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Abstract: Generally, strength and ductility are mutually exclusive in homogeneous metals.
Nanostructured metals can have much higher strength when compared to their coarse-grained
counterparts, while simple microstructure refinement to nanoscale generally results in poor strain
hardening and limited ductility. In recent years, heterogeneous nanostructures in metals have
been proven to be a new strategy to achieve unprecedented mechanical properties that are not
accessible to their homogeneous counterparts. Here, we review recent advances in overcoming
this strength–ductility trade-off by the designs of several heterogeneous nanostructures in metals:
heterogeneous grain/lamellar/phase structures, gradient structure, nanotwinned structure and
structure with nanoprecipitates. These structural heterogeneities can induce stress/strain partitioning
between domains with dramatically different strengths, strain gradients and geometrically necessary
dislocations near domain interfaces, and back-stress strengthening/hardening for high strength and
large ductility. This review also provides the guideline for optimizing the mechanical properties in
heterogeneous nanostructures by highlighting future challenges and opportunities.
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1. Introduction

High strength in metals is always favorable in industry, while the elevation in strength is usually
accompanied with the drastic loss in ductility [1–6]. High strength in metals can be achieved by grain
refinement or cold working [1,7–10]. For the last several decades, severe plastic deformation has been
extensively utilized to produce nanocrystalline (NC) or ultrafine-grained (UFG) metals with ultra-high
strength [1,7–9], while the low strain hardening and the resultant limited ductility restrict their practical
applications [2–5]. Thus, the main challenge is to design novel microstructures to restore an acceptable
ductility in the high-strength metals and evade the strength–ductility trade-off.

Metals with both high strength and large ductility are always desired for the structural
applications, and such demands have been realized in the last decade by the novel strategy: tailoring
the microstructures at nanoscale, i.e., the design of heterogeneous nanostructures [2,3]. These
heterogeneous nanostructures include heterogeneous grain/lamellar/phase structures [11–33], gradient
structure [34–65], nanotwins [66–115], and nanoprecipitates [116–120]. One common feature in
these heterogeneous nanostructures is that there always exist various domains with dramatically
different strengths, although the geometrical patterns and the structural sizes of the domains might
vary widely [3,14–17]. The inhomogeneous plastic deformation in different domains would cause
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stress/strain partitioning and strain gradients at the domain interfaces [3,14–17]. And the strain
gradients should produce geometrically necessary dislocations (GNDs) and extra-hardening for better
performance in mechanical properties [11–30].

In this regard, we will present a review in recent advances for heterogeneous nanostructures,
and the addressed points are focusing on mechanical properties, microstructure characterization,
and deformation physics. In this review, experimental work, numerical simulations and theoretical
analysis are all discussed.

2. Heterogeneous Grain/Lamella/Phase Structures

Heterogeneous grain/lamella/phase structures, either with or without dual/multiple constituent
phases [17–22] and precipitates [23,24] have been regarded as a new class of ideal candidates for
structural applications due to their high strength and excellent ductility [2,3]. In this type of materials,
the interplays between different adjoining microdomains with different grain sizes, phase constitutes,
and/or dislocation substructures are crucial to understand the mechanical behaviors and guide the
designing of ultra-strong materials with good tensile ductility [2,3,11,12,15–29].

2.1. Hetero-Interfaces and Deformation Mechanisms

Hetero-interfaces in heterogeneous grain/lamella/phase structures are the domain boundaries
created during fabrication and developed with the applied straining, and such interfaces bear
striking similarities to the conventional grain boundaries (GBs), albeit obvious differences also
exist between them [14,18]. In homogeneous materials, the flow stresses exerted on moveable
dislocations due to the presence of GBs generally are short-ranged, whereas in heterogeneous
grain/lamella/phase structures the extra flow stresses, exerted on the hetero-interfaces due to the
directional pile-ups of GNDs, usually are long-ranged [3,13,121]. As a result, the GND pile-ups
nucleated by inhomogeneous plastic flow also give rise to an additional inhomogeneous stress locally at
the hetero-interfaces because the creation of the GND pile-ups against the hetero-interfaces hinders the
successive sliding of mobile dislocations [3,14]. More importantly, the hetero-interfaces are mechanical
incompatibility interfaces, which can accommodate inhomogeneous plastic deformation and release
the stress concentration [28,122,123]. The hetero-interface is a kind of strain constraint interface that
displays a dynamic existence between various adjacent hard/soft microdomains during loading [14].
The main functions of the hetero-interface include: i) accommodating local plastic strains; ii) providing
extra strain hardening and additional strengthening effects [13,15,16]. It is well-known that the
hetero-interface is the main factor governing the strengthening and strain-hardening behaviors of
heterogeneous grain/lamella/phase structures. On one hand, the hard microdomains do not need to
bear large plastic strain during deformation, while provide ultra-high strength to the whole sample
due to the dynamically strain partitioning and the load transferring mechanisms [122–127]. On the
other hand, the plastic straining of the soft microdomains occurs under the multiaxial stress constraints
of the surrounding hard microdomains, thus their own strain hardening and strengthening can be
greatly enhanced [16,18,53], resulting in better strength and ductility for the whole sample [13,16–19].

In fact, the superior mechanical properties of heterogeneous grain/lamella/phase structures can be
attributed to the synergistic strengthening and strain hardening due to the mechanical incompatibility
at the hetero-interfaces between adjacent soft/hard domains during plastic deformation [16,25]. Upon
tensile loading, both the soft and hard domains are elastically deformed firstly, and after that, the soft
domains yield first with increasing applied strain while the hard domains still deform elastically,
which can create a strain gradient accommodated by GND pile-up at the hetero-interfaces [121,128].
The pile-up of GNDs in turn produces long-range back-stress strengthening to enhance global yield
stress [13,16,121]. Since the back stress at the hetero-interface is high and is subsequently relieved to a
certain extent due to the plastic deformation of a portion of hard domains, a macroscopic flow-stress
dip or a transient hardening phenomenon may occur in the macroscopic stress–strain curves soon after
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an overall yielding, which depends on the competition between the stress relaxation of hard domains
and the hardening of soft domains [28,123,129–131].

2.2. Heterogeneous Grain Structures

As one of the most important microstructural parameters, the grain size plays a crucial role in
controlling the yield strengths and strain-hardening behaviors in various metallic materials [1,4–10].
The domains in heterogeneous grain structure (HGS), containing grains with different sizes varying
from nanometers to micrometers [14,17,18], and hence display dramatic strength difference from one
domain to another according to the well-known Hall–Petch relationship.

According to the Considère criterion, tensile uniform elongation of high-strength metals can be
effectively improved if plastic strain instability is suppressed [132]. One of the most effective methods
for delocalizing plastic instability and enhancing strain-hardening rate is to fabricate HGS, which are
composed of both nanograins (NGs) and coarse grains (CGs) [17]. Such materials with HGS have two
and even more peaks in their grain size distributions which span widely through several orders of
magnitude in general [17,18,133–135]. Accordingly, excellent synergy of high strength and good ductility
has been observed in the resultant materials with HGS, due to their extraordinary strain-hardening
capacities [14,17,18]. For example, the bi- and multi-modal microstructures were reported to have
both high tensile yield strength and large uniform elongation in copper by simultaneously improving
the dislocation accumulation capability and brittle-crack initiation resistance [18,133,134]. Although
the deformation mechanisms of these approaches are still not fully understood, it can be generally
inferred that the existence of the constrained soft CGs suppresses strain localization and enables
extra strain-hardening, prolonging uniform elongation at high flow stresses, while the NGs bear load
transfer and provide high strength [16,17,124,126]. The key factor in materials with HGS is that the
plastic deformation is non-homogenous and the local deformation incompatibility can promote the
macroscopic plastic strain in a more effective manner.

Since back stress hardening plays an important role during the plastic deformation of materials
with HGS, the origin and the definition of back stress should be discussed first. The term “back
stress” was first used in Fisher’s research on the strengthening behaviors in a precipitation hardening
alloy [136]. The back stress was referred as a reverse average stress of the Orowan dislocation loops
around the precipitated particles against the successive emitted dislocations from Frank–Read (F–R)
sources, i.e., the critical effective stress impeding F–R dislocations. In Fisher’s investigation [136],
the residual dislocation shear-loops around the particles were equivalently treated as the transformed
strain prescribed in a classical Eshelby’s inclusion problem [137] to deal with this stress state, which
generates the average internal stress in the matrix to hinder the subsequent forward deformation.
Brown et al. [138,139] proposed that the residual shear dislocation loops around the hard precipitates can
impede the subsequent dislocation sliding in the matrix, resulting in formation of the source-shortening
stress. The concept of the original Fisher’s back-stress is referred by the so-called Orowan stress after
the addition of inhomogeneous internal stress [139]. The concept of back stress was further extended
by Brown and Stobbs [138], and Asaro [140] in the hardening model of dual-phase materials. They
proposed that the incompatibility strains between the hard phase and the soft matrix can induce a
long-range internal stress, which makes the dual-phase structure susceptible to reverse deformation.
Later on, the concept was further extended to the long-range (internal) back stress between the soft
and hard microdomains due to the micro-inhomogeneous strain during plastic deformation, which is
the concept of back stress currently used [141,142]. In the earlier quantitative analysis of back stress by
Cottrell [143], Orowan [144,145] and Embury [146], half of the difference between the forward and
reverse flow stresses in Bauschinger testing was consistently used to characterize the magnitude of back
stress, and hence the back stress was often called the Bauschinger stress. Wilson et al. [147] conducted
an X-ray diffraction study on the non-relaxed lattice strains during deformation of a two-phase
microstructure, and further demonstrated that permanent softening is ~1.9 times of the back stress
when reverse loading reduces internal stress to zero. This experimental result was consistent with the



Metals 2019, 9, 598 4 of 32

prediction of the aforementioned Orowan’s model [144]. Furthermore, a large number of experimental
results have shown that back stress plays a crucial role in the strain hardening, strengthening and
mechanical properties of materials with non-homogeneous microstructures [121]. According to the
Orowan’s model [144], the macroscopic flow stress of materials with heterogeneous structure can be
denoted as following:

σflow = σ0 + σforest + σback, (1)

where σ0 is the initial resistance against occurrence of dislocation sliding, σforest is the dislocation
resistance derived from the interactions between movable dislocations and forest dislocations, and σback
is the long-range back stress due to the extra GND-induced hardening.

According to the definition of strain-hardening rate Θ = ∂σ/∂ε, when the changes in testing
temperature and strain rate can often be ignored during the quasi-static tensile deformation [132],
the Equation (1) can be rewritten as:

Θflow = Θforest + Θback, (2)

where Θ denotes the macroscopic strain-hardening rate, and Θforest and Θback are forest hardening
rate and back-stress hardening rate, respectively. It can be seen that the back-stress hardening rate is
essential for the enhancement of the overall strain-hardening rate of materials with HGS, and thus
a scientific basis for exploiting and providing the potential hardening mechanism associated with
monotonic plastic deformation has been proposed by Wu et al. [3].

We presented an analytical model to calculate the back stress based on the hysteresis loops
observed in tensile loading-unloading-reloading test [53]. Upon tensile loading, yielding starts in larger
grains, while small ones still remain elastic. The applied load will be transferred from large grains to
small ones [148]. Upon unloading, the macroscopic stress decreases and the large grains are subjected
to a compression stress when the small grains reach the completely unloaded state [122]. Upon
subsequent compressive loading, the whole sample initially behaves elastically until the large grains
enter in the plastic regime first in compression, a situation that will take place at a much lower absolute
value compared to the initial tensile flow stress because of the pre-compression of large grains [53].
As a consequence, an asymmetry in the macroscopic forward (tensile) and reverse (compressive) yield
stresses will occur (so-called Bauschinger effect [53,122]), and this effect characterizes the development
of back stress [16,53]. Therefore, back stresses develop in terms of the load transferring from large
grains to small ones, whereas the strain partitioning from small grains to large ones [148]. This is
evidenced by the large width of hysteresis loops and high hardening rate due to back stress. Both the
dynamic load transferring and strain partitioning along with the tensile straining lead to the increasing
back stress [16,17,53].

Experimental studies have been conducted on the mechanical properties and deformation
mechanisms of HGS in single-phase metals [16,18], dual-/multiple-phase alloys [20,21],
and transformation-induced plasticity (TRIP)/twinning-induced plasticity (TWIP) steels [22,23],
emphasizing on the back-stress-induced strengthening/hardening effects. Early research on metals
with HGS started with synthesizing their microstructures [149,150]. Recently, great efforts and
growing scientific interests have been focused on tailoring multi-scale hierarchical microstructures
in a nanostructured matrix and achieving a synergistic strengthening/hardening from the combined
effects of both grain refinement and extra hardening [14,16,123]. More recently, we [17] reported
a simultaneous improvement of both strength and ductility in a single-phase fcc medium-entropy
alloy (MEA) with dynamically-refined HGS. The MEA with HGS can be produced by a conventional
heat-treatment of partial recrystallization annealing, which is currently a well-developed processing
route at a low cost.

The grains can be efficiently refined for the MEA in situ during tensile deformation due to its
low stacking fault energy (SFE) [151,152], thus reinforcing the HGS and increasing the back stress to
promote strain hardening and hence uniform elongation. Compared with the MEA with homogeneous
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UFG structure [86], the MEA with HGS has a significant higher uniform elongation and a similar flow
stress. The dynamic grain refinement in HGS accommodates plastic deformation by facilitating the
successive emission of SFs in new orientations (Figure 1a). This dynamic grain refinement induced
plasticity (GRIP) effect by architecting HGS is therefore much like TRIP and TWIP in facilitating strain
hardening and plastic flow [153,154]. In addition, the small grains are generated mainly at GBs and
triple junctions of larger grains, where damage is more susceptible to initiate [1,17]. Thus, GRIP effect
has beneficial influences on increasing fracture toughness, in addition to delaying plastic instability
such as premature necking in tensile deformation. The dynamic grain refinement can also further
reinforce the heterogeneity in HGS, and thereby increase the back-stress-induced strain hardening,
suppressing the strain localization and prolonging the tensile uniform elongation. In consequence,
the tensile uniform elongation of the MEA with HGS was enhanced up to 20% even when the yield
strength was improved to above 1 GPa (Figure 1b) [17].
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HGS: (a) Architected HGS; (b) Engineering tensile stress–strain curves for the MEA with HGS under
various testing temperatures. Adapted from [17].

Similar to the above processing approach, Slone et al. [87] produced another type of HGS with
partially recrystallized microstructure in a similar MEA. Striking hysteresis loops are also observed
not only in the sample with HGS at the early stage of plastic deformation, but also in the partially
recrystallized sample with relatively homogeneous grain structure at end stage of uniform deformation.
This result just further confirms that back-stress hardening plays a key role at a high stress level. It is
well known that the dynamic generation of twin bundles during deformation and the consequent
hardening can build a superior back-stress effect in TWIP steels with the conventional equilibrium
CG structure [154]. Similarly, the role of architecting HGS for enhancing strain-hardening capacity
in metals was well discussed in this paper. However, there are some obvious discrepancies between
these two studies [17,154], though both the small NGs and the twin bundles are associated with the
partial dislocations emitted from GBs and triple junctions. In Slone’s case [87], a back stress can
indeed be developed into a large magnitude due to the formation of the large amount of twin bundles
during tensile testing in conventional CG microstructures. For our HGS, it should be noted that there
are definitely deformation twins formed inside grains during tensile deformation, while these twins
are the corner twins and these twins subsequently evolve into newly-formed NGs during further
deformation [17]. In other words, twinning-induced back stress in our HGS should have played a
smaller role in the strengthening and strain hardening during the tensile deformation.

It has attracted great interests for optimizing the strength–ductility synergy by tailoring the HGS.
More and more experimental results have shown that the effect of back stress in providing extra
strengthening and strain-hardening capacity for the materials with HGS. Although these studies
have been conducted on the various HGSs with different morphologic and crystallographic features,
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these microstructures do share one common characteristics: there is a dramatic difference in flow
stress between different microdomains. This large difference in flow stress is often caused by huge
heterogeneities in microstructure, crystal structure or composition in these domains. The domain
sizes could be in the range of micrometers to millimeters, and the domain geometries can vary
dramatically. It is indicated that heterogeneous microstructures can achieve a large accumulation of
GNDs especially at the hetero-interfaces during inhomogeneous deformation, which in turn causes
significant back stress, resulting in enhanced overall strain-hardening capacity. Therefore, how should
the hetero-interfaces be designed? The hetero-interfaces should be designed to improve the constraints
on soft domains exerted by the surrounding hard domains during plastic deformation, which is
important for accommodating GNDs, bearing strain gradient, and inducing back stress [16,121].
The spatial distribution and morphology of hetero-interfaces, including geometric and microstructural
characteristics, should have great influences on the mechanical behaviors of HGS. Thus, domain size,
domain distribution, domain morphology, soft/hard domain volume fraction, and local discrepancies
in yield strength and strain-hardening behavior between any two adjacent domains should be properly
designed to optimize the mechanical properties of HGS [2,3].

2.3. Heterogeneous Lamella Structures

According to the above-mentioned strategies for inducing high back-stress, the heterogeneous
lamella structure (HLS) presents a near-ideal heterogeneous structure due to both the high density of
domain interfaces and the adjustable volume fractions for soft/hard domains in such microstructure [16,23].
Our recent results have shown that a commercially-pure Ti with HLS, which possesses the spatial
distribution of the alternating hard and soft lamellae with their both widths ranging from a few to a
dozen micrometers, presents enhanced tensile strength–ductility synergy (Figure 2a) [16]. Such Ti with
HLS unprecedentedly surpasses its CG counterpart in strain hardening and consequently produces
both larger ductility and higher strength (Figure 2b–d). The Ti with HLS was fabricated by asymmetric
rolling followed by partial recrystallization annealing, which produced a strong local micro-hardness
variation between the alternating hard and soft lamellae, as well as a slight macroscopic structural
gradient with recrystallized grains of a few micrometers near the surface and recovered ultrafine-grains
in the central region. In addition, the soft CG lamellae consisting of recrystallized grains are intermixed
with the relatively harder UFG lamellae at microscopic scale. The HLS produces a strong internal
mechanical incompatibility and long-range back stress at macroscopic scale from the surface to the
center as well as at microscopic scale between adjacent lamellae (Figure 2e). During the deformation
of HLS, the GNDs are gradually generated and blocked by hetero-interfaces to induce back stress
(Figure 2f). This extra strain hardening induces even higher overall strain hardening in Ti with HLS
than that in CG Ti, which is usually believed to be impossible [16].

This enhanced tensile properties for HLS as compared to these for uniform structure can also be
attributed to the local variations in the hardness between alternating recovery and recrystallized lamellar
domains [16,53]. This hardness difference needs to be large enough to generate local incompatibility of
plastic deformation and local extra hardening for improvement in global hardening. In a summary,
larger local gradients and higher local GNDs render the better mechanical performances, such as yield
strength, strain-hardening rate, and uniform elongation [16,26,53]. The local variation in hardness in
the deformed state is small, but it is enhanced after recovery and partial recrystallization annealing.
This has been verified by micro-hardness testing on recovered and recrystallized lamellae [16]. The best
combination of strength, strain-hardening rate and uniform elongation should be associated with the
optimized difference in hardness between soft and hard lamellae. Moreover, the spatial distribution
of the alternating hard and soft lamellae, rather than a random distribution of irregular grains and
soft/hard domains, should have better performance on mechanical properties [3,16].
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Recent studies on copper/bronze laminates by Huang et al. have revealed possible existence
of an optimum layer thickness for the best mechanical properties [25,155]. In-situ microstructural
examinations during tensile deformation revealed pile up of high-density GNDs at the hetero-interfaces.
This result suggests that interface-affected zone likely exists and has a width of a few microns, which is
the key factor to maximize the back-stress hardening. When the spacing between the hetero-interfaces
is large, the density of GNDs should be low. While too small spacing would cause the overlapping of
the distributions of GNDs for neighboring interfaces, resulting in decreasing strain hardening and
tensile ductility. Thus, a proper spacing between the hetero-interfaces has been identified to be about
15 µm for generating the best tensile properties for the copper/bronze laminates [25].

2.4. Heterogeneous Phase Structures

The transient strain-hardening phenomenon has been experimentally observed in the various
metals and alloys with either a simple homogeneous grain microstructure or a complex multi-scale
hierarchical grain/phase microstructure [14,16,17,28]. In simple metals, this phenomenon is generally
attributed to the heterogeneous distributions of GBs and dislocation substructures, such as dislocation
cells and dislocation walls [156,157]. However, the transient phenomenon has not yet been
completely understood in heterogeneous structure [14,16,17], which is much more complex than
that of homogeneous materials because of discrepancy in deformation behaviors between neighboring
microdomains/phases. To better understand this issue, we conducted a synchrotron-based in-situ
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tensile testing on a Fe-16Mn-10Al-0.86C-5Ni high specific strength steel (HSSS) with heterogeneous
microstructure, in order to clarify the possible micro-mechanisms underlying the elasto-plastic
deformation and back-stress hardening of this heterogeneous phase structure (HPS). This investigation
would also help for understanding of the transient strain-hardening phenomena in materials with
heterogeneous microstructure [28].

The HSSS with heterogeneous microstructure shows a remarkable feature of the elasto-plastic
deformation behavior, resulting in a pronounced hardening transition on the stress–strain curves during
an early stage of deformation (Figure 3a) [28]. This phenomenon can be attributed to inhomogeneous
deformation occurring in this dual-phase steel because of the microstructural heterogeneities and
long-range back stresses arising from plastic incompatibilities between alternating-distributed phases
with different responses of mechanical properties. In fact, a composite-type elasto-plastic deformation
prevails in most high strength steels [14,16,17,28,53]. This is due to the plastic deformation heterogeneity
between the constituents, phases and grains with different mechanical responses and even orientations
relative to an externally applied stress. This will lead to the presence of long-range internal stress,
i.e., back stress, which evolves with applied strain because of intra- and inter-granular variations of
plastic strains, and the evolved back stress has a strong impact on the strain-hardening behaviors
and macroscopic mechanical properties [29,158,159]. It is a great challenge to investigate the strain
hardening behaviors associated with the back stress in the HPS since it is a complex interplay between
individual phases due to the presence of hetero-phase interfaces [28]. More importantly, both the load
redistribution and strain partitioning will take place in HPS during plastic deformation [28]. These
effects enable not only high capacity of strain hardening but also a large uniform elongation in a
composite-type microstructure [28,122].
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Upon the applied tensile strain, the axial lattice strains in both soft austenitic matrix and hard
B2 phase can roughly be divided into a three-stage evolution, i.e., elastic deformation, elasto-plastic
transition, and plastic co-deformation up to overall necking (Figure 3b) [28]. In the stage of elastic
deformation, both the axial lattice strains of austenitic matrix and B2 phase coincide well and increase
linearly. During the elasto-plastic transition stage, the lattice strain of austenite firstly deviates from
linearity, while the lattice strain of B2 phase still increases linearly. With the further tensile strain,
a rapid drop in lattice strains of both austenite and B2 phases is observed clearly. In the stage of
plastic co-deformation, the axial lattice strains of both austenitic matrix and B2 phase begin to rise
nonlinearly, but with different slopes. Moreover, the transition process can be subdivided into two
sub-stages according to the plastic yielding first in austenite and soon afterwards in B2 phase. In the
first sub-stage (II1), a grain-to-grain yielding takes place first in soft austenitic matrix due to varying
Schmid factors and strain-hardening behaviors of individual austenite grains. During the second



Metals 2019, 9, 598 9 of 32

sub-stage (II2), a rapid drop of lattice strain in B2 phase appears, indicating that B2 phases start to
yield for accompanying the decline in load shedding from softer austenite to harder B2 phase through
hetero-phase interfaces.

The unique up-turn hardening in the stress–strain curves observed in HPS can therefore be
attributed to the nature of elasto-plastic transition [28,122]. Under tensile loading, soft phase will
deform plastically first. However, they are constrained by still elastic-deformed hard phase such
that dislocations in soft one are piled up and blocked at hetero-phase interfaces. GNDs will also be
generated at hetero-phase interfaces due to the plastic strain incompatibility [28,121]. This produces
the back stresses to make it difficult for dislocations to slip in soft phase until the surrounding
hard phase starts to yield at larger applied strain. As a consequence, both inter-phase back stresses
and intra-phase back stresses occur, which are attributed to the progressive yielding of grains and
phases [28,129]. This is the reason why a much high back-stress hardening is visible exactly at the
transient stage (elasto-plastic deformation stage). The high strain hardening is therefore originated
from both back-stress hardening and forest dislocation hardening in both phases. Moreover, once the
B2 phase yields, rapid relaxation of elastic stresses and strains on the hetero-phase interfaces causes
a rapid stress-drop [28,129]. Afterwards, the macroscopic strain-hardening rate resumes to rise up
gradually as a consequence of the back stresses resulting from the strain incompatibility together with
rapid dislocation multiplication in both phases [28]. The development of the back stress during plastic
deformation of two-phase microstructure due to dynamic strain partitioning and yield stress mismatch
was also described in other research [123,124,129,154].

In fact, back stress strengthening/hardening has also been reported in nanocomposites [122],
dual-phase alloys [28] and TRIP/TWIP steels [160]. He et al. [23] have developed another similar HPS
coupled with V-containing nanoprecipitates in medium-Mn steel, i.e., the so-called deformed and
partitioned (D&P) steel [23]. Based on the experimental observations and theoretical analysis, they
have proposed that the high dislocation density in the D&P steel not only increases the yield strength,
but also enables a large ductility by the glide of existing mobile dislocations and by the controlled
release of TRIP effect, resulting in an ultrahigh yield strength reached to above ~2 GPa, 50% higher
than that of the conventional high-strength steels, together with a comparable uniform elongation.
Besides, a Lüders-like nonuniform deformation behavior is exhibited in such D&P steel during tensile
deformation, and the more in-depth mechanisms have not yet been revealed.

3. Gradient Structure

Materials from nature and biological systems, such as bamboos, teeth and seashells, have been
found to have gradient structure from the surface to the interior and exhibit exceptional mechanical
properties [30]. Learning from nature, mankind has designed gradient structure in engineering
materials to achieve novel and superior physical and mechanical properties [34–65]. These mechanical
properties include uniaxial tensile properties, dynamic properties and fatigue properties. For gradient
structured metals with exceptional mechanical properties, the strength/hardness generally shows a
gradient along the depth. As a result, the microstructures (grain size, phase fraction, twin volume
fraction/twin thickness, and texture/orientation) display an apparent gradient along the depth.

3.1. Fabrication Methods

In 1999, a concept of surface nanocrystallization on metals and alloys was introduced for the first
time [35], a gradient structure was produced by surface mechanical attrition treatment (SMAT) and
nanostructured (NS) grains were formed at the surface layer by repetitive severe plastic deformation
(Figure 4a). In 2003, the SMAT technique was utilized to enhance the efficiency of nitriding process [38].
The grain size was refined and a fraction of GBs was increased in the surface layer during SMAT. Thus,
the nitriding kinetics of the surface treated iron were significantly improved since GBs can be considered
as well-known high ways for diffusion processes [38]. Later on, another surface nanocrystallization
technique, surface mechanical grinding treatment (SMGT) at cryogenic temperature Figure 4b, has
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been used to fabricate a gradient nano-microstructured surface layer on copper and the grain size at
the topmost surface was as small as 22 nm [41].Metals 2019, 9, x FOR PEER REVIEW 10 of 31 

 

 
Figure 4. Schematic illustrations of SMAT and SMGT techniques. Adapted from [38] and [41]. 

3.2. Tensile Behaviors of Gradient Grained Structures 

The tensile properties of gradient structured metals were started to be investigated since 2008. 
A new microstructure, multiple layered structure with gradient grain size in each layer, has been 
obtained by SMAT technique and subsequent warm co-rolling technology, and excellent tensile 
properties have been revealed in this new microstructure [40]. The compression residual stress and 
deflection of cracks by the interface between the nanostructured layers have been found to play 
important roles for achieving high ductility in this periodically layered gradient structure [40]. As 
we know, NC metals can have much higher strength when compared to their CG counterpart, while 
NC metals are believed to be intrinsically brittle under uniaxial tensile loading. When the NC copper 
film is confined by a CG layer in the gradient structure, strain localization can be suppressed and 
large uniform tensile ductility can be achieved [42]. The intrinsic deformation mechanisms for large 
tensile plasticity of NC copper surface layer in gradient structure have been revealed by Fang et al. 
[42] for the first time, and the substantial grain growth by mechanically-driven GB migration process 
has been proposed to be the dominant plastic deformation mechanism of this gradient NS layer 
(Figure 5). These "in-situ" coarsened grains help to regain strain hardening and dislocation plasticity 
in the surface layer. More recently, a critical grain size of 165 nm was identified in the gradient 
structured copper during uniaxial tension, tension-induced softening was observed for grains 
smaller than this critical grain size while tension-induced hardening was found for grains larger 
than this critical grain size [46]. The observed softening was attributed to the grain growth in the 
small grains while the strain-induced hardening in the large grains was due to dislocation 
multiplication and formation of dislocation walls/cells. 
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3.2. Tensile Behaviors of Gradient Grained Structures

The tensile properties of gradient structured metals were started to be investigated since 2008.
A new microstructure, multiple layered structure with gradient grain size in each layer, has been
obtained by SMAT technique and subsequent warm co-rolling technology, and excellent tensile
properties have been revealed in this new microstructure [40]. The compression residual stress and
deflection of cracks by the interface between the nanostructured layers have been found to play
important roles for achieving high ductility in this periodically layered gradient structure [40]. As we
know, NC metals can have much higher strength when compared to their CG counterpart, while NC
metals are believed to be intrinsically brittle under uniaxial tensile loading. When the NC copper film
is confined by a CG layer in the gradient structure, strain localization can be suppressed and large
uniform tensile ductility can be achieved [42]. The intrinsic deformation mechanisms for large tensile
plasticity of NC copper surface layer in gradient structure have been revealed by Fang et al. [42] for
the first time, and the substantial grain growth by mechanically-driven GB migration process has
been proposed to be the dominant plastic deformation mechanism of this gradient NS layer (Figure 5).
These “in-situ” coarsened grains help to regain strain hardening and dislocation plasticity in the
surface layer. More recently, a critical grain size of 165 nm was identified in the gradient structured
copper during uniaxial tension, tension-induced softening was observed for grains smaller than this
critical grain size while tension-induced hardening was found for grains larger than this critical grain
size [46]. The observed softening was attributed to the grain growth in the small grains while the
strain-induced hardening in the large grains was due to dislocation multiplication and formation of
dislocation walls/cells.
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(a) Engineering stress–strain curves; (b) TEM image of the top layer after a true tensile strain of 33%
showing “in-situ” coarsened dislocation-free grains; (c) Variation of average grain sizes with applied
tensile strain for the gradient layer. Adapted from [42].

Using the same SMAT technique, we have produced a gradient structure in an IF steel and large
tensile ductility was achieved in the NS surface layer of IF steel without apparent grain growth when
confined by the CG substrate [14]. These observations suggested that the varying propensities for
flow instability between different layers in the gradient structure can induce stress-state change to
suppress the strain localization in the NS surface layer [14]. Extra synergic strengthening and extra
hardening were also induced by strain gradient to help tensile ductility, and the strain gradient was
due to the mechanical incompatibility between different layers during the elasto-plastic stage and
the co-deformation stage in the gradient structure [14,15]. An obvious up-turn for strain hardening
rate was also observed due to the stress-state change and the strain gradients (Figure 6). As we know,
the strain gradients are generally accommodated by the pileup of GNDs at the interfaces, which
in turn generates long-range back stress between the hard NS surface layer and the soft CG core.
We proposed a simple equation to calculate back stress from the tensile unloading-reloading hysteresis
loop based on its deformation physics, and also reported strong back stress strengthening/hardening
in the gradient structured IF steel [14]. Using the tensile load-unload-reverse compressive load testing,
we also reported extraordinarily larger Bauschinger effect in the gradient structure compared to the CG
counterpart and proposed to use the reverse yield softening as a quantitative parameter to represent
the Bauschinger effect [53]. This parameter can be utilized to evaluate the magnitude of back stress
hardening for exceptional tensile properties in heterogeneous materials.

Moreover, we reported an “in-situ” evolution of the induced strain gradients in a gradient-structured
metals during uniaxial tension [57]. We found that the lateral strain gradients increase with increasing
applied tensile strain, and the strain gradients increase faster and the back-stress hardening plays
more important role at the elasto-plastic transition stage. It is well known that NS metals typically fail
soon after yielding under uniaxial tensile loading, starting with strain localization. Thus, low tensile
ductility in NS metals is ascribed to strain localization, so one always tries to avoid localization, but
never think about how to utilize it. We illustrated for the first time how to adopt the good point of
localization, i.e. collecting vast strains for ductility, and to avoid its shortcoming, i.e. fast instability,
by stabilizing localized shear band in the gradient structure [63]. This novel strategy overturned our
traditional understanding for strain localization. We exhibited for the first time that localization may
induce ductility, instead of catastrophic failure. This enhanced ductility in the gradient structure was
fulfilled by the shear band delocalization: shear bands were initiated soon after yielding in the NS
surface layer, while were delocalized by propagating along the gage length during the tensile loading,
and synergistic work hardening was induced by back stress hardening from the strain gradients in
both the axial and depth directions [63].
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(a) Strain hardening rate vs. true strain curves; (b) Extra strain hardening by gradient structures;
(c) Distributions of lateral strain and strain gradient along the depth; (d) Superior tensile properties of
gradient structures over homogeneous counterparts. Adapted from [14].

3.3. Tensile Behaviors for Other Types of Gradient Structures

Besides the gradient structure with grain size gradient, other types of gradient structures
(i.e., gradients for phase fraction, twin volume fraction/twin thickness, and texture/orientation) also
showed great potential for achieving superior tensile properties [27,47,51,56,59]. Wei et al. [47,51,56]
applied pre-torsion deformation to a cylindrical twinning-induced plasticity steel sample to generate
gradient of twin volume fraction along the radial direction (Figure 7). They found that the yield strength
of the gradient twinned structure can be doubled without sacrifice of tensile uniform elongation
compared to the untreated CG sample, evading the strength–ductility trade-off dilemma. The enhanced
tensile properties in the gradient twinned structure have been attributed to two points: (i) the formation
of a gradient hierarchical nanotwinned structure during the pre-torsion deformation and the subsequent
tensile loading; (ii) this hierarchical nanotwinned structure is generated in the sequential torsion
and tension deformation by activating different twinning systems. Cheng et al. [13] fabricated a
dual gradient structure of grain size and twin thickness by direct-current electrodeposition method.
This dual structural gradient was found to show superior work hardening and strength that can
exceed those of the components of the gradient structure. The enhanced tensile properties have
been attributed to a unique patterning of ultrahigh densities of dislocations in the grain interiors:
bundles of concentrated dislocations, a special type of GNDs (Figure 8). These bundles of concentrated
dislocations were induced due to the nature of gradient, were not available in the homogeneous
samples [64].
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Figure 7. Tensile properties and corresponding deformation mechanisms of a TWIP steel with gradient
twinned structure: (a) Twin volume fraction and twin thickness distributions along the radial direction;
(b) True stress–strain curves; (c) Hierarchical twin structures formed during the pre-torsion deformation
and the subsequent tensile loading; (d) Activated different twinning systems in the sequential torsion
and tension deformation. Adapted from [47].

We generated dual gradients with respect to grain size and martensite phase fraction in a TRIP
steel by SMAT technique [27]. A design strategy was reported to combine the both benefits from
gradient structure and TRIP effect, and the reported TRIP-gradient steel was found to take advantage of
both mechanisms, prolonging the TRIP effect to large strains [27]. Significant heterogeneity for strength
exists not only macroscopically between the hard surface layer and the soft center layer, but also
microscopically between the soft austenite domains and the hard martensite walls. Thus, the martensitic
transformation was found to be triggered successively along the depth with tensile loading due to the
strain partitioning between soft and hard areas, enabling the martensitic transformation to last to a
larger tensile strain. As a result, the reported TRIP-gradient steel displayed an excellent combination of
high strength and ductility due to both the dynamic strain partitioning and the TRIP effect. The SMAT
technique was also utilized to fabricate the dual gradient structure of grain size and orientation in
a Mg alloy [59]. The stronger strain hardening and higher tensile ductility were attributed to the
pyramidal dislocations activated in the whole sample and higher dislocation density induced by
grain-size gradient in the dual gradient structure.
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Figure 8. Tensile properties and corresponding deformation mechanisms of gradient nanotwinned
copper with highly tunable structural gradients: (a) Grain size and twin thickness distributions along
the thickness; (b) Tensile properties; (c) Deformation microstructure of gradient nanotwinned structure
at 1% strain showing bundles of concentrated dislocations; (d) High density of dislocations in the
bundles of concentrated dislocations revealed by MD. Adapted from [13].

3.4. Dynamic Behaviors of Gradient Structures

It is well known that the plastic flow behaviors and the observed flow stresses in metals and
alloys highly depend on the loading rate. The materials display dramatically different mechanical
behaviors at high strain rates due to the substantial adiabatic temperature rise, thermal softening,
inertial and strain rate effects, and the formation of adiabatic shear band (ASB) compared to those
at quasi-static strain rates [52,58,65]. A few studies have been conducted to focus on the dynamic
behaviors of gradient structures [43,52,58]. Jérusalem et al. [43] have conducted a series of ballistic
tests on the gradient structures to build two length scales as optimization parameters for ballistic
performance: one is the intrinsic length scale (the finest grain size and the grain size gradient), and the
other one is the extrinsic length scale (the thickness of the samples). Proper choice of these two
length scales can lead to the best ballistic properties. Strain hardening behaviors and strain rate
sensitivity (SRS) of gradient grained iron under compressive loading over a wide range of strain
rates (5 × 10−4–104 s−1) have been investigated in our recent work [52]. The gradient grained iron
was found to show apparent strain hardening behaviors at all investigated strain rates, and the extra
hardening at all strain rates were believed to be due to the back stress hardening induced by the plastic
deformation incompatibility between different layers in the gradient structures. The dynamic SRS of
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the gradient grained iron was found to be slightly higher than that of the CG counterpart, which is
controversial to the general observation that SRS should decrease with decreasing grain size for BCC
metals [161]. This enhanced SRS in the gradient structure was attributed to the additional increase in
dislocation density by the GNDs associated with the strain gradients and the back stress hardening.
The dynamic shear behaviors of a gradient structured TWIP steel have been investigated in our recent
paper [58]. The gradient structured TWIP steel was observed to have better dynamic shear properties
over the homogeneous counterparts, which can be attributed to the suppression of ASB nucleation
and propagation in the gradient structure (Figure 9). The propagation velocity of ASB in the gradient
structures was found to be one order of magnitude lower than that in the homogeneous counterparts.
Moreover, the well-known maximum stress criterion on ASB nucleation for homogeneous materials
was found to be no longer valid for the gradient structures.
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(a) Set-up of dynamic shear experiments in Hopkinson bar; (b) Shear stress-shear displacement curves;
(c) Impact shear toughness vs. dynamic shear yield strength; (d–f) Propagation process of ASB from
the surface to the center. Adapted from [58].

3.5. Fatigue Behaviors of Gradient Structures

In structural applications, most materials and components fail under cyclic loading, thus the
fatigue behaviors of metals and alloys have attracted extensive interests, in which a few papers
have focused on the fatigue mechanisms of the gradient structures [39,45,49,61]. Roland et al. [39]
have investigated the fatigue behaviors of a gradient-structured 316L stainless steel, and significant
improvement of the fatigue limit has been achieved in the gradient structure. The fatigue properties
can be further improved by a short post-annealing treatment, which can be attributed to a recovery at
the GBs leading to a reduction of the internal stress (Figure 10). The similar fatigue behaviors have also
been observed in a gradient structured martensitic stainless steel [45], the torsion fatigue strength of
the gradient structure is 38% higher than that of the original material and an additional 8% increment
in fatigue strength was achieved after a post-annealing treatment. The enhanced fatigue properties
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can be attributed to the formation of the gradient structure with a hard surface layer with a high
structural homogeneity. Huang et al. [49] have investigated the fatigue behaviors of an AISI 316L
stainless steel with gradient structures and found that the fatigue strength of the gradient structure
is significantly improved in both the low- and high-cyclic fatigue regimes compared to that of the
original material. Moreover, the fatigue ratio (the fatigue limit divided by the ultimate tensile strength)
was also apparently elevated in the gradient structure. Due to the hard surface layer, these enhanced
fatigue properties can be attributed to the suppression of the initiation of cracks and accommodation
of a remarkable cyclic plastic strain amplitude. Mechanically driven abnormal grain growth has been
observed in a gradient grained copper under strain-controlled cyclic loading [61]. This abnormal grain
growth was observed to start from the ultrafine grained subsurface layer and eventually move to the
NS top surface layer with increasing cycles. They have attributed the enhanced fatigue properties of the
gradient structured copper to the abnormal grain coarsening and the formation of dislocation patterns,
which in turn accommodate the cyclic plastic strain and postpone the formation of extrusions/intrusions
at the surface for improving the cyclic properties.
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Figure 10. Fatigue behaviors of an AISI 316L stainless steel with gradient structure: (a) Distributions
of microhardness along the depth for different samples; (b) Cyclic deformation curves of the CG and
the gradient structured samples at different stress amplitudes as indicated; (c) S-N curves of different
samples; (d) Correlation between the tensile strength and fatigue ratio (adapted from [49]).

3.6. Theoretical and Numerical Work for Gradient Structures

The above-mentioned experimental evidences have shown that the enhanced mechanical
properties (uniaxial tensile, dynamic and fatigue) can be achieved by the gradient structure, while the
detailed mechanisms underlying the observed mechanical behaviors still need further investigations
and how the mechanical properties can be optimized in the gradient structure need be clarified
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by theoretical and numerical modeling. In the past decade, several approaches (i.e., dislocation
density-based continuum plasticity modeling [48,54,55], dislocation mechanism-based size-dependent
crystal plasticity modeling [64], Crystal plasticity finite element modeling [65] and molecular dynamics
(MD) simulation [60]) have been utilized to understand the strengthening and strain hardening
behaviors. Li et al. [48,54] have developed a dislocation density-based continuum plasticity model to
reveal the extra strain hardening behaviors in the gradient structure of IF steel, in which the nonuniform
deformation of the lateral surface, the interaction of different layers along the depth, GNDs and back
stress were considered (Figure 11). A simple physical law with two dimensionless parameters has been
established to build the correlation between the strong extra strain hardening and the nonuniform
deformation of the lateral surface, and these two parameters can be determined by experimental data.
Based on the dislocation density-based continuum plasticity model, the strain hardening rate up-turn
as observed in experiments was well reproduced and a strength–ductility map was plotted, in which
the gradient structure clearly shows much more superior mechanical properties to their homogeneous
counterparts. They have attributed the high strain hardening rate of the gradient structure to the
generation of abundant GNDs in the NS surface layers through analyzing the evolutions of GNDs
density distribution and back stress. Zeng et al. [65] have investigated the mechanical behaviors of
the gradient grained copper using crystal plasticity finite simulations. They revealed both gradients
of stress and plastic strain in the cross-section of the gradient grained copper under uniaxial tensile
loading, these spatial gradients were found to be due to the progressive yielding of each layer along
the depth during the tensile deformation. GNDs can be generated by these plastic strain gradients,
which is contrast to the widely studied strain gradient plasticity induced by nonuniform deformation
(i.e., torsion, bending and indentation at small scales).
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Figure 11. Dislocation density-based continuum plasticity modeling for gradient structure:
(a) The predicted height profile on the lateral surface of a gradient IF steel and comparison with
experimental data; (b) The predicted strain hardening rate and comparison with experimental data;
(c) Strength–ductility maps of the gradient IF steel considering GNDs and back stress; (d) The predicted
GNDs density distributions for one case. Adapted from [54].
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Lu et al. [64] have incorporated multiple dislocation evolution, damage evolution, and
mechanically-driven grain growth into a dislocation mechanism-based size-dependent crystal plasticity
model to predict the tensile behaviors of the gradient grained copper. The simulated results have
revealed the strengthening and the strain hardening mechanisms based on the spatial distribution
and the evolution of microstructure and damage and have demonstrated the ability to optimize
the strength and the ductility of the gradient grained copper. Zhu et al. [55] have developed a
mechanism-based dynamic plastic model to describe the strain-rate dependent flow behaviors in
gradient nanotwinned austenite stainless steels. These theoretical simulation results have indicated
that the dynamic properties of the gradient nanotwinned austenite stainless steels are highly sensitive
to the twin spacing and the twin volume fraction, and this mechanism-based dynamic plastic model
can be used to well predict the plastic response of the gradient nanotwinned metals under a wide
range of strain rates. Lin et al. [60] have combined experimental observations and molecular dynamic
simulations to reveal the optimal grain size distribution profile of the gradient structure. The results
have indicated that the surface roughening of CGs and strain localization of NS grains can be effectively
suppressed by the interaction between CG grains and NS grains, resulting in the observed strong
strain hardening and the superior uniform elongation. The aforementioned theoretical and numerical
simulations have provided not only promising methodologies of producing gradient structure with
optimizing mechanical properties, but also models for understanding the deformation mechanisms in
the gradient structures.

4. Nanotwinned Structure

Nanotwinned (NT) structure has been proven to be a useful strategy for achieving ultra-high
strength with acceptable ductility in face-centered cubic (FCC) metals, especially in FCC metal and alloys
with low SFE. Twin boundaries (TBs) in crystalline materials are efficient and easy-controlled interfaces
that can interact with dislocations, similar to GBs [12]. TBs can be introduced into grains during
deposition processing (so-called growth twins), plastic deformation (so-called deformation twins) or
annealing of deformed structures (so-called annealing twins). Due to the lower energy, TBs usually
exhibit much higher thermal and mechanical stabilities compared with high-angle GBs [66]. It was
shown that introduction of twins for designing material structures offers substantial strengthening
while preserving acceptable ductility, especially when the density of twins is high and the size of twins
is at the nanoscale. On one hand, TBs can block dislocation sliding and dislocations can be piled-up at
TBs for improving strength in materials. Upon further plastic deformation, twins may be transformed
into NGs via shear banding or high-angle GBs by dislocations accumulation [66]. On the other hand,
TB could nucleate and emit dislocations during plastic deformation when the stress concentration at
TBs is high enough. Atomistic and MD simulations have also shown that TBs can assist dislocation
generation [67]. The main factors affecting the strengthening of TBs are the spacing of TBs and the
volume fraction of twins. In recent years, numerical research indicated that when the spacing of TBs
decreases to nanoscale, the strengthening effect is particularly remarkable, and the other mechanical
properties in metals, such as ductility, strain rate sensitivity, wear resistance, fatigue performance,
fracture toughness, can also be significantly improved [68–73].

4.1. Strength and Ductility

Strength and ductility are the important mechanical properties of metals and alloys, but there
exists a trade-off dilemma between them, limiting the potential use of many structural metals and alloys.
Numerical research have proven that the strength can be effectively elevated in metals and alloys without
much sacrifice of ductility [74–76]. Especially in copper, the strength of NT Cu can reach impressive
gigapascal scale, over more than fifteen times of its CG counterpart [75]. The electro-deposited Cu
sample with high density of nanoscale growth twins showed that the strength and ductility can
increase simultaneously with decreasing TB spacing when the mean grain size keeps constant [74–77]
(Figures 12a and 13). The strengthening effect of TBs is analogous to that of conventional GBs.
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The in-situ transmission electron microscope (TEM) and other postmortem TEM investigations showed
that TBs are strong barriers to dislocations, and glissile partial dislocations can be generated at TBs
for accommodating plastic deformation, which releases the local stress concentration and promotes
further plastic deformation [66,78–80]. Another approach to introduce nanotwins in metals and alloys
was severe plastic deformation (SPD) technique, which can generate grain refinement and deformation
twinning. For materials with low SFE, such as Cu-Zn [80,81], Cu-Al [82,83], FeCoCrNiMn [84,85],
CoCrNi [17,86,87], and other high/medium entropy alloys (H/MEAs), twinning is easier to occur than
slipping, especially at the low temperature [88] and high strain rate [89]. Nanostructured Cu sample by
means of dynamic plastic deformation (DPD) at liquid nitrogen temperature and subsequent short-time
annealing showed surprisingly good strength–ductility combination [90]. The annealed structure as
a typical heterogeneous structure, containing nano-grains with nanotwins and static recrystallized
grains, showed excellent performance in work hardening ability. The similar heterogeneous structures
also work effectively in Cu-Zn and Cu-Al alloys, as shown in Figure 12c,d [80,91]. High manganese
TWIP steels are perfect candidates in crash safety of automobile due to their excellent work hardening
capability, but the TWIP steels with CG structure usually have low yielding strength [92]. A gradient
NT structure [47] was generated by applying torsion to double the yielding strength without reduction
of ductility in a TWIP steel. In addition, multiple twins can promote plastic deformation in metals and
alloys, while higher order twins are difficult to form in the metals and alloys with high SFE [94,95].
Five-order twins were fabricated in pure silver (Ag) with extremely low SFE by SMAT and uniaxial
pre-loading [96]. The Ag with multiple twins can improve its strength by over three times without
sacrificing ductility when compared to the CG counterpart. The hierarchical NT structures in FCC
metals have been proposed to be a novel structure to bring out higher strength/ductility than NT
counterparts due to their unique deformation phenomena [97].
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Figure 13. TEM observations of the typical microstructure in an as-deposited NT-Cu sample. Bright-field
TEM image (a) and the electron diffraction pattern (inset) show roughly equiaxed submicrometer-sized
grains with random orientations separated by high-angle GBs. The statistical distributions for grain
size (b) and for thickness of the twin/matrix lamellae (c) (obtained from the many TEM images of
the same sample). Electron diffraction patterns (inset in (d)) indicate that the twins in each grain are
parallel to each other in {111} planes (d), and high-resolution TEM images (e) show that the twins
follow a sequence of ATATA, with twinning elements, for example, A: (111)/[112] and T: (111)/[112].
Adapted from [74].

4.2. Strain Rate Effect and Activation Volume

Mechanical performance of metals and alloys is always sensitive to strain rates, especially for NC
metals [98–103]. The SRS can be defined as: m = ∂lnσ/∂ln

.
ε, where σ is the flow stress and

.
ε is the strain

rate. SRS generally reflects the ability of materials to resist localized deformation when deformation is
unstable at higher strain rate [71,98–103]. In general, the high SRS means higher elevation in flow stress
with increasing strain rate. Enhancing SRS could prevent early onset of necking and nonuniform plastic
deformation at a higher strain rate. TBs, which serve as a special kind of boundaries with low energy,
can obstruct dislocation motion for providing higher strength and larger SRS. Activation volume of
plastic deformation reflects the mechanism of rate-controlling deformation. The activation volume of
NT-Cu was measured to be about dozens of b3 (here, b is the Burgers vector of Cu, b = 0.265 nm), much
lower than that for UFG-Cu without twins (several hundred of b3), in which the main rate-controlling
deformation mechanism might be forest dislocation interaction. Tensile strain rate jump tests [99] and
different strain rate tensile tests [71] have revealed that NT-Cu with higher density of nanotwins can
have a higher elevation of flow stress with increasing strain rate. The flow stress for the samples of
NT-Cu with a mean TB spacing of 15 nm (referred to NT-Cu-fine) can be elevated more than 150 MPa
when the strain rate increases from 10−5 to 10−2 s−1. However, the corresponding elevation value for
the samples of NT-Cu with a mean TB spacing of 100 nm (referred to NT-Cu-coarse) is only about
50 MPa. In addition, the average grain size for both NT-Cu-Fine and NT-Cu-Coarse samples is similar
(about 400–500 nm), excluding the grain size effect. The TEM observations of NT-Cu-fine samples after
deformation showed that TBs are curved comparing to the straight TBs before test and high-density
dislocations are observed to pile up along TBs. Stress-relaxation tests are standard methods to measure
strain hardening rate, SRS, activation volume and mobile dislocation density. The TB spacing always
has significant influences on the NT Cu’s mechanical performance [104]. The NT-Cu with high density
of twins show a much lower exhaustion rate of mobile dislocations as the applied stress increases,
when compared to NC Cu without twins [105]. These results suggest that TBs can preserve mobile
dislocations more effectively. MD simulations have indicated that dislocations may propagate into
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the adjacent part of twins by cutting through TBs when dislocations interact with Σ3 coherent TBs in
NT-Cu [99], which would contribute to sufficient strain hardening by the mobile dislocations at the
coherent TBs.

4.3. Fatigue and Damage Tolerance

Fatigue behaviors of materials refer to the mechanical properties subjected to cyclic loading [70].
In applications, more than ninety percent of the metal components or structures fail due to fatigue
loading, which is normally tension-tension or tension-compression cyclic loading. The corresponding
theories and experiments have been proposed and studied for homogeneous materials, such as the
Griffith fracture theory, the J-integral and the Paris’s low. However, the fatigue and fracture deformation
mechanisms of the materials with heterogeneous structures are still far from well understood [106–110].
Pan et al. reported a history-independent and stable cyclic response in highly-oriented NT-Cu samples [70].
They defined the so-called “necklace” dislocations, which carry plastic deformation strongly correlating
across multiple TBs. The corresponding simulations indicated that the “necklace” dislocations move
collectively back and forth along the TBs under cycle loading, so there was no damage accumulation
by the cyclic stresses in the samples. The coherent TBs usually are generated in materials as an ideal
toughening “phase” to prevent stress concentration and improve fracture resistance. The in situ TEM
observations [106] and MD simulations [107–110] revealed that a zigzag crack path was remained in
the thin foil of NT Cu during fracture process due to the dislocation pile up against TBs and across TBs,
as shown in Figure 14. The detailed analysis of MD results revealed that the mechanism of fracture
involves the dislocation-mediated local thinning ahead of the crack tip instead of cleavage fracture.
On one hand, the zigzag mode of crack path would cause more energy dissipation compared to a
straight crack path. On the other hand, there was also small section of crack along coherent TBs
which have higher fracture resistances than incoherent GBs. Therefore, TBs could increase the fracture
resistances effectively [111–122]. Xiong et al. have indicated that 316L stainless steels with bundles of
nanoscale deformation twins have beneficial to enhance the fracture resistance [113,114]. The results
showed that the twinning bundles constrict void initiation in nano-grain matrix, coincidently resist
crack propagation by acting as crack bridging ligaments.
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The desirable mechanical properties, such as high strength, high ductility, high SRS, high damage
tolerance, can be obtained in materials with nanotwins [66,115]. The enormous chanllenges fall in the
processing of higher density of nanotwins, especially for materials with high SFE. This deserves futher
deep investigations in the future.

5. Nanoprecipitate

Precipitation strengthening is a common approach to enhance the strength of materials. However,
the particles in large size usually cause stress concentration due to deformation incompatibility, leading
to microvoids, microcracks and even earlier fractures. Nanoprecipitate can solve this dilemma and
obtain both high strength and large ductility in metals and alloys.

Liu et al. fabricated the La2O3 nanoparticles in the nanostructured molybdenum (Mo) alloys,
which exhibit an unprecedented combination of strength and ductility [116]. The intragranular
La2O3 nanoparticles could generate and store dislocations, prolonging ductility with high strength
in nanostructured Mo alloys. The particles also play an efficient role as barriers to dislocation
slipping. The TEM images showed that the dislocations are pinned by nanoparticles and generated
around the nanoparticles. The spatial distribution and density of the nanoprecipitates also influence
work-hardening ability. By aging treatment, nanoprecipitates with rich content of Ni, Ti and Al
were dispersed in medium-Mn alloys [117]. The strength and the uniform elongation were both
elevated effectively due to the nanoprecipitates [117]. The intragranular precipitates promote ductility
in martensite by accumulating dislocations. Precipitation strengthening is also considered to be an
effective strengthening mechanism in HEAs. Fu et al. designed and fabricated an Fe25Co25Ni25Al10Ti15

dual-phase HEA that contains an FCC matrix (γ) with a small volume fraction of body-centered
cubic (BCC) phase [118]. There are some primary nanoprecipitates γ′ and secondary nanoprecipitates
γ* in FCC matrix. Based on the observation of in situ compression tests in the TEM, dislocation
slipping was observed to be impeded by shearing both the primary precipitates γ′ and the secondary
precipitates γ*. Thus, the HEA with high density of hierarchical intragranular nanoprecipitates shows
an unprecedented tensile yield strength, which is ~1860 MPa.

We [119] developed an electroplating protocol in pure Ni to deploy NGs inside large grains:
so-called nanodomained Ni (Figure 15c). These nanodomains can block dislocations and leave ample
room for dislocation to entangle and store in the large grains, resulting in simultaneous high strength
and large ductility and evading the strength–ductility trade-off. The conventional nanostructured Ni
has a higher strength, but the uniform elongation decreases drastically with decreasing grain size,
as shown in the curves of A, B and C in Figure 15a. Figure 15b summarizes the typical “banana curve”
(trade-off) for the Ni and Cu with homogeneous structure (the blue region) by normalized yield strength
and normalized uniform tensile elongation (ductility). Outside of the blue region, the green dashed
line shows the data with an outstanding combination of strength and ductility for Cu and other steels
with heterogeneous structures. The nanodomained Ni stands out as an exception with its NG-level
strength and CG-like ductility. And the tensile stress–strain curve of the nanodomained Ni (Figure 15a,
curve F) shows the higher work hardening rate than that of the Ni with other structures, which is
the reason for such a large uniform elongation. High resolution post-mortem TEM observations of
indicate much higher dislocation density near the boundaries of the domains (Figure 15d). The MD
simulations have also confirmed this phenomenon [120].
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We [119] developed an electroplating protocol in pure Ni to deploy NGs inside large grains: 
so-called nanodomained Ni (Figure 15c). These nanodomains can block dislocations and leave 
ample room for dislocation to entangle and store in the large grains, resulting in simultaneous high 

Figure 15. (a) Engineering tensile stress–strain curves at a strain rate of 4 × 10−4 s−1: Curve A:
as-annealed CG Ni with an average grain size of 27 µm; Curve B: electrodeposited (ED) Ni (d = 1µm);
Curve C: electrodeposited UFG Ni (d = 200 nm); Curve D: UFG Ni obtained via equal channel angular
pressing (ECAP) for one pass; Curve E: ED nanocrystalline Ni (d = 18 nm); Curve F: electroplated
nanodomained Ni (d = 150 nm, ddomain = 7 nm). (b) Normalized yield strength versus normalized
tensile uniform elongation for metals. (c) TEM images of nanodomained Ni, showing low-angle domain
boundaries (LADBs). (d) High-resolution electron microscope (HREM) images showing the dislocation
pile-ups. (adapted from [119]).

As shown in Figure 16, moving dislocations are observed to be blocked and pinned by the domain
boundaries. Although the average domain diameter is as small as about 7 nm and the volume fraction
is around 2.4%, these domains appear to be stable upon tensile deformation. Such heterogeneously
architected nanostructure has been proven to be a valuable strategy to evade the strength–ductility
trade-off in pure metals [117–120].
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Figure 16. MD simulations of slip-nanodomain interactions. (a) Configuration for simulation cell with
a straight edge dislocation and two nanodomains. (b) Simulated shear stress-shear strain curves as
the straight dislocation is blocked by the nanodomains. (c) A sequence of snapshots at varying shear
strains showing the pinning of the dislocation and its subsequent bowing around the nanodomains
with LADB. (d) A sequence of snapshots at varying shear strains showing the pinning of the dislocation
and its subsequent bowing around the nanodomains with high-angle domain boundaries (HADB).
Adapted from [119].

6. Conclusions, Future Perspective and Challenges

In this paper, the plastic behaviors and the corresponding deformation physics for heterogeneous
grain/lamellar/phase structures, gradient structure, NT structure and structure with nanoprecipitates
have been reviewed. The design concept for these heterogeneous structures is to delocalize strain
concentration for improving ductility through extra hardening effects. These heterogeneous structures
have can increase opportunities for dislocation storage by GNDs over the homogeneous counterparts.
These GNDs are generated by the strain gradients and the plastic deformation incompatibility between
different domains with dramatically varying mechanical properties. Thus, unexpected high uniform
elongation can be achieved for high strength metals and alloys, evading the strength–ductility trade
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off. These deformation mechanisms and deformation physics are applicable not only to the uniaxial
loading condition but also to the dynamic and fatigue conditions.

In one hand, one may think to raise the microstructure inhomogeneity to achieve stronger
strain gradients and better extra strain hardening, on the other hand the interfaces with too large
microstructure inhomogeneity might not be strong enough to accommodate the high strain gradients
and the high density of GNDs, resulting in a quick failure at the interfaces and a lower ductility. The size
and spacing of the domains are also critical for optimizing the mechanical properties of heterogeneous
structures. Smaller domains can generate more interfaces, resulting in more spaces for a higher density
of GNDs and better ductility. However, too-small domains may cause the overlapping of GNDs
distributions between neighboring domains, resulting in decreasing ductility. Thus, how to control
the microstructure heterogeneity to obtain optimizing mechanical properties remains an unresolved
issue and needs extensive experimental and theoretical efforts in the future. Moreover, manufacturing
the desired microstructure with predesigned heterogeneity is a great challenge. Previous studies on
the dynamic behaviors of heterogeneous structures were conducted in an “in-situ” manner; however,
"in-situ" dynamic experiments with accurate measurements of temperature rise history and strain
field history must be developed to better understand these dynamic processes. Experimental evidence
for the fatigue behaviors of heterogeneous structures are also limited, and more research should be
conducted to obtain a comprehensive understanding on fatigue mechanisms (including fatigue crack
growth behaviors, cyclic softening/strengthening behaviors) in the future. Moreover, additional efforts
should focus on the fracture toughness, impact toughness, superplastic behaviors and thermal stability
of the heterogeneous structures.
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