the liquid–solid ratio, which is beneficial to
slurry mixing, transportation, and solid–liquid separation. Under the conditions of ammonium acetate
concentration 2 mol/L, leaching temperature 353 K, leaching time 60 min, rotating speed 300 rpm,
and ultrasonic power fixed at 450 W, the effects of different liquid–solid ratios on lead leaching were
investigated. The results are shown in Figure 9. It can be seen from Figure 9 that the lead leaching
rate increases with the increase of the liquid–solid ratio. The lead leaching rate increases from 72.14%
to 87.94% under conventional conditions, while it increases from 80.13% to 94.98% under ultrasonic
conditions when the liquid–solid ratio increases from 7:1 to 10:1. Under same leaching conditions,
ultrasonic leaching performed better than conventional leaching in terms of leaching effect: when the
liquid–solid ratio is 10:1, the leaching rate of Pb under ultrasonic conditions is 94.98% which is 7%
higher than that of conventional conditions, and even more higher than the conventional leaching of
liquid–solid ratio of 11:1 (89.61%). It indicates that the introduction of ultrasonic waves can improve
the leaching rate while reducing the liquid–solid ratio of the leaching process. A high liquid–solid
ratio in the leaching process required more sophisticated apparatus [24]. Therefore, 10:1 was chosen as
the parameter of the subsequent experiment by considering apparatus requirements and the efficiency
of material processing.
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3.5. Effect of Temperature

The effect of different reaction temperatures on lead leaching was investigated under the conditions
of ammonium acetate concentration of 2 mol/L, liquid–solid ratio of 10:1, leaching time of 60 min,
rotating speed of 300 rpm and ultrasonic power fixed at 450 W. The results are shown in Figure 10. It
can be seen from Figure 10 that the leaching rate of Pb reaches 91.23% under the ultrasonic condition of
333 K, even higher than the leaching rate of 353 K for conventional leaching. This is mainly because the
ultrasonic cavitation effect enhances the mass transfer effect and the activity of the various substances
in the reactants. Therefore, the introduction of ultrasonic waves can increase the leaching rate and
lower the reaction temperature. When the temperature increases to 343 K, the lead leaching rate
increases slowly, about 1%. The reaction temperature significantly accelerates the diffusion and mass
transfer effects, accelerates the progress of the reaction, and maximizes the dissolution of lead in a
relatively short period of time, while avoiding the adverse effects of low leaching rate due to rapid
evaporation of the leaching agent with increasing temperature [25]. While the other process parameters
are optimized, taking the impact of energy consumption and environment into consideration, 343 K is
preferred for subsequent leaching.
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3.6. Effects of Leaching Time

The effect of leaching time on the leaching rate of lead was studied under conventional and
ultrasonic conditions with an ammonium acetate concentration of 2 mol/L, a rotating speed of 300 r/min,
a leaching temperature of 343 K, a liquid–solid ratio fixed at 10:1 and ultrasonic power fixed at 450 W.
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The result is shown in Figure 11. The leaching rate of lead increased from 80.34% to 88.05% in the
process of increasing the reaction time from 20 min to 100 min under conventional conditions. The
leaching rate at 20 min under ultrasonic conditions was 87.03%, which higher than the leaching rate
at 60 min under conventional conditions. The lead leaching rate did not increase significantly when
the leaching time was extended to 60 min. Considering the extension of the leaching time, the energy
consumption is increased, and the conventional leaching time is selected as 60 min.Metals 2019, 9, x FOR PEER REVIEW 9 of 17 
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3.7. Effect of Rotating Speed

Under the experimental conditions of rotation speed (reaction temperature of 343 K, reaction
time of 60 min, liquid–solid ratio of 10:1, leaching solution concentration of 2 mol/L, rotating speed is
300 rpm and ultrasonic power fixed at 450 W), the effect of rotor speed was studied. The result shown
in Figure 12 reveals that the leaching rate of Pb increased from 43.14% to 78.67% under conventional
conditions when the rotational speed increased from 0 rpm to 200 rpm. The leaching rate of Pb under
ultrasonic conditions is always higher than that of conventional conditions; even the leaching rate of
lead under the ultrasonic condition with rotational speed of 200 rpm is similar to the conventional of
300 rpm. When the rotating speed increases to 300 rpm, the lead leaching rate increases slowly, about
2%. Therefore, 300 rpm was selected to be used in the subsequent experiments.
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3.8. Effect of Ultrasonic Power

Under the conditions of ammonium acetate concentration of 2 mol/L, liquid–solid ratio fixed at
10:1, reaction temperature of 343 K, leaching time of 60 min and rotating speed of 300 rpm, the effects
of varying ultrasonic power on the leaching rate of Pb were investigated. As shown in Figure 13,
the lead leaching rate increases significantly with the increase of ultrasonic power. Compared with
leaching without ultrasonication, the introduction of ultrasonic power is very favorable for the lead
leaching rate. The lead leaching rate is 86.36% under conventional optimal conditions, while it can
reach 90.13% under ultrasonic conditions when the ultrasonic power is 150 W. As the ultrasonic power
increases from 150 W to 450 W, the lead leaching rate increases by about 4%. When the ultrasonic
power exceeds 450 W, the increase of ultrasonic power has no effect on the leaching rate of lead. Due to
the cavitation effect of the ultrasonic wave, the shock wave generated by the cavitation effect and the
mechanical effect of the leaching agent on the mineral surface to generate high-speed jet, micro-jet,
impinging flow, etc., cause macroscopic turbulence of the leaching agent and high-speed collision
between the solid particles. This is aggravated by the eddy current diffusion and peeling and erosion at
the interface of the liquid–solid phase reaction, further rapidly refreshing and activating the interface
of the useful reaction minerals and accelerating the dissolution rate of lead [26,27]. On the other hand,
the micro-jet and shock waves caused by ultrasound are perturbed in the mineral porous medium so
that the leaching agent diffuses into the pores and the efficiency of the useful minerals is intensified,
thereby achieving the purpose that conventional stirring struggles to achieve—that the lead leaching
rate is increased in a shorter time [28].
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3.9. Characterization of Leaching Residue

XRD and SEM-EDS analysis were carried out on lead leaching residues under conventional and
ultrasonic conditions to further clarify the ultrasonic enhanced leaching effect of lead in electrolytic
manganese anode mud. Figure 14 compares the phase structure of leaching residues under the
conditions of ammonium acetate concentration of 2 mol/L, liquid–solid ratio fixed at 10:1, reaction
temperature of 343 K, leaching time of 60 min, rotating speed of 300 rpm and ultrasonic power fixed
at 450 W. It can be found that PbSO4 and CaSO4 have been dissolved, and their characteristic peaks
disappeared. The chemical reactions are shown in (2) to (4). Ammonium acetate is a strong electrolyte
which is completely ionized in water. Calcium sulfate is a micro-soluble substance. Ammonium
sulfate is formed by micro-ionizing SO4

2− and NH4+ in water. Therefore, it promotes the ionization of
calcium sulfate and makes the reaction shown in (4), and the solubility of calcium sulfate increases.
Figure 15a,c shows the morphologies of leaching residue after optimized conventional leaching and
ultrasonic leaching, respectively. Figure 15c shows that the ultrasonic leaching residue cracks are more
obvious after ultrasonic leaching and are also much finer than the leaching residues under conventional
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conditions. The result indicates that the fine particles can be broken by the action of ultrasonic waves,
and the surface of the mineral can be stripped to form a large number of voids, further promoting the
rapid diffusion of leaching agent molecules and achieving enhanced leaching of lead [29,30]. At the
same time, only Mn, O and Fe are left in the anode mud, and there are no Pb and S elements. It is
concluded that the removal effect of lead is remarkable under optimum leaching conditions.
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The results of particle size analysis of lead leaching residues obtained under conventional and
ultrasonic leaching conditions are shown in Figure 16. It can be seen that under conventional conditions,
the particle size is mainly distributed in the range of 10–100 µm (see Figure 16a), and Figure 16b
shows that the particle size distribution is between 10–65 µm under ultrasonic conditions. The average
particle diameter volume under conventional conditions was 24.303 µm, and the average particle
diameter volume of the lead leaching residue obtained under ultrasonic enhanced leaching conditions
was 13.622 µm. The results show that the ultrasonic leaching process can actually refine the grains and
facilitate the leaching process.

PbSO4 + 2NH4Ac = Pb(Ac)2 + (NH4)2SO4 (2)

CH3COONH4 = CH3COO− + NH4+ (3)

CaSO4 = Ca2+ + SO4
2− (4)
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3.10. Kinetic Analysis of the Leaching Process

The leaching process of electrolytic manganese anode mud particles belongs to the liquid–solid
phase reaction, and the leaching reaction process may be controlled by the following steps: (1) diffusion
of the leaching agent reactant or product through the liquid boundary layer; (2) leaching agent reactant
or product diffuses through the internal diffusion of the solid product layer; (3) chemical reaction of
the leaching agent reactant with the surface of the unreacted nuclear material; (4) mixing of the solid
film layer and the interface chemical reaction [31].

Combined with XRD and SEM analysis, the morphology of the electrolytic manganese anode
mud particles is irregular, and the particle composition is relatively complicated. There are manganese
oxide particles, lead manganese oxide particles, and lead is encapsulated in its crystal lattice in the
form of PbSO4. During the leaching process, the leaching agent diffuses into the voids or cracks of the
gangue and reacts with the electrolytic manganese anode mud. As the reaction proceeds, the reaction
interface continuously shrinks to the center of the lead-containing mineral particles [32,33]. Therefore,
an attempt was made to explore the dynamic behavior of lead leaching in electrolytic manganese
anode mud using a reduced nuclear model. Figure 17 shows a simulation of the leaching process.

Metals 2019, 9, x FOR PEER REVIEW 12 of 17 

Figure 16. Size distribution of lead residues under conventional and ultrasonic conditions. (a): under 
conventional conditions, (b): under ultrasonic conditions. (cumu is the cumulative distribution of 
granularity; diff is difference distribution of granularity) 

3.10. Kinetic Analysis of the Leaching Process 

The leaching process of electrolytic manganese anode mud particles belongs to the liquid–solid 
phase reaction, and the leaching reaction process may be controlled by the following steps: (1) 
diffusion of the leaching agent reactant or product through the liquid boundary layer; (2) leaching 
agent reactant or product diffuses through the internal diffusion of the solid product layer; (3) 
chemical reaction of the leaching agent reactant with the surface of the unreacted nuclear material; 
(4) mixing of the solid film layer and the interface chemical reaction [31]. 

Combined with XRD and SEM analysis, the morphology of the electrolytic manganese anode 
mud particles is irregular, and the particle composition is relatively complicated. There are 
manganese oxide particles, lead manganese oxide particles, and lead is encapsulated in its crystal 
lattice in the form of PbSO4. During the leaching process, the leaching agent diffuses into the voids or 
cracks of the gangue and reacts with the electrolytic manganese anode mud. As the reaction 
proceeds, the reaction interface continuously shrinks to the center of the lead-containing mineral 
particles [32,33]. Therefore, an attempt was made to explore the dynamic behavior of lead leaching 
in electrolytic manganese anode mud using a reduced nuclear model. Figure 17 shows a simulation 
of the leaching process. 

 
Figure 17. Sketch of the unreacted shrinking core model. (t1 is reaction time). 

According to the shrinkage nucleus model, when the solid–liquid phase reaction is controlled 
by the interface chemical reaction, the leaching kinetic equation of lead in electrolytic manganese 
anode mud can be expressed as [34,35]: 

kr·t = 1 − (1 − x)1/3 (5) 

where kr is the solid–liquid phase interface chemical reaction rate constant; x is electrolytic 
manganese anode mud lead leaching rate; t is the leaching time. 

When the solid–liquid phase reaction is controlled by the diffusion reaction, the leaching kinetic 
equation of lead in electrolytic manganese anode mud can be expressed as [34]: 

kd·t = 1 − 2/3x − (1 − x) 2/3 (6) 

where kd is the solid–liquid phase reaction diffusion rate constant; x is the lead leaching rate of the 
electrolytic manganese anode mud; t is the leaching time. 

In addition, when the solid–liquid phase reaction is simultaneously controlled by the diffusion 
reaction and the interfacial chemical reaction, the leaching kinetic equation of lead in electrolytic 
manganese anode mud can be expressed as [36,37]: 

k0·t = 1/3ln(1 − x) − [1 − (1 − x)−1/3] (7) 

where k0 is the reaction rate constant of solid–liquid phase mixing control; x is the lead leaching rate 
of electrolytic manganese anode mud; t is the leaching time. 

Figure 17. Sketch of the unreacted shrinking core model. (t1 is reaction time).

According to the shrinkage nucleus model, when the solid–liquid phase reaction is controlled by
the interface chemical reaction, the leaching kinetic equation of lead in electrolytic manganese anode
mud can be expressed as [34,35]:

kr·t = 1 − (1 − x)1/3 (5)

where kr is the solid–liquid phase interface chemical reaction rate constant; x is electrolytic manganese
anode mud lead leaching rate; t is the leaching time.
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When the solid–liquid phase reaction is controlled by the diffusion reaction, the leaching kinetic
equation of lead in electrolytic manganese anode mud can be expressed as [34]:

kd·t = 1 − 2/3x − (1 − x) 2/3 (6)

where kd is the solid–liquid phase reaction diffusion rate constant; x is the lead leaching rate of the
electrolytic manganese anode mud; t is the leaching time.

In addition, when the solid–liquid phase reaction is simultaneously controlled by the diffusion
reaction and the interfacial chemical reaction, the leaching kinetic equation of lead in electrolytic
manganese anode mud can be expressed as [36,37]:

k0·t = 1/3ln(1 − x) − [1 − (1 − x)−1/3] (7)

where k0 is the reaction rate constant of solid–liquid phase mixing control; x is the lead leaching rate of
electrolytic manganese anode mud; t is the leaching time.

The experimental data of the effects of different reaction temperatures on the lead leaching
efficiency of electrolytic manganese anode mud under conventional and ultrasonic conditions are taken
into Equations (5)–(7) respectively, and the curves are plotted against time. The results are shown in
Figures 18–20, which show a graph showing the lead leaching process controlled by interface chemical
reaction, diffusion control, and mixing control, respectively.
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The data of lead leaching rate at different temperatures under conventional and ultrasonic
conditions are fitted as shown in Tables 2 and 3 when the lead leaching process is controlled by interface
chemical reaction control, diffusion control and mixing control. The correlation coefficient of the
diffusion model under conventional and ultrasonic conditions are all greater than 0.98687 and 0.98913,
respectively. The comparison shows that the diffusion control model fits the correlation coefficient
significantly better than the interface chemical reaction and the hybrid control model, both under
conventional and ultrasonic conditions. Therefore, the electrolytic manganese anode mud leaching
process is controlled by a diffusion model. Since the leaching is controlled by diffusion, the introduction
of the ultrasonic wave can refine the reaction particles on the one hand, and on the other hand, the
so-called ultrasonic cavitation effect generate a high temperature of 5000 K or more in a very short time
and a very small space around the cavitation bubble, a high pressure about 5 × 107 Pa accompanied by
a strong shock wave, and its mechanical effect makes the liquid strongly agitate. These processes are
beneficial to the diffusion process, so the introduction of ultrasonic waves can enhance the effect of
leaching. Increasing leaching temperature and the liquid to solid ratio are favorable for increasing
leaching rate [38].

Table 2. Correlation coefficient of diffusion control and interface chemical reaction control at different
temperatures under conventional conditions.

Temperature (K)
Correlation Coefficients (R2)

1 − (1 − x)1/3 1 − 2/3x − (1 − x) 2/3 1/3ln(1 − x) − 1 + (1 − x)−1/3

298 0.99539 0.99231 0.98747
303 0.98677 0.99563 0.99915
308 0.99245 0.98687 0.97883
313 0.99640 0.99918 0.99737

Table 3. Correlation coefficient of diffusion control and interface chemical reaction control at different
temperatures under ultrasonic conditions.

Temperature (K)
Correlation Coefficients (R2)

1 − (1 − x)1/3 1 − 2/3x − (1 − x) 2/3 1/3ln(1 − x)− 1 + (1 − x)−1/3

298 0.99506 0.99070 0.97861
303 0.98465 0.98949 0.99749
308 0.97710 0.98913 0.97639
313 0.98989 0.99888 0.98912
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The direct slopes of the different fits in Figure 21 are the reaction rate constants k at different
reaction temperatures, according to the Arrhemus empirical equation [39]:

k = A·exp(−Ea/RT) (8)

where Ea is the activation energy of the reaction, kJ/mol; A is the frequency factor, constant; T is the
temperature, K; R is the gas constant, 8.314 × 10−3 kJ/(mol·K).Metals 2019, 9, x FOR PEER REVIEW 15 of 17 
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We take the logarithm of the two sides of Equation (6) to get the relationship between lnk and 1/T:

lnk = lnA − Ea/RT (9)

lnk is plotted against 1/T, and the result is shown in Figure 21. The initial apparent activation energy of
the electrolytic manganese anode mud leaching lead under conventional and ultrasonic conditions
are 29.40 kJ/mol and 26.95 kJ/mol, respectively. The results show that although both conventional
and ultrasonic leaching conditions are controlled by diffusion, the activation energy required for the
leaching process is low when the ultrasonic wave is introduced, and the reaction speed is fast.

4. Conclusions

In this paper, roasting combined with ultrasonication enhanced the extraction of lead from
electrolytic manganese anode mud, and the conclusions are as follows:

(1) The high temperature roasting of electrolytic manganese anode mud has a significant effect on
the subsequent lead leaching process. Its dense structure is destroyed, which provides a convenient
channel for the leaching and migration of lead ions, and the leaching rate is increased by nearly 65%.

(2) The leaching rate is 86.36% under the optimal conventional conditions as follows: ammonium
acetate concentration of 2 mol/L, leaching temperature of 343 K, leaching time of 60 min and the
liquid–solid ratio fixed at 10:1. The introduction of ultrasonic waves effectively strengthens the lead
leaching process, the leaching rate of Pb was 93.09% which was about 7% higher than that under the
optimal conventional conditions when the ultrasonic experiment has the same parameters.

(3) The leaching process of lead in ammonia acetate and the electrolytic manganese anode mud
is a liquid–solid two-phase chemical reaction, and the leaching process is carried out by diffusion
control. The activation energies are 29.40 kJ/mol and 26.95 kJ/mol for the conventional and ultrasound
enhanced leaching processes, respectively. Increasing leaching temperature and the liquid to solid
ratio are favorable for increasing leaching rate. The apparent activation energy of the nuclear kinetic
model is 26.95 kJ/mol.
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(4) The experimental results in this paper provide a more efficient and comprehensive approach
for the leaching of lead from electrolytic manganese anode mud, which is expected to promote the
resource utilization of electrolytic manganese anode mud.
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