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Abstract: In the continuous-casting process, mold-level control is one of the most important factors
that ensures the quality of high-efficiency continuous casting slabs. In traditional mold-level prediction
control, the mold-level prediction accuracy is low, and the calculation cost is high. In order to improve
the prediction accuracy for mold-level prediction, an adaptive hybrid prediction algorithm is proposed.
This new algorithm is the combination of empirical mode decomposition (EMD), variational mode
decomposition (VMD), and support vector regression (SVR), and it effectively overcomes the impact
of noise on the original signal. Firstly, the intrinsic mode functions (IMFs) of the mold-level signal are
obtained by the adaptive EMD, and the key parameter of the VMD is obtained by the correlation
analysis between the IMFs. VMD is performed based on the key parameter to obtain several IMFs,
and the noise IMFs are denoised by wavelet threshold denoising (WTD). Then, SVR is used to
predict each denoised component to obtain the predicted IMF. Finally, the predicted mold-level signal
is reconstructed by the predicted IMFs. In addition, compared with WTD–SVR and EMD–SVR,
VMD–SVR has a competitive advantage against the above three methods in terms of robustness.
This new method provides a new idea for mold-level prediction.

Keywords: variational mode decomposition; empirical mode decomposition; support vector
regression; mold level; continuous casting

1. Introduction

In the modern steel industry, high-efficiency continuous casting technology has become the most
internationally competitive key technology [1]. The continuous casting process is a complex and
continuous phase change process. Many factors affect the quality of slabs. The research into the
key technology in the high-quality steel continuous-casting process is mainly focused on mold-level
precision, as well as the segment and secondary cooling dynamic control [2].

At present, mold-level control is mainly based on the principle of predictive control,
which combines prediction and control to improve the timeliness of prediction, but affects its accuracy.
In view of the large mold-level disturbance, Guo et al. [3] used the prediction method in mold-level
control. Aiming at the nonlinear characteristics of mold-level data, Tong et al. [4] carried out a
constrained generalized prediction method based on the genetic algorithm. Aiming at the strong
mold-level coupling characteristics, Qiao et al. [5] proposed an auto-disturbance suppression algorithm
based on neural network tuning. However, these prediction methods have not effectively overcome
the effects of mold-level noise.

Precise mold level monitoring is regarded as the key to improving continuous casting production
quality, as shown in Figure 1 [2–4]. It is an important source of reference data for casting speed control,

Metals 2019, 9, 458; doi:10.3390/met9040458 www.mdpi.com/journal/metals

http://www.mdpi.com/journal/metals
http://www.mdpi.com
https://orcid.org/0000-0003-3408-1315
http://www.mdpi.com/2075-4701/9/4/458?type=check_update&version=1
http://dx.doi.org/10.3390/met9040458
http://www.mdpi.com/journal/metals


Metals 2019, 9, 458 2 of 15

segment roll gap control, mold-cooling water control, and stopper rod opening control. If the mold
level fluctuates too much, the following will occur. First, it will cause impurities on the surface of
the mold. Surface defects and internal defects of the slab are generated which affect the surface and
internal quality of the slab. Second, it will affect the casting speed, affecting productivity and the
production rhythm. Eventually, it will cause the slab and the continuous casting machine to stick
together, damage the tundish slide, and even cause downtime. Accurate prediction of the mold level
occupies an important position in the continuous casting production process. This paper proposes an
advanced mold level signal denoising method to prepare accurate data input for future mold level
prediction, realize the purpose of predictive control, and greatly reduce the occurrence of accidents
affecting quality and safety in the continuous casting production process.
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A data-driven method for mold-level prediction is proposed in this paper, which provides a new
idea for mold-level control. The method takes variational mode decomposition (VMD) and support
vector regression (SVR) as its core ideas, and creates mold-level predictions driven by data to overcome
the influence of white noise caused by the casting speed and strong mold-level coupling.

Recent studies have shown that although there are many methods in the field of signal processing,
none of them is applicable to all signal data. Wavelet transform (WT)-based signal processing methods
are widely used, but wavelet denoising methods are limited by the selection of the wavelet basis function
and affect the generalization ability of the wavelet. Although the method based on empirical mode
decomposition (EMD) is widely used for the adaptability of its decomposition [6], the EMD method
has serious pattern aliasing and boundary effects which seriously affect the signal decomposition.
Especially in the process of signal noise processing, high-frequency components are often removed
directly, resulting in loss of effective information. Signal processing techniques based on the VMD
method have been widely used in recent years [7]. Compared with the EMD method, VMD effectively
avoids mode aliasing and boundary effects and can realize the frequency domain splitting of signals
and effective separation of components, which results in better noise and sample rate robustness.

For the prediction of time series, various prediction methods have appeared in the past several
decades. Traditional time-series prediction methods, such as regression analysis and grey prediction [8],
have some shortcomings, and the prediction accuracy of signals with large fluctuations needs to
be improved [9]. The numerical weather prediction model for predicting future wind speed using



Metals 2019, 9, 458 3 of 15

mathematical models [10], multiple regression, exponential smoothing, the autoregressive moving
average model (ARMA), and many others are used for wind-speed prediction, power prediction,
stock-trend prediction, etc. Traditional time-series prediction methods have low precision and poor
robustness to nonlinear disturbances. Mold level is non-linear and non-stationary in terms of the time
scale and does not satisfy Gaussian normal distribution. Traditional time-series prediction methods
are not suitable for mold-level prediction.

In recent years, with the rapid development of science and technology, artificial intelligence
technology has been widely used and introduced into the prediction of time series, and good prediction
results have been achieved [11]. Artificial neural networks (ANN) [12] and SVR [13] methods
are the main tools for dealing with non-linear, non-stationary time series. SVR is a small-sample
machine-learning method based on statistical learning theory, Vapnik–Chervonenkis (VC) dimension
theory, and the minimum structural risk principle. Based on limited sample information, it seeks
the best compromise between model complexity and learning ability to achieve the best promotion
effect [14,15]. Liu and Gao [16] established a method for the online prediction of the silicon content in
blast-furnace ironmaking processes. Compared with other soft sensors, the superiority of the proposed
method is demonstrated in terms of the online prediction of the silicon content in an industrial blast
furnace in China. Existing studies have shown that the ANN method takes a long time to calculate and
is prone to localized minimization [17–20], leading to overfitting and poor prediction results. SVR is
more robust to overfitting than ANN. The parameters of SVR can be improved by means of global
optimization. It can be used to improve the prediction performance of SVR.

This paper focuses on the use of a hybrid algorithm for a time-series prediction model, and it is
used for mold-level prediction. After comparing and discussing the hybrid algorithm for mold-level
prediction, a new idea for continuous-casting process improvement is proposed. Firstly, the model
uses EMD to decompose the original mold-level signal into several intrinsic mode functions (IMFs),
and the key parameter of the VMD is obtained by the correlation analysis between the IMFs. VMD
is performed based on the key parameter to obtain several IMFs, and the noise IMFs are denoised
by wavelet threshold denoising (WTD). Then, SVR is used to predict each denoised component to
obtain the predicted IMF. Finally, the predicted IMF reconstructs the predicted mold-level signal. The
rest of this paper is organized as follows. The VMD algorithm is introduced in Section 2. VMD–SVR
algorithms are introduced in Section 3. The performance of the three algorithms is compared through
experiments in Section 4. Section 5 concludes this paper and makes recommendations.

2. Basic Algorithm Research

2.1. Variational Mode Decomposition

VMD is a new type of signal decomposition method. This method redefines an amplitude
modulation-frequency modulation signal as an IMF, whose expression is

uk(t) = Ak(t) cos(φk(t)) (1)

where φk(t) ≥ 0 is the phase, Ak(t) is the amplitude, Ak(t) ≥ 0,ωk(t) = φ′k(t), andωk(t) is the frequency.
In the interval range of [t − δ, t + δ], uk(t) can be regarded as a harmonic signal with amplitude

Ak(t) and frequencyωk(t), and δ = 2π/φ′k(t), where the prime denotes differentiation with respect to t.
The difference between VMD and EMD is that VMD is based on solving the variational problem

and uses the variational model principle in the process of obtaining the IMFs, so that the sum of the
estimated bandwidths of each IMF is minimized. The optimal solution of the constrained variational
model is solved. The center frequency and bandwidth of the IMF are updated in the process of solving
the variational model. The signal band is adaptively segmented based on the frequency domain of the
signal itself. Further, a narrowband IMF is obtained.
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The variational constraint model is as follows:

min
{uk},{ωk}

{∑
k

∥∥∥∥∂t[
(
δ(t) + j

πt

)
× uk(t)]e− jωkt

∥∥∥∥2

2

}
s.t.

∑
k

uk = f
(2)

where j =
√
−1; {uk} := {u1, u2, . . . uK} is the number of IMF; {ωk} := {ω1,ω2, . . . ,ωK} is the frequency

center of each IMF; and
∑

k : =
∑ K

k=1 is the sum of all modes. ‖‖22 is the square of the 2-norm.
We introduce the Lagrange function as

L({uk}, {ωk}, λ) = α
∑
k

∥∥∥∥∂t[
(
δ(t) + j

πt

)
× uk(t)]e− jωkt

∥∥∥∥2

2
+ ‖ f (t) −

∑
k

uk(t)‖
2

2
+

〈
λ(t), f (t) −

∑
k

uk(t)
〉

(3)

where α is the penalty factor and λ is the Lagrange multiplier. ‖ f (t) −
∑
k

uk(t)‖
2

2
is the second penalty.

〈〉 is the integral mean of the variables.
The problem of solving the original minimum value can be transformed into the saddle point of

the extended Lagrange expression by the alternating direction method, which is the optimal solution
of the below formula:

un+1
k = arguk

minL(
{
un+1

i<k

}
,
{
un+1

i≥k

}
,
{
ωn

i

}
, λn) (4)

ωn+1
k = argωk

minL(
{
un+1

i

}
,
{
ωn+1

i<k

}
,
{
ωn

i≥k

}
, λn) (5)

λn+1 = λn + τ

 f (t) −
∑

k

un+1
k

 (6)

where
∑
k

∥∥∥un+1
k − un

k

∥∥∥2
2
/‖un

k ‖
2
2
< ε is the convergence condition; n is the number of iterations; and τ is

the update parameter.
Therefore, the original signal can be decomposed into K IMFs.
The calculation process of the VMD algorithm is as follows:

Step 1: Initialize
{
u1

k

}
,
{
ω1

k

}
, λ1 and n to zero;

Step 2: n = n + 1, execute the entire loop;

Step 3: Execute the loop k = k + 1 until k = K, update uk: un+1
k = argminL

uk

({
un+1

i<k

}
,
{
un

i≥k

}
,
{
un

i

}
, λn

)
;

Step 4: Execute the loop k = k + 1, until k = K, updateωk: ωn+1
k = argminL

ωk

({
ωn+1

i<k

}
,
{
ωn

i≥k

}
,
{
ωn

i

}
, λn

)
;

Step 5: Use λn+1 = λn + τ

(
f (t) −

∑
k

uk(t)
)

to update λ;

Step 6: Given the discrimination condition ε > 0, if the iteration stop condition is satisfied, all the
cycles are stopped and the result is output, and K IMFs are obtained.

2.2. Support Vector Machine

SVM can not only solve the classification problem, but also solves the regression problem; the basic
model is the largest linear classifier defined in the feature space. SVM aims to achieve a distinction
between samples by constructing a hyperplane for classification so that the sorting interval between
the samples is maximized and the sample to the hyperplane distance is minimized.

Set a training data set for a feature space D = {(x1, y1), (x2, y2), . . . , (xm, ym)}, xi ∈ χ = <n,
yi ∈ y = {+1,−1}, i = 1, 2, . . . , N, where xi is the i-th feature vector, yi is the class tag of xi.

The corresponding equation of the classification hyperplane is

h(x) = ω · x + b (7)
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where x is the input vector,ω is the weight, and b is the offset.
The classification decision function is

Sign(h(x)) (8){
h(x) > 0, yi = 1
h(x) < 0, yi = −1

(9)

The support vector machine is implemented to find ω and b when the interval between the
separation hyperplane and the nearest sample point is maximized. When the training set is linearly
separable, the sample points belonging to different classes can be separated by one or several straight
lines with the largest interval. The maximum interval is solved by the following formula:

maxγi = yi(
ω

‖ω‖
· xi +

b
‖ω‖

) (10)

s.t. yi(
ω

‖ω‖
· xi +

b
‖ω‖

) ≥ γ, i = 1, 2, . . . , N (11)

where γ is the geometric interval. Thus, we can obtain the linear separable support vector machine
optimization problem.

min
ω,b

1
2
‖ω‖2 (12)

s.t. yi(ω · xi + b) − 1 ≥ 0, i = 1, 2, . . . , N (13)

In the actual data set, there are many specific points, making the data set linearly inseparable; in
order to solve this problem, we introduce a slack variable for each sample point ξi ≥ 0, so that

yi(ω · xi + b) ≥ 1− ξi (14)

For each slack variable ξi, pay a price ξi, and the optimization problem becomes

min
ω,b,ε

1
2
‖ω‖2 + C

N∑
i=1

ξi (15)

where C > 0 is the penalty factor.
Most of the data are linearly inseparable; therefore, these data should be mapped to a

high-dimensional feature space through non-linear mapping, letting the non-linear problem be
transformed into a linear problem. The linear indivisible problem is transformed into a linearly
separable problem.

Introduce kernel functions:
K(xi, x j) = ϕ(xi) ·ϕ(x j) (16)

where the value of the kernel equals the inner product of two vectors, xi and xj.
At this point, we obtain

W(α) =
1
2

N∑
i=1

N∑
j=1

αiα jyiy jK(xi, x j) −
N∑

i=1

αi (17)

where α is the Lagrangian multiplier, αi ≥ 0, i = 1, 2, . . . , N, and N is the number of samples.
In this paper, the radial basis function (RBF) is chosen as the SVR kernel function, and the

expression is

K(xi, x) = exp(
−‖xi − x‖2

2g2 ) (18)
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where g is the kernel function coefficient.
At this point, the classification function becomes

f (x) = sign[
N∑

i=1

αiyi exp(
−‖xi − x‖2

2g2 ) + b] (19)

2.3. Empirical Mode Decomposition

EMD is an adaptive signal processing technique suitable for non-linear and non-stationary
processes [21]. In 1998, Huang et al. [6] proposed the empirical mode decomposition technology.
Based on time scales, EMD local features such as local maxima, local minima, and zero-crossings,
we decompose the signal into several IMFs and a residual; the IMFs are orthogonal to each other.
Modal decomposition is determined by the signal itself.

EMD satisfies the following basic assumptions:

(1) In the entire data set, the number of extreme values and the number of zero crossings must be
equal or at most have one point of difference.

(2) At any point, the average defined by the local maximum envelope and the minimum envelope
is zero.

Finally, the original signal is decomposed into

x(t) =
N∑

i=1

ci + rN (20)

where x(t) is the original signal, ci is the IMF, N is the number of IMFs, and rN is the residual.

2.4. Wavelet Threshold Denoising

Suppose the model of denoising based on wavelet transform is

x = c + σe (21)

where x is the noise signal; c is the effective signal; e is the noise component in the noise signal; and σ is
the noise intensity.

The wavelet transform and its denoising process are carried out in the following steps [22]:

(1) The noisy signal is transformed by wavelet transform. A wavelet basis is selected to determine
the level N of the wavelet decomposition at the same time, and then the signal x is decomposed
by the N-level wavelet.

(2) The wavelet coefficients are thresholder. In order to keep the overall shape of the signal unchanged
and keep the effective signal, the hard threshold, soft threshold or other threshold methods are
used to quantify the sparseness of each layer after decomposition.

(3) The inverse wavelet transform is performed, and the signal is reconstructed.

In this paper, a hard threshold denoising function is selected. Hard threshold processing compares
the absolute value of wavelet transform coefficients with the threshold value. The coefficients smaller
than or equal to the threshold value become zero, and the coefficients larger than the threshold value
remain unchanged [23]. This method has better amplitude-preserving characteristics [24] and its
expression is as follows:

S =

{
s, |s| > T
0, |s| < T

(22)

where T is the threshold, and s is the wavelet decomposition coefficient.
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3. Hybrid Algorithm Research

Mold-level prediction accuracy is influenced by many factors. In order to improve mold-level
prediction accuracy, firstly, the noise in the original signal should be removed as much as possible.
Then, we improve the prediction accuracy by using advanced prediction algorithms such as SVR. Thus,
a prediction model based on the VMD–SVR algorithm for mold-level prediction is proposed in this
paper. A hybrid algorithm flow chart is shown in Figure 2.Metals 2019, 9, x FOR PEER REVIEW 7 of 15 
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Firstly, the original mold-level signal is subjected to data preprocessing to remove singular points.
Then, all data are marked in the range of 0 to 1 to improve computational efficiency. Finally, the hybrid
model is used for data prediction.

The hybrid algorithm flow is as follows:

Step 1: Adaptively decompose the mold-level data based on the EMD algorithm to obtain several IMFs;
Step 2: The K value of the key parameter of the VMD is obtained by the correlation analysis between

the IMFs;
Step 3: Perform VMD decomposition on the original signal based on K to obtain K IMFs;
Step 4: Denoise the noise related component;
Step 5: Perform SVR on the denoised IMFs and other IMFs to obtain the predicted IMFs;
Step 6: Reconstruct the predicted component and obtain the predicted signal.

First, the mold-level signal is decomposed into several IMFs by the EMD, and the modal parameter
K of the VMD is determined by correlation analysis between the IMFs. Then, the mold-level signal is
decomposed into K IMFs by VMD, and the IMFs are analyzed to identify the noise dominant component,
and the signal dominant component uses correlation analysis between the IMFs. Afterwards, in order to
avoid the loss of effective information, the noise-related component is denoised by the WTD algorithm,
and the effective information is effectively retained. SVR is performed on the denoised IMFs and
other IMFs to obtain the predicted IMFs. Finally, the predicted IMFs are reconstructed to obtain the
predicted signal.

The IMFs are obtained by adaptively decomposing the original mold-level data based on the novel
VMD–SVR hybrid algorithm, the main purpose of which is to distinguish the noise-dominant IMFs
and information-dominant IMFs. In order to preserve as much valid information as possible in the
original mold-level data, denoising the noise-dominant IMFs can effectively remove the effects of white
noise. Then, SVR is performed on all IMFs, the predicted IMFs are obtained for signal reconstruction,
and the predicted mold-level data is obtained.
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4. Experimental Studies

4.1. Problem Prescription

This paper presents a mold-level prediction model. This model is important for mold-level control
and propose new ideas to improve continuous-casting automatic control. In order to clearly express
the applicability, superiority, and generalization capability of the model application, the mold-level
data of actual process parameters, collected from the continuous casting machine developed by the
China National Heavy Machinery Research Institute Co., Ltd. (Xi’an, China), are used in this paper.
We used an eddy current sensor to collect the mold-level signal at a steady cast speed. There are
many uncertain disturbance factors in the mold-level control process, and the disturbance may change
constantly at any time. Most of the disturbances are non-linear and non-stationary, and the long-term
prediction model is difficult to establish.

A continuous casting production process data acquisition graph is presented in Figure 3. The time
interval ∆t = 0.5 h, and the sampling frequency was 2.7 Hz.
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The main technical parameters of the continuous casting machine are shown in Table 1.

Table 1. Main technical parameters of the continuous casting machine.

Project Specification

Continuous-casting machine model Curved continuous caster
Secondary cooling category Aerosol cooling, dynamic water distribution

Gap control Remote adjustment, dynamic soft reduction
Basic arc radius/mm 9500

Mold length/mm 900
Metallurgical length/mm 39,200

Mold vibration frequency/time/min 25–400
Mold vibration amplitude/mm 2–10

Slab width/mm 900–2150
Slab thickness/mm 230/250

Working speed/m/min 0.8–2.03
Actual cast speed/m/min 1.3

Slab section size/mm ×mm 230 × 1350
Mold oscillation frequency/Hz 1.36

Actual oscillation amplitude of mold/mm 60

4.2. Mold-Level Prediction Based on VMD–SVR Model

The VMD decomposition number is artificially determined, not adaptive. EMD is an adaptive
decomposition method. Therefore, in order to minimize the interference of human factors,
we decomposed the original data using EMD, and through the calculation of the correlation coefficient,
a component having the largest correlation coefficient with the original signal was obtained as a
boundary line between the high-frequency signal and the low-frequency signal, the high-frequency
signal was integrated into one component, and the remaining components were retained to determine
the number K of VMD decomposition.

First, the original data was subjected to EMD decomposition; the EMD decomposition results are
shown in Figure 4.
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Figure 4. (a) Mold-level data EMD results; (b) spectrogram after EMD of the mold-level data; di is
the i-th IMF, the unit of di is mm, m is the number of points, res is the residual, and fi is the spectrum
corresponding to the i-th IMF.

After the mold-level data is decomposed by the EMD as shown in Figure 3, the correlation
coefficient between the original mold-level signal and the IMFs after EMD was determined, as shown
in Table 2; IMFs 1–3 were seen to be weakly correlated with the original mold-level signal. There was a
strong correlation between the original mold-level signal and the fourth IMF. We used IMFs 1–3 as a K
value in the VMD decomposition, which is considered to be a high-frequency component of IMFs 1–3,
and took the remaining IMF as 6 K values, thus obtaining K = 7, and performing VMD decomposition
based on K = 7, which is not a simple direct merger of IMFs 1–3.

Table 2. The correlation coefficient between the original mold-level signal and the IMFs after EMD.

IMF Correlation Coefficient

IMF 1 0.06
IMF 2 0.0906
IMF 3 0.1348
IMF 4 0.8474
IMF 5 0.1579
IMF 6 0.0196
IMF 7 0.0061
IMF 8 0.0598
IMF 9 0.0585
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The VMD decomposition of the mold-level data was based on K = 7. The decomposition result is
shown in Figure 5.
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Figure 5. (a) Mold-level data VMD results; (b) spectrogram after VMD of the mold-level data; di is the
i-th IMF, the unit of di is mm, m is the number of Point, and fi is the spectrum corresponding to the
i-th IMF.

It can be seen from Figure 4 that the mold-level data could clearly distinguish the center frequency
of each IMF based on K = 7 decomposition, and no pattern aliasing occurred.

After the mold-level data was decomposed by the VMD, as shown in Figure 5, the correlation
coefficient between the original mold-level signal and the IMFs after VMD was calculated, as shown
in Table 3; IMFs 1–5 were weakly correlated with the original mold-level signal. There was a strong
correlation between the original mold-level signal and the fourth IMF. Therefore, IMF 6 was a boundary
line between the high-frequency signal and the low-frequency signal; high-frequency signals may
also contain a small amount of effective information, and so, in order to minimize the loss of effective
information, we performed wavelet threshold denoising on high-frequency signals (IMFs 1–5) instead
of directly deleting them.

Table 3. The correlation coefficient between the original mold-level signal and the IMFs after VMD.

IMF Correlation Coefficient

IMF 1 0.0279
IMF 2 0.0360
IMF 3 0.0429
IMF 4 0.0638
IMF 5 0.1769
IMF 6 0.8847
IMF 7 0.4560
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It can be seen from Figure 6 that the noise reduction effect for IMFs 1–5 was very obvious. Both the
main frequency and the amplitude had a large reduction.
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Figure 6. (a) Denoising result of IMFs 1–5; (b) spectrogram of the mold-level data after denoising; di is
the i-th IMF, the unit of di is mm, m is the number of points, and fi is the spectrum corresponding to the
i-th IMF.

Then, SVR was performed on the all IMFs. In this section, the genetic algorithm was still used
to globally optimize the model parameters C and g, so that the SVR model was determined. C was
15.2768 and g was 0.2018. The first 20 min of mold-level data was used as a training set, while the last
10 min of mold-level data was used as a test set in order to verify the prediction effect of the model.
This method has high computational efficiency, high calculation accuracy, and can be run in real-time.

The optimization results of C and g are shown in Figure 7; fitness was the hit rate of the genetic
algorithm. The predicted data of VMD–SVR are shown in Figure 8, and the VMD–SVR prediction
error is shown in Figure 9.Metals 2019, 9, x FOR PEER REVIEW 12 of 15 
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5. Prediction Results and Analysis

In this section, the performance of the three hybrid prediction algorithms is verified by the
following four statistical indicators, which are the general purpose of the machine learning domain
verification algorithm, and the optimal hybrid prediction model suitable for the mold steel level of the
mold is selected.

Correlations between the original data and the predicted data, which is characterized by correlation
coefficients (R):

R =
Cov(Pi, Ai)√

Var(Pi) ·Var(Ai)
(23)

CC is defined as a statistical indicator and is used to reflect the close relationship between variables;
the larger the CC, the better the algorithm performance.

Root mean square error (RMSE)

RMSE =

√∑n
i=1 (Pi −Ai)

2

n
(24)

RMSE is defined to reflect the degree of dispersion of a data set and to measure the
deviation between the observed value and the true value; the smaller the RMSE, the better the
algorithm performance.

Mean absolute error (MAE)

MAE =

∑n
i=1|Pi −Ai|

n
(25)

MAE is defined as the average value of absolute error, better reflecting the actual situation of
predicted error; the smaller the MAE, the better the algorithm performance.

Mean absolute percentage error (MAPE)

MAPE =

∑n
i=1

∣∣∣∣Pi−Ai
Ai

∣∣∣∣
n

× 100 (26)

MAPE can be used to measure the outcome of a model’s predictions; the smaller the MAPE,
the better the algorithm performance.

In Formulas (23)–(26), where Pi and Ai are the i-th predicted and actual values, respectively, and n
is the total number of predictions.

From the test results in Table 4 and Figure 10, comparing the four indicators of the three algorithms,
the test results of the average error in the algorithm described in this paper are inferior to the other two
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algorithms. However, in the test results of the other three indicators, the RMSE index is improved
by 36.1%, the MAPE index is improved by 37.5%, the R is improved by 3%, and the MAE index is
improved by 37.6%. Compared with WT and EMD, the VMD algorithm has shown great superiority,
which not only rejects the dependence of the wavelet transform on basis function, but also avoids the
boundary effect and pattern aliasing of empirical mode decomposition and improves the robustness of
the algorithm and generalization ability.

Table 4. Test results comparison of prediction model. R is correlation coefficients; RMSE is root mean
square error; MAE is mean absolute error; MAPE is mean absolute percentage error.

Algorithm R RMSE MAE MAPE

WT–SVR 0.9733 1.0824 0.9601 0.092316
EMD–SVR 0.9691 0.9480 0.7662 0.073558
VMD–SVR 0.9992 0.6910 0.5983 0.057686
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6. Conclusions

This paper proposes a prediction method based on VMD–SVR, which is suitable for mold-level
prediction in continuous casting. In this method, the original mold-level data are adaptively
decomposed by the EMD algorithm to obtain the effective IMF number K, via correlation coefficient
analysis between the original mold-level signal and IMFs. The VMD decomposition of the original
mold-level data is performed based on K, and the IMFs are obtained. Time-series prediction is
performed for each IMF via SVR, and the VMD reconstruction is performed on the prediction result
to obtain the final predicted mold-level signal. In order to verify the effectiveness of the proposed
method, we compared the four statistical indicators of three algorithms; the conclusions are as follows.

(1) The VMD–SVR algorithm can be used to establish the prediction model, removing noise while
retaining the effective information in the data, with good denoising performance and sampling
rate robustness;

(2) In comparison with the results of the other two algorithms, the three indicators of the VMD–SVR
algorithm are significantly better than those of the other two algorithms. The RMSE index is
improved by 36.1%, the MAPE index are improved by 37.5%, the R is improved by 3%, and the
MAE index is improved by 37.6%;

(3) The use of mold-level prediction methods in the research on mold prediction control represents a
future research direction. Accurate mold-level prediction provides a new idea for mold-level
prediction control, which has important practical significance;

(4) Using the accurately predicted mold-level data for mold-level control, the sliding nozzle and
roller pressure disturbances can be well restrained. The anti-interference ability of the mold level
control system is enhanced.

The potential feedback between the mold level controller and the mold level prediction will
improve the accuracy and efficiency of the prediction model, which will be the focus of further research
in a future paper.
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