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Abstract: A 3D numerical model was built to investigate the transport phenomena in slab continuous
casting process with secondary electromagnetic stirring (S-EMS). In the model, the columnar grain
grew from strand surface and it should be treated as a porous media. While for the equiaxed
zone, the nucleated grain moves with fluid flow in the earlier stage and it was regarded as a slurry.
The model was validated by measured strand surface temperature and magnetic induction intensity.
The results show that the solidification end near the 1/4 width of slab was postponed, due to the liquid
flow from a submerged entry nozzle injected to the strand’s narrow face. As the linear stirring in the
same direction is applied, liquid moves from side B to side A and then penetrates deep downward
with higher temperature. In the later stage, the solidification end near the side A is postponed and the
solute element is concentrated. When linear stirring in the opposite direction is used, the solidification
end near the side A moves backward, while that near the side B moves forward. Moreover, it is
found that the solute segregation in the side B is deteriorated, but that in the side A is reduced.
As rotational stirring mode is applied, the evenness of solidification end profile is improved and the
centerline segregation is reduced, especially with higher current intensity. Therefore, it is concluded
that the linear stirring mode is not appropriated for slab casting, while the rotational stirring mode is
more suitable.

Keywords: solidification behavior; solute segregation; slab continuous casting; secondary
electromagnetic stirring

1. Introduction

In molten steel solidification process, the solute element is rejected from solid dendrite and enriches
in the liquid phase. With the effect of fluid flow, the rejected solute is carried away and transports in a
long distance, leading to macrosegregation formation. It should be noted that the macrosegregation
cannot be removed in the subsequent heat treatment process and it seriously deteriorates mechanical
properties of steel product [1]. In order to improve the inner quality of strand, many technologies
have been presented, such as lower temperature casting, intensive cooling mechanism, soft reduction,
and electromagnetic stirring (EMS) [2,3]. Nowadays, the mold, secondary, and final electromagnetic
stirrings (M-EMS, S-EMS, and F-EMS) are widely used in the continuous casting strand and great
efforts have been devoted to investigating transport phenomena in the casting process.

Coupled electromagnetic field and fluid flow, Liu et al. [4] simulated the transport behavior in
the round-bloom casting with M-EMS and found the slag distribution was clearly affected by stirring
flow, while the solidification behavior was not considered in the model. Huang et al. [5] observed
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that the electromagnetic force induced by S-EMS was not uniformly distributed and liquid steel was
forced to move around in the horizontal section. With the mushy zone treated as porous media,
Song et al. [6] applied a continuum model to calculate solidification phenomena in thin-slab casting
and found the stirring intensity increased firstly and then decreased to a lower value with S-EMS
applied. Ren et al. [7] also used the continuum model to investigate transport phenomena in the round
bloom casting and observed the stream flow from the submerged entry nozzle became unstable with
the larger stirring intensity of M-EMS. Maurya and Jha [8] deemed that the position of M-EMS stirrer
obviously influenced the solidification behavior in billet continuous casting. As the M-EMS stirrer
placed close to the meniscus, the solidification front was retarded and a gap was formed. With stirrer
moving downwards, the stirring intensity decreased obviously. Sun and Zhang [9] observed that the
solute segregation changes from positive to negative near strand surface, attributed to stirring flow in
the mold zone. Due to the higher solid fraction in the F-EMS stirring zone, the swirling flow in the
liquid pool was pretty small. Jiang and Zhu [10] applied a multiphase solidification model to simulate
transport phenomena in the billet casting. They found that liquid steel reached undercooling state near
the mold exit with M-EMS applied and strand center segregation can be reduced with appropriated
current intensity, installed position, and stirring mode of F-EMS. Medina et al. [11] obtained that
the position of channel segregation was changed with the forced flow, but it cannot be eliminated
by the modified the stirring mode. Except the simulation mentioned above, some plant trials were
also conducted to investigate transport behavior in strand casting process with EMS. Bridge and
Rogers [12] studied the white band formation in billet casting with S-EMS and found it was a zone
of negative segregation, related to the intensive stirring zone. Ayata et al. [13] believed the strand
macrosegregation can be improved by the combined M-EMS and F-EMS and the optimum center
solid fraction existed for F-EMS. Oh and Chang [14] found that strand solidification end was shorted
with M-EMS applied and the macrosegregation can be reduced by the combination of M-EMS, S-EMS,
and F-EMS.

At present, many researchers have simulated the transport phenomena in the M-EMS, S-EMS, and
F-EMS stirring zone, or conducted plant trials to investigate EMSs on the solute redistribution in the
bloom casting. However, the effect of S-EMS on the solidification end profile and solute segregation
in the slab continuous casting was rarely reported. In this present work, a three-dimensional (3D)
model coupling the electromagnetic field, fluid flow, heat transfer, and solidification phenomena was
developed to investigate the stirring mode and stirring intensity on the transport behavior in the
continuous casting slab. In the model, the columnar and equiaxed zones are treated separately. For the
columnar zone, the columnar grain grows from slab surface and it is treated as a porous media. As the
initial equiaxed grain moves freely with fluid flow, a variable apparent viscosity model is used. In the
later solidification stage, the equiaxed zone is also regarded as porous media. The model is validated
by the measured magnetic induction intensity of stirrer and strand surface temperature.

2. Mathematical Model

The electromagnetic field, fluid flow, heat transfer, and solute redistribution have been coupled
to reasonably describe the transport phenomena in the slab continuous casting process with S-EMS.
The governing equations of model are described as follows.

2.1. Electromagnetic Field

In the continuous casting slab, two pairs of electromagnetic stirring rolls were installed in the
secondary cooling zone, which were located at 4.4 and 6.3 m from the meniscus, as shown in Figure 1.
The distribution of electromagnetic field was solved by Maxwell’s equations and constitutive equations,
which can be found in many published works [15]. In the numerical simulation, the time-averaged
electromagnetic force substitutes the transient value, obtained by Equation (1) [16]. Where Fmag is
electromagnetic force, Re is the real part of a complex quantity, B is the magnetic flux density, and j is
current density induced in the strand.
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Fmag =
1
2

Re(j×B) (1)
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Figure 1. Schematic diagram of secondary electromagnetic stirring (S-EMS) in the continuous 
casting slab. 
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where, ρ is the steel density, v is velocity, p is pressure, μm is the apparent viscosity, μt is turbulent 
viscosity, Fu is a switch function, Sm is the sink terms of momentum, defined by Equation (4). 
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where, μl is liquid viscosity, vc is casting speed, K is the mushy zone permeability. In the model, the 
fluid flow resistance in the mushy zone was affected by the solidification structure. As the strand 
solidified in the casting process, the columnar grain grew from the strand surface and it cannot move 
with liquid flow. Therefore, it was more reasonable to treat the columnar zone as a porous medium 
and the Darcy's law was used to calculate the permeability, defined as Equation (5). Where, fl is liquid 
fraction, fs is solid fraction, λ2 is secondary arm spacing. In the equixed zone, the initial nucleus was 
surrounded by liquid steel and it moved freely with fluid flow. It should be treated as slurry zone 
and a apparent viscosity model were used to simulate fluid flow, shown as Equation (6) [18]. As the 
solid fraction exceeded the coherent fraction (fscr = 0.275), equiaxed grains coherent with each other 
and the mushy zone should be treated as porosity media. From the etched slab macrostructure in 
Figure 2, it is obtained that the thickness of columnar zone in the inner and external arc sides were 
39 and 37 mm, respectively. 
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Figure 1. Schematic diagram of secondary electromagnetic stirring (S-EMS) in the continuous
casting slab.

2.2. Fluid Flow and Mass Transfer

Liquid steel flowed to the copper mold from the submerged entry nozzle and solidified with heat
extracted from strand surface. The fluid flow in the liquid pool was calculated by solving mass and
momentum conservation equations [17], which are expressed as follows:

∂ρ

∂t
+∇(ρv) = 0 (2)

∂(ρv)
∂t

+∇ · (ρvv) = −∇p +∇ · [(µm + µt)(∇ · v)] + Fmag + FuSm (3)

where, ρ is the steel density, v is velocity, p is pressure, µm is the apparent viscosity, µt is turbulent
viscosity, Fu is a switch function, Sm is the sink terms of momentum, defined by Equation (4).

Sm =
µl

K
(v− vc) (4)

where, µl is liquid viscosity, vc is casting speed, K is the mushy zone permeability. In the model,
the fluid flow resistance in the mushy zone was affected by the solidification structure. As the strand
solidified in the casting process, the columnar grain grew from the strand surface and it cannot move
with liquid flow. Therefore, it was more reasonable to treat the columnar zone as a porous medium
and the Darcy’s law was used to calculate the permeability, defined as Equation (5). Where, f l is liquid
fraction, f s is solid fraction, λ2 is secondary arm spacing. In the equixed zone, the initial nucleus was
surrounded by liquid steel and it moved freely with fluid flow. It should be treated as slurry zone
and a apparent viscosity model were used to simulate fluid flow, shown as Equation (6) [18]. As the
solid fraction exceeded the coherent fraction (f scr = 0.275), equiaxed grains coherent with each other
and the mushy zone should be treated as porosity media. From the etched slab macrostructure in
Figure 2, it is obtained that the thickness of columnar zone in the inner and external arc sides were 39
and 37 mm, respectively.

K =
180
λ2

2
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l
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s

(5)
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fs > fscr
(6)
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Figure 2. Etched macrostructure of slab. 

2.3. Heat Transfer Model 

In order to obtain the temperature field and solidification behavior in slab continuous casting 
process, a enthalpy equation is solved, rewritten as follows:  
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where, h is total enthalpy, T is temperature, keff is thermal conductivity. During the solidification of 
strand, the heat transfer process contains the mold cooling, secondary cooling, and air cooling zone, 
which can be described by heat flux density (qmold), heat transfer coefficient (hsec), and radiation heat 
transfer (qrad), respectively. In the copper mold zone, the heat was extracted by the cooling water and 
the heat flux boundary was applied on the strand surface [19], shown in Equation (8). Where B is a 
coefficient based on the mold cooling conditions. In the secondary cooling zone, the strand was 
withdrawn from mold zone and heat is extracted by spraying water on the strand surface, according 
to Nozaki [20]. The heat transfer coefficient was dependent on the water flow rate of cooling zone, as 
shown in Equation (9). Where, W is spraying water density, Tw is the temperature of cooling water, 
α is a modified parameter. In the air cooling zone, heat was radiated from the strand surface and was 
calculated using the Stefan–Boltzmann law, shown in Equation (10). Where, σ is the Stefan–
Boltzmann constant, ε is steel emissivity, Tamb is the ambient temperature.  

mold 2.688q B t= −  (8)

0.55

sec 1570 (1 0.0075 ) /wh W T α= −  
(9)

( )4 4
rad ambq T Tσε= −

 
(10)

2.4. Solute Transport Model 

It is commonly known that the solute segregation of Si, Mn, P, and S is similar to that of the 
carbon element. So the carbon element transport in the continuous casting process was considered. 
The conservation equation for solute transport in the solidification process is described as: [21]  

( ) ( ) ( )

( )( )( )                                

t
s s s l l l

t

s c l s

c
c f D c f D c

t Sc

f c c

ρ μρ ρ ρ

ρ

 ∂  
+ ∇ ⋅ = ∇ ⋅ ∇ + ∇ ⋅ + ∇   ∂   

∇ ⋅ − −

v

v v
 

(11)

Figure 2. Etched macrostructure of slab.

2.3. Heat Transfer Model

In order to obtain the temperature field and solidification behavior in slab continuous casting
process, a enthalpy equation is solved, rewritten as follows:

∂(ρh)
∂t

+∇ · (ρvh) = ∇ · (ke f f∇T) (7)

where, h is total enthalpy, T is temperature, keff is thermal conductivity. During the solidification of
strand, the heat transfer process contains the mold cooling, secondary cooling, and air cooling zone,
which can be described by heat flux density (qmold), heat transfer coefficient (hsec), and radiation heat
transfer (qrad), respectively. In the copper mold zone, the heat was extracted by the cooling water and
the heat flux boundary was applied on the strand surface [19], shown in Equation (8). Where B is
a coefficient based on the mold cooling conditions. In the secondary cooling zone, the strand was
withdrawn from mold zone and heat is extracted by spraying water on the strand surface, according to
Nozaki [20]. The heat transfer coefficient was dependent on the water flow rate of cooling zone, as
shown in Equation (9). Where, W is spraying water density, Tw is the temperature of cooling water, α
is a modified parameter. In the air cooling zone, heat was radiated from the strand surface and was
calculated using the Stefan–Boltzmann law, shown in Equation (10). Where, σ is the Stefan–Boltzmann
constant, ε is steel emissivity, Tamb is the ambient temperature.

qmold = 2.688− B
√

t (8)

hsec = 1570W
0.55

(1− 0.0075Tw)/α (9)

qrad = σε
(
T4
− T4

amb

)
(10)

2.4. Solute Transport Model

It is commonly known that the solute segregation of Si, Mn, P, and S is similar to that of the
carbon element. So the carbon element transport in the continuous casting process was considered.
The conservation equation for solute transport in the solidification process is described as: [21]

∂(ρc)
∂t +∇ · (ρvc) = ∇ · (ρ fsDs∇cs) +∇ ·

(
ρ fl

(
Dl +

µt
Sct

)
∇cl

)
∇ · (ρ fs(v− vc)(cl − cs))

(11)

where, Ds is solute diffusion coefficient in solid, Dl is solute diffusion coefficient in liquid, c is solute
concentration, cl is solute concentration in liquid, cs is solute concentration in solid, kp is solute partition
coefficient, and Sct is the turbulent Schmidt number. In this simulation, the local solute equilibrium in
the microscope is assumed and the lever rule is used in the model, given by Equation (12).

cs = kpcl (12)
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In the numerical simulation, the whole strand from meniscus to solidification end was built.
During the computational process, ANSYS 13.0 software (ANSYS Inc., Canonsburg, PA, USA) was
used to calculate the external electromagnetic field generated by S-EMS stirrer and the time-averaged
electromagnetic force was obtained, which acted as the source term in the Navier-Stokes equations.
The SIMPLE algorithm based on controlled volume method was used to solve the fluid flow, heat
transfer, solidification behavior, and solute transport in the slab continuous casting process. The whole
strand was assumed to be straight and the fluid flow caused by gravity was not considered. In the
calculation procedure, the physical properties and geometrical parameters are given in Table 1.

Table 1. Physical properties and process parameters used in the numerical simulation.

Item Value (unit)

Slab dimensions 230 × 1350 (mm)
Steel density (ρ) 7000 (kg·m−3)

Liquid viscosity (µl) 0.006 (kg·m−1
·s−1)

Thermal conductivity (k) 30 (W·m−1
·K−1)

Specific heat (Cp) 690 (J·kg−1
·K−1)

Latent heat (L) 275,000 (J·kg−1)
Casting speed (vc) 0.9 (m·min−1)

Casting temperature (T0) 1798 (K)
Solute content (c0) 0.25 (%)

Partition coefficient (kp) 0.34
Liquid and solid diffusion coefficient (Dl and Ds) 2 × 10−9 (m2

·s−1)

3. Results and Discussion

3.1. Model Validation

In order to validate the electromagnetic model, the calculated magnetic induction intensity in
the middle part of two stirring rolls is compared with the measured values, as shown in Figure 3.
The calculated magnetic induction intensity agrees well with the measured, as the S-EMS frequency is
set at 4 Hz. With the increase in current intensity, both the calculated and measured magnetic induction
intensities rise simultaneously, although there are some deviations existed between them.
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Figure 3. Magnetic induction intensity of S-EMS with different current intensities.

Figure 4 shows the predicted and the measured temperature on the strand surface along the casting
direction. It is obtained that both data show a good agreement, although the predicted temperature is
a little higher than the measured. This may have been due to the process of spraying water vapor on
the slab surface, which possibly affected the temperature measurement.
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3.2. Transport Behavior without S-EMS

In the slab continuous casting process, liquid steel flows to the copper mold zone at high speed
and washes the strand narrow face, as shown in Figure 5a,b. One part of liquid steel returns upward
and impinges steel-slag interface directly. Then it moves to the outside of submerged entry nozzle
(SEN) and turns back to the mainstream flow. The other part of liquid steel moves downward along
the solidification front and a pair of vertexes are formed in the lower part of the mold zone. As the
latent heat is extracted from the copper mold, solid shell grows gradually and liquid temperature
decreases with fluid flow. In the meantime, the negative solute element is rejected from the solid phase
and transports with liquid flow, as shown in Figure 5c. It should be noted that the fluid flow pattern in
the liquid pool obviously affects the solid shell distribution in the cross section, shown in Figure 5d.
It can be seen that the solid shell in the strand cross section is not uniform. The solid shell thickness
near strand narrow face is 12.5 mm, while that in the middle part is 17 mm. That is because the liquid
steel from SEN contains a large amount of superheat which it injects to the strand narrow face, which
retards solid shell growth. In the later solidification stage, the unevenness of solid shell may also
influence the solidification end profile.

Figure 6a shows the liquid fraction distribution in the longitudinal section near the strand
solidification end. It is obtained that the liquid fraction distribution near the strand narrow face is
clearly larger than that in the middle part. With the solidification proceeding, the solidification ends
near the 1/4 width of slab are postponed. The solidification end position near strand narrow face is
19.52 m from the meniscus, while that in the middle part is 19.03 m. The liquid solidification end
profile also affects solute distribution in the strand cross section, as shown in Figure 6b. The solute
element is concentrated in the strand inner part and the centerline segregation near the narrow face is
obviously serious, which reaches about 1.31. That is because the liquid steel near the strand narrow
face is the last part to solidify and the rejected solute has more time to concentrate. From the simulation
above, it is concluded that fluid flow pattern from the SEN can obviously affect the solidification end
profile and solute distribution in the strand.
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3.3. Linear Stirring in the Same Direction

In the slab continuous casting process, the S-EMS stirrer is widely installed in the secondary
cooling zone and the electric current with different phases (ϕ = 0◦ or 90◦) is applied in the coils,
as shown in Figure 7a. With the current set at 350 A and 6 Hz, the linear electromagnetic force is
induced in the strand and liquid steel is forced to move linearly in the horizontal direction, as shown
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in Figure 7b,c. In the upper stirring zone, the liquid steel is driven to move from side B to side A and
washes strand narrow face. One part of liquid steel moves upward and a vertex is formed above the
upper stirring roll. The other part of liquid steel moves downward and turns back to side B. Because
the stirring directions of two rollers are the same, the returned liquid steel moves to side A again and a
pair of vertexes forms. The liquid steel reaches the maximum stirring velocity near the side A, which is
about 0.32 m/s. As liquid steel is forced to move around, the heat transfer behavior is enhanced and
the liquid fraction decreases gradually. In the meanwhile, the negative solute element is rejected from
solid and transports with fluid flow, as shown in Figure 7d. In order to understand the solidification
behavior more clearly, the liquid fraction along the line A1, B1, and C1 are illustrated in Figure 7e. It is
obtained that the solid shell thickness near the side A is 55 mm, while that in the side B and middle
part are 61 and 62.5 mm respectively. That is because the stirring stream with higher temperature
impinges the narrow face and the solid shell growth near the side A is retarded, which influences the
solidification behavior in the later stage.Metals 2019, 9, 452 9 of 15 
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Figure 8a,b show solidification behavior in the longitudinal section with current intensity set at
350 A and the solidification end profile along the transverse section with different current intensities.
In the conventional continuous casting process, the solidification end near the strand narrow face is
postponed. With the S-EMS applied, the solidification end position near the side B moves backward,
while that near the side A shifts forward. With the current intensity increase, the unevenness of
solidification end profile becomes more serious. There are two reasons. One is that the stirring flow
impinges the strand narrow face and the solid shell growth near the side A slows down. The other is
that the impinged liquid steel in the lower stirring zone penetrates deep downward, which contains
a large amount of latent heat. In the later solidification stage, the solid shell near the side A grows
slowly and the liquid steel is the last to solidify. It is obtained that the forced flow in the liquid pool
can obviously affect the heat transfer behavior, which clearly influences the solidification end profile.Metals 2019, 9, 452 10 of 15 
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Figure 8. Liquid fraction in the longitudinal section with current intensity set at 350 A (a), and
solidification end profile along the transverse direction (b).

Along with the solidification end being affected by stirring flow, the centerline solute segregation is
also influenced, as shown in Figure 9a. Because the solidification end near the side B moves backward,
the solute segregation is reduced. However, the centerline segregation near the side A is deteriorated.
That is because the solidification end near side A is postponed and the solute element has more
time to transport, resulting in the solute element enrichment. In the plant trials, it is also found that
strand centerline segregation near the left side of the slab is serious with current intensity set at 350 A,
indicated in Figure 9b. Therefore, the centerline segregation in the slab cannot be fully improved by
the linear stirring in the same direction, which is not appropriated for slab continuous casting process.
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3.4. Linear Stirring in the Opposite Direction

Aside from the linear stirring in the same direction applied in the slab continuous casting process,
liquid steel can be forced to move in the opposite direction, as shown in Figure 10a,b. In the upper
stirring zone, liquid steel is forced to move from the side B to side A and washes slab narrow face. Some
liquid steel flows downward to the lower stirring zone and moves from side A to side B. Then the liquid
steel reaches the maximum velocity near side B and penetrates deep down along the solidification front.
With fluid flow in the liquid pool, the heat transfer behavior is enhanced and the temperature decreases
continuously. In the same time, the solute element is rejected from solid and transports with fluid flow,
as shown in Figure 10c. In the later cooling stage, the solidification end in the middle part moves
backward, while that near side B moves forward, illustrated in Figure 10d. That is because the moving
downward liquid steel in the lower stirring zone contains much latent heat and the solidification
behavior near the side B slows down.
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Figure 11a,b illustrate the effect of stirring intensity on solidification end profile and centerline
solute segregation. With no S-EMS applied, the solidification end positions near the side A and B are
almost equal. However, with the current intensity increase, the solidification end near the side B moves
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forwards, while that near the side A moves backward. That is because the liquid steel with higher
temperature is forced to move from the side A to side B in the lower stirring zone and penetrates
deep down along the solidification front. As solidification end moves forward, the rejected solute
element has more time to transport and the centerline segregation near the side B is deteriorated,
especially with higher current intensity. It is obtained that the solidification end profile and centerline
solute segregation redistribution is obviously influenced by the stirring flow, especially in the lower
stirring zone.Metals 2019, 9, 452 12 of 15 
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3.5. Effect of the Rotational Stirring Mode

From the numerical simulation in Sections 3.3 and 3.4, it is obtained that linear stirring flow
impinges the slab narrow face and solidification end profile is modified. Besides the linear stirring
modes are applied in the casting process, the rotational stirring mode can be generated by adjusting
the current phase in the coil, as shown in Figure 12a. In this part, the influence of rotational flow on the
transport behavior in slab continuous casting is investigated. Figure 12b,c show the liquid fraction and
fluid flow in the strand cross section at 4.4 and 6.3 m from the meniscus. It can be seen that liquid
steel moves in the anticlockwise direction and the solidification front is washed. Because the induced
electromagnetic force is not uniform, the liquid fraction in the strand inner part is unevenly distributed.
In order to have a better understanding of solidification behavior in the stirring zone, the liquid fraction
along the line A2, B2, and C2 are shown in Figure 12d. It is obtained that the solid shell thicknesses are
almost equal, although the center liquid fraction in the line B2 and C2 are slightly larger than that of
line A2. As the distance from meniscus increases, the strand solidifies gradually and liquid fraction
decreases, shown in Figure 12e. With the rotational stirring mode used, the solidification end position
along the strand width direction is almost simultaneous.

Figure 13a illustrates the effect of current intensity on the solidification end profile and centerline
solute segregation with the rotational stirring mode. In the normal continuous casting process, the
strand in the middle part solidified earlier, while that near the side A and B solidifies later. With the
rotational stirring mode used, the solidification end position near the narrow face moves backward and
that in the middle part moves forward, resulting in the solidification end evenly distributed. As the
current intensity increases, the heat transfer behavior in the liquid pool is enhanced and the evenness
of solidification end is improved. The variation of solidification end profile also influences centerline
segregation distribution, as shown in Figure 13b. The centerline segregation near the slab narrow face
is reduced as rotational stirring mode is used, especially with higher current intensity. Besides, it is
also found that the improvement of solute segregation in the sides A and B are not equal, which is due
to the uneven distribution of electromagnetic force induced by S-EMS.
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In the present work, the effects of stirring mode and current intensity on solidification end profile
and solute segregation are investigated. The lever rule was used in the solute transport model, and the
grain movement with fluid flow was not considered. In the future, a multiple solidification model
coupling macroscale heat transfer and fluid flow with microscale grain nucleation and growth will be
built to investigate the transport phenomena in the slab continuous casting with S-EMS. Besides, some
plant trials with rotational stirring mode should be conducted to verified the calculated results.

4. Conclusions

In the current work, the transport behavior in the slab continuous casting with S-EMS is numerically
investigated. The main results are summarized as follows:

1. Because liquid steel from SEN injects to strand narrow face directly, the solidification end near
the 1/4 width of slab is postponed and solute element is enriched.

2. With the linear stirring in the same direction applied, liquid flows from side B to side A and
penetrates deep down along the solidification front. The solidification end near side A moves
backward and solute segregation is deteriorated, which becomes more serious with higher
current intensity.

3. As the linear stirring in opposite direction is used, the solidification end near the side A moves
forward, while that near the side B moves backward. Moreover, it is obtained that the centerline
segregation near the side B is reduced, but that near the side A is deteriorated.

4. With the rotational stirring mode applied, liquid steel is driven to move around in the cross
section and solid shell grows uniformly. As the current intensity increases, liquid steel solidifies
simultaneously in the later stage and the centerline segregation is reduced.
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and L.Z.; formal analysis, D.J.; investigation, D.J.; resources, D.J. and M.Z.; data curation, D.J.; writing—original
draft preparation, D.J.; writing—review and editing, D.J. and L.Z.; visualization, D.J.; supervision, L.Z.
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