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Abstract: In this paper, the effects of the deformation temperature, the deformation reduction and
the deformation rate on the microstructural formation, ferritic and martensitic phase transformation,
stress–strain behaviors and micro-hardness in low-carbon ferritic stainless steel were investigated.
The increase in deformation temperature promotes the formation of the fine equiaxed dynamic
strain-induced transformation ferrite and suppresses the martensitic transformation. The higher
deformation temperature results in a lower starting temperature for martensitic transformation. The
increase in deformation can effectively promote the transformation of DSIT ferrite, and decrease the
martensitic transformation rate, which is caused by the work hardening effect on the metastable
austenite. The increase in the deformation rate leads to an increase in the ferrite fraction, because a high
density of dislocation remains that can provide sufficient nucleation sites for ferrite transformation.
The slow deformation rate results in dynamic recovery according to the stress–strain curve.
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1. Introduction

Ferritic stainless steels have been widely used in railway transportation equipment, mining
machinery, the auto industry and nuclear fission power plant components, because of their
remarkable corrosion resistance, outstanding strength and toughness, good weld ability and high cost
performance [1–5]. In particular, low-carbon 11–13% Cr ferritic stainless steels have lower material
cost than austenitic stainless steels and high Cr ferritic stainless steels, due to their lower contents of Cr
and Ni [6,7]. To maintain the ferritic phase at room temperature, the austenite-stabilization elements C,
N, and Ni are strictly controlled at a low level [8,9].

Severe plastic deformation is a practical route for the improvement of mechanical properties in
the ferritic stainless steels, since in their case it is difficult to realize the effect of phase transformation
strengthening [10]. It has been recognized that ultrafine grain structure can be obtained during
severe plastic deformation in ferritic stainless steels [11]. The increase in deformation temperature
accelerates the kinetics of ultrafine grain evolution significantly. During hot deformation, dynamic
recrystallization and dynamic recovery occur, while dynamically recovered and sub-microstructures
can be obtained during warm deformation [12]. The dynamic recrystallization may occur in the
coarse-grained structure during severe plastic deformation at ambient temperature [13]. However,
due to their restricted ferrite-forming elements, low-carbon ferritic stainless steels may enter the
austenite phase regions at high temperature. Thus, the effect of austenitic transformation and the
subsequent decomposing of austenite on severe plastic deformation in low-carbon ferritic stainless
steels should be considered, though it has been rarely reported until now.
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This project focuses on the high temperature plastic deformation in the austenite phase region
in a low-carbon ferritic stainless steel. The effects of the deformation temperature, the deformation
reduction and the deformation rate on the microstructural formation, ferritic and martensitic phase
transformation, stress–strain behaviors and micro-hardness in the low-carbon ferritic stainless steel
were studied.

2. Experimental Details

The chemical composition of the employed low-carbon ferritic stainless steel is given in Table 1.
The chemical compositions of the sample were obtained by inductively coupled plasma optical
emission spectrometry (ICP-OES). The original state of the samples was the as-rolled plate, whose
rolling parameters were that the rolling passes occurred six times, the total rolling reduction was
80%, and the finishing rolling temperature was about 600 ◦C. Due to this low finishing temperature
during rolling, the dynamic recrystallization process would be incomplete, and thus the as-rolled
microstructure remained at room temperature. The microstructure of the as-rolled sample is presented
in Figure 1, which shows the typical rolled morphology. The grains are elongated along the rolling
direction. Besides, the severe deformation would result in a high density of dislocation, although it
cannot be observed in the optical micrograph, due to the low resolution.

Table 1. Chemical compositions of the employed low-carbon ferritic stainless steel (wt. %).

C Cr Si Ni Mn Nb Ti Fe

0.01 11.54 0.2 0.57 1.12 0.09 0.12 Bal.
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Figure 1. The original microstructure of the employed low-carbon ferritic stainless steel.

The deformation experiments were conducted on the Gleeble-3500 thermal simulated test machine
(DSI, New York, NY, USA). In this paper, the effect of the deformation temperature, the deformation
reduction (referring to the relative deformation in this project, the same as below) and the deformation
rate were investigated. The process procedures are illustrated in Figure 2 and Table 2. For the
deformation temperature experiments, the samples were heated to 1000 ◦C and held for 10 min, with a
heating rate of 100 ◦C/min, followed by cooling to the deformation temperatures (600, 700, 800 and
900 ◦C), and then deformed with the deformation reduction of 0.9 and the deformation rate of 0.1 s−1,
before being finally cooled to room temperature with a cooling rate of 100 ◦C/min. For the deformation
reduction experiments, the samples were also austenitized at 1000 ◦C for 10 min, followed by cooling
to 900 ◦C and deformation with the different reductions (0.2, 0.5 and 0.9), and then cooled to room
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temperature. For the deformation rate experiments, the samples were also deformed at 900 ◦C after
austenitization, with the different deformation rates (0.01, 0.1 and 1 s−1).
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Figure 2. Schematic illustration of the different process parameters: (a) the different deformation
temperatures, (b) the different deformation reductions, (c) the different deformation rates.

Table 2. The process parameters of the samples for the different conditions.

Experimental
Conditions

Deformation
Temperature/◦C

Deformation
Reduction

Deformation
Rate/s−1

For the different
deformation
temperatures

600, 700, 800, 900 0.9 0.1

For the different
deformation reductions 900 0.2, 0.5, 0.9 0.1

For the different
deformation rates 900 0.9 0.01, 0.1, 1

After the deformation experiments, the samples were mounted, polished, and etched in a solution
of hydrochloric acid (15 mL), ethanol (150 mL), and ferric chloride (5 g). The microstructures were
observed by the C-35A OLYMPUS Optical Microscope (Tokyo, Japan). The stress–strain curves and the
phase transformation points were captured by the accessory dilatometer of the Gleeble-3500 thermal
simulated equipment (DSI, New York, NY, USA). The Vickers micro-hardness tests were carried out
by the Duramin-A300 Vickers hardness tester (Struers, Ohio, OH, USA), with a load of 200 g and a
pressure time of 10 s.
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3. Results and Discussion

3.1. Effect of the Deformation Temperature

As mentioned above, the original sample is in an as-rolled state, so the isothermal treatment at high
temperature (annealing or normalizing) is necessary before deformation to remove the deformation
texture and the residual stress caused by rolling. Figure 3 shows the equilibrium phase diagram of
the employed low-carbon ferritic stainless steel calculated by JMatPro 7.0 software (Sente Software,
Guildford, UK). It is found that, in the temperature range from 854 to 1068 ◦C, the steel is in the
single-phase austenite region. Figure 4 gives the proof for the occurrence of austenitic transformation
during heating with a rate of 100 ◦C/min. It can be seen that the inflection points resulted from
austenitic transformation on the thermal expansion curve captured by Gleeble-3500. The Ac1 and Ac3

points can be determined as 837 and 991 ◦C. The transformation temperatures were determined from
the dilatometer curves using the tangent line method [14].
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Figure 5 gives a continuous cooling transformation (CCT) diagram for the explored low-carbon
ferritic stainless steel in this work, calculated by JMatPro software. It is found from Figure 5 that
martensitic transformation occurs under the cooling rate between 3 ◦C/min (0.05 ◦C/s) and 6000 ◦C/min
(100 ◦C/s). When the cooling rate is higher than 18 ◦C/min (0.3 ◦C/s), the ferritic transformation would
not happen, and the austenite would be decomposed to martensite completely. According to the
experimental CCT diagram for 3Cr12 steel [15], a typical low-carbon 12% Cr ferritic stainless steel,
martensitic transformation still occurs when the cooling rate is as low as 0.084 ◦C/min. Figure 6
presents the microstructure of the low-carbon ferritic stainless steel sample after austenitization, whose
treatment parameter is heating to 1000 ◦C with a heating rate of 100 ◦C/min, holding for 10 min,
and cooling to room temperature with a cooling rate of 100 ◦C/min. Due to the moderate cooling rate
after austenitization (air cooling), the bainitic and pearlite transformation would be avoided, and only
martensite would form during cooling. As a result, it can be confirmed that the microstructure of the
sample is composed of martensite (denoted as “M” in Figure 6), and δ-ferrite distributed along the
prior austenitic boundaries (denoted as “F” in Figure 6).
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Figure 6. Microstructure of the low-carbon ferritic stainless steel sample after austenitization: (a) optical
micrograph, (b) SEM micrograph.

A schematic illustration of the different deformation temperatures is given in Figure 2a. The
deformation temperatures are 600, 700, 800 and 900 ◦C, respectively. Figure 7 presents the optical
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micrographs of the low-carbon ferritic stainless steel samples deformed at the different temperatures.
It is found that the microstructures of all samples are composed of ferrite and lath martensite. The
sample with the deformation temperature of 600 ◦C shows the typical rolled microstructure, with the
elongated grain morphology. This suggests that the deformation temperature of 600 ◦C is too low
to cause dynamic recrystallization. On the other hand, the deformation texture with the elongated
grain is not found in the microstructures of the samples deformed at 700, 800 and 900 ◦C, which are
composed of the martensitic laths, and the fine equiaxed ferrite grain (with the diameter of about 5 µm)
distributed among the martensitic laths. With the increase in deformation temperature, the amount
of the fine equiaxed ferrite is increased, which results in the microstructures appearing finer in the
samples deformed at the higher temperature.
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As discussed above, austenitic transformation occurs when heating up to 837 ◦C (namely Ac1),
and austinite transforms to lath martensite when the cooling rate is higher than 18 ◦C/min. Hence,
it is recognized that the meta-stable austenite remains intact before deformation. During or after
deformation, the austenite would be transformed to lath martensite or ferrite. Furthermore, it also
found that the higher deformation temperature is favorable to the formation of fine equiaxed ferrite,
while the lower deformation temperature promotes the formation of lath martensite. Generally
speaking, a high temperature would result in a coarse grain [16]. However, this phenomenon was not
observed in this project. This may be due to the dynamic transformation and recrystallization of ferrite
during the high temperature deformation.

Figure 8 shows the phase transformation temperatures, determined by Gleeble-3500, for the
low-carbon ferritic stainless steel samples deformed at the different temperatures. It can be confirmed
as martensitic transformation, in consideration of the low transformation temperature. With the



Metals 2019, 9, 463 7 of 16

increase in deformation temperature, the starting temperature for martensite transformation, Ms,
is decreased, while the martensitic transformation finishing point remains almost unchanged, regardless
of the deformation temperature. Besides, the Ms of the samples after deformation is higher than
that of the samples without deformation (determined as 528 ◦C). This is because a large number of
dislocations and other defects form during the deformation process, which provides more nucleation
sites for martensitic transformation, and thus promotes martensitic transformation [17]. The higher the
deformation temperature is, the more favorable the dynamic recovery of defects is. Hence, the number
density of the defects is decreased accordingly, which results in a lower Ms in the sample with the
higher deformation temperature.
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Figure 8. Phase transformation temperatures for the low-carbon ferritic stainless steel samples deformed
at the different temperatures.

The formation of fine equiaxed ferrite was not detected in the thermal expansion curve determined
by Gleeble-3500. This implies that ferritic transformation is likely to occur during the deformation
process, rather than during continuous cooling after deformation. In general, this dynamic formation of
fine ferrite during deformation is considered to be a dynamic strain-induced transformation (DSIT) [18].
When deformation is in the meta-stable austenite phase region, the dynamic strain-induced ferrite
nucleates at the defects [19]. The movement of austenite-ferrite phase boundaries is hindered, due to the
enhanced strength of the matrix caused by strain hardening, accompanied by dynamic recrystallization
of ferrite grains. As a result, the DSIT ferrite grain size is very small.

The stress–strain curves of the samples with the different deformation temperatures are presented
in Figure 9. A decrease in deformation temperature leads to an increase in loading stress for reaching
the same strain amount, since the yield strength of the steel is decreased by the increase in temperature.
The stress–strain curves of the samples with the deformation temperatures of 600, 700 and 800 ◦C are
monotonically increased, showing the typical characteristic of work hardening. On the other hand,
in the sample deformed at 900 ◦C, when the strain is more than 0.3, the stress–strain curve is horizontal,
representing the dynamic softening process [20]. Firstly, during deformation at high temperature,
dynamic recovery and recrystallization occurs, offsetting the work hardening effect resulting from
dislocation multiplication [21,22]. Secondly, according to the microstructural observation, the higher
deformation temperature promotes the DSIT ferrite formation, accompanied by the movement and
annihilation of dislocation, which also results in the loss of work hardening effect [19].

Figure 10 shows the values for Vickers hardness of the samples deformed at the different
temperatures. It can be seen that the results of the hardness tests agree with the stress–strain curves.
With the increase in deformation temperature, the hardness is decreased. This is mainly due to the fact
that the rate of dynamic recovery and recrystallization will be faster when the sample is deformed
at the higher temperature, which offsets the effect of work hardening. The difference in the phase
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ratio of martensite to ferrite may also affect the hardness results. The size of the DSIT ferrite is
higher up to about 5 µm in this project, so the hardness of ferrite would be lower than that of lath
martensite [23]. As mentioned above, the lower deformation temperature is more favorable to the
formation of martensite, leading to the relatively high hardness. Besides, the residual stress remains at
the lower deformation temperature, which may also lead to an increase in hardness.
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different temperatures.

3.2. Effect of Deformation Reduction

It can be recognized that the stress–strain curve for the sample deformed at 900 ◦C shows the
feature of dynamic softening. Hence, the effect of deformation reduction was carried out at this
temperature. A schematic illustration of the different deformation reductions is given in Figure 2b.
Figure 11 presents the optical micrographs of the low-carbon ferritic stainless steel samples with the
different deformation reductions. With the increase in deformation reduction, the fine equiaxed DSIT
ferrite fraction is also increased. Obviously, a larger deformation reduction gives rise to more defects,
and thus provides more nucleation sites for DSIT ferrite transformation.
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According to the stress–strain curve for the sample with the deformation reduction of 0.9
(Figure 12), before the deformation reduction reaches 0.2, the stress–strain curve belongs to the typical
work hardening stage. In this stage, dislocation multiplication occurs with the increase in deformation.
When the deformation reduction is between 0.2 and 0.5, the stress–strain curve steps into the stage of
dynamic softening, including the dynamic recovery of dislocation and formation of DSIT ferrite. After
the deformation reduction reaches 0.5, annihilation of dislocation and recrystallization of ferrite are
dominant, resulting in the horizontal stress–strain curve.

Figure 13 presents the martensitic starting and finishing temperatures for the samples with the
different deformation reductions. It is found that the Ms points are not significantly affected by
the deformation reduction, but only slightly increased. Due to the high deformation temperature,
the occurrence of recovery during cooling after deformation decreases the defect density, resulting in
the decrease in nucleation sites for martensitic transformation accordingly. However, the Mf points
are brought down by the increase in deformation reduction. This may be due to the fact that the
movement of austenite/martensite phase boundaries is hindered during martensitic transformation.
The martensitic transformation mechanism belongs to the non-diffusion type, with the shear-controlled
phase transformation characteristics [24]. The yield strength of the parent phase (namely austenite) is
improved by the increase in deformation reduction, impeding the migration of the martensite/austenite
interface. Thus, the rate of martensitic transformation is decreased, reflected as the decrease in
Mf points.
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the different deformation reductions.

Figure 14 shows the Vickers hardness of the samples with the different deformation reductions.
The hardness values do not change greatly, though their general trend is to firstly increase and then
decrease with the increase in deformation reduction. On the one hand, as discussed above, the hardness
of lath martensite may be higher than that of ferrite. Therefore, with the increase in deformation
reduction, the martensite fraction decreases, resulting in the decrease in hardness value. On the other
hand, the increase in deformation increases the defect density, leading to the increase in strength
and hardness. The combined effects of these two aspects result in a hardness value that does not
monotonously increase or decrease with the increase in deformation reduction.

3.3. Effect of the Deformation Rate

A schematic illustration of the different deformation rates is given in Figure 2c. Figure 15
presents the optical micrographs of the samples with the different strain rates. It can be seen that
the microstructures of all samples are composed of martensitic laths and fine ferrite grains. The
increase in the strain rate leads to the increase in the phase fraction of ferrite and the decrease in lath
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martensite fraction. There is not enough time for the recovery of dislocations and other defects at the
high deformation rate, which provides more nucleation positions for DSIT ferrite and thus greatly
promotes the ferrite transformation.
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The stress–strain curves for the different strain rates are shown in Figure 16. The stress–strain
curve shows a more obvious softening with the decrease in the strain rate. The stress–strain curve
of the sample undergoing the highest deformation rate (1 s−1) reflects the typical work hardening
characteristics. When the strain rate is the slowest (0.01 s−1), the phase fraction of ferrite is the lowest.
Thus, it is considered that the main origin of the softening phenomenon would be the dynamic recovery
of dislocations, and the dynamic recrystallization of a small amount of ferrite grains.
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Figure 16. The true stress–strain curves for the low-carbon ferritic stainless steel samples with the
different strain rates.

According to [25], the critical stress for recrystallization, σc, can be determined in the curves for
the work-hardening rate, θ, versus flow stress, σ, where θ is expressed as dσ/dε. As seen in Figure 17,
the value for σc is associated with the point at which the second derivative of the work-hardening rate
θ with respect to stress, i.e., d2θ/dσ2, is zero. The simplest equation for fitting the θ-σ curve can be
given by [26]:

θ = Aσ3 + Bσ2 + Cσ+ D (1)

where A, B, C and D are constants depending on the deformation parameters. Obviously, differentiation
of the above equation with respect to σ is expressed as:

dθ
dσ

= 3Aσ2 + 2Bσ+ C (2)

Thus, it can be derived that
d2θ

dσ2 = 6Aσ+ 2B (3)

When d2θ/dσ2 = 0, σc can be obtained by

σc = −
B

3A
(4)

For the sample deformed at 900 ◦C, with a deformation rate of 0.01 s−1 the fitted polynomial is
θ = −0.01122σ3 + 3.83996σ2

− 443.62646σ+ 17452.03963D (see Figure 1 below). Hence, the critical
stress for recrystallization, σc, is calculated as 114.08 MPa. However, σc for all other samples is higher
than the loading stresses. It should be noted that the sample in Figure 1 undergoes the highest
deformation temperature and the slowest deformation rate. As the deformation temperature or the
deformation rate is decreased, the dynamic recrystallization is blocked.

The martensitic starting and finishing temperatures for the samples with the different deformation
rates are presented in Figure 18. It is found that an increase in the strain rate results in an increase in
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Ms. Under the condition of high strain rate, the high density of dislocation remains and provides more
nucleation sites for the subsequent martensitic transformation, reflected as the increase in martensitic
starting transformation temperature. Furthermore, the higher deformation rate results in a higher
yield strength of the metastable austenite, which would hinder the movement of austenite/martensite
boundaries during martensite. Hence, the increase in the deformation rate results in the decrease in
the martensitic transformation rate, and thus the decrease in Mf.
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Figure 18. Phase transformation temperatures for the low-carbon ferritic stainless steel samples with
the different strain rates.

Figure 19 shows the Vickers hardness of the samples with the different strain rates. With the
increase in the strain rate, the hardness increases monotonically. This is attributed to the fact that the
microstructure has sufficient time for recovery and recrystallization under the condition of slow strain
rate, which leads to the reduction of hardness.
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4. Conclusions

In this paper, the effects of the deformation temperature, the deformation reduction and the
deformation rate on the microstructures, phase transformation behaviors, stress–strain curves and
mechanical properties were investigated. The main conclusions are as follows:

(1) The increase in deformation temperature promotes the formation of the fine equiaxed DSIT
ferrite and suppresses the martensitic transformation. The higher deformation temperature results in a
lower starting temperature for martensitic transformation. When the deformation temperature reaches
900 ◦C, the stress–strain curve shows an obvious softening phenomenon, and the hardness decreases
to minimum.

(2) The increase in deformation can effectively promote the transformation of DSIT ferrite,
and decrease the martensitic transformation rate, which is caused by the work hardening effect on the
metastable austenite.

(3) The increase in the deformation rate leads to an increase in the ferrite fraction, because a high
density of dislocation remains that can provide sufficient nucleation sites for ferrite transformation.
The slow deformation rate results in dynamic recovery according to the stress–strain curve.
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