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Abstract: Inconel 625 and steel P355NH were bonded by explosive welding in this study. Explosively
welded bimetal clad-plate was subjected to the two separated post-weld heat treatment processes:
stress relief annealing (at 620 ◦C for 90 min) and normalizing (at 910 ◦C for 30 min). Effect of heat
treatments on the microstructure of the joint has been evaluated using light and scanning electron
microscopy, EDS analysis techniques, and microhardness tests, respectively. It has been stated that
stress relief annealing leads to partial recrystallization of steel P355NH microstructure in the joint
zone. At the same time, normalizing caused not only the recrystallization of both materials, but
also the formation of a diffusion zone and precipitates in Inconel 625. The precipitates in Inconel
625 have been identified as two types of carbides: chromium-rich M23C6 and molybdenum-rich
M6C. It has been reported that diffusion of alloying elements into steel P355NH takes place along
grain boundaries with additional formation of voids. Scanning transmission electron microscope
observation of the grain microstructure in the diffusion zone shows that this area consists of equiaxed
grains (at the side of Inconel 625 alloy) and columnar grains (at the side of steel P355NH).
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1. Introduction

Corrosive wear is a significant problem for the utilization of components of equipment operating
in an aggressive environment, such as reactors, tanks, heat exchangers, and pipelines in the chemical
industry and geothermal power plants [1,2]. Basically, the alloys which can provide a specified resistant
against corrosion in the aggressive environment are expensive. However, there is no need for making
the entire component from corrosion resistant material—only its surface, which has direct contact with
an aggressive medium. An approach worth considering is the use of relatively inexpensive material
(e.g., non-alloy steel) and cladding it with layer of corrosion resistant alloy, such as stainless steel or
nickel alloy providing potentiality of operating in the aggressive environment. This solution allows
to reduce the material cost of industry equipment significantly depending on used manufacturing
technique [3–5]. As an example of such bimetal clad plate Inconel/steel system can be given, in which
steel is a load-bearing component while Inconel provides resistance to an aggressive environment.
This paper investigates steel P355NH cladded with Inconel 625 as bimetallic material of the above type.
A pressure vessel steel grade P355NH, weldable constructional steel with fine grain microstructure,
is used as material for the manufacture of pressure equipment operating under high temperature
(up to 450 ◦C) [6]. The poor corrosion resistance of this steel limits its applications as a construction
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material for the equipment working in the aggressive environment significantly. As it was mentioned
previously, the potential solution of this problem is to clad steel P355NH with a layer of corrosion
resistant material, e.g., Inconel 625, high-temperature creep resistant nickel alloy which is characterized
by high resistance to oxidizing and reducing environment as well as pitting and crevice corrosion and
it also displays tolerance to a wide range of the operating temperature (from −150 ◦C to 982 ◦C) [7].
Materials cladding or modifying their surface layer are widely used technologies in the production
of industry equipment and machinery, but not all of this process can provide sufficient properties in
terms of the formability of the cladded material [8–10]. The technology which allows to produce such
bimetal clad-plate and provide both high quality of joint and formability is the explosive welding
technique [11–14]. In this process, the energy released during detonation of the high explosive is used
to accelerate one metal plate into another, and as a result, the high velocity collision of metal plates
occurs [15,16]. The high energy collision results in bringing the surfaces of the colliding metals close
enough to each other to obtain interaction between their atoms and make the formation of a metallic
bond between them possible [14,17–20]. The severe plastic deformation of the materials significantly
influences their microstructure and causes strain hardening in the joint zone. Clad-plates manufactured
by this method are subjected to further technological processes to form specific equipment components
for the industry, e.g. pipes, pressure vessels, tube plates for heat exchangers. For this reason, the high
strain hardening of bimetal is a phenomenon which makes difficulties during plastic forming of
clad-plate in the as-welded state. In order to decrease the degree of strain hardening of both materials,
as well as, to reduce the residual stresses, the clad-plates are subjected to heat treatment [21–23].
However, the annealing of bimetallic materials in many cases leads to microstructural changes within
the joint zone, which may decrease the mechanical properties of bond between welded metals [24].
According to previous investigations performed by the authors of this paper, the normalizing of Inconel
625—steel P355NH joint obtained by explosive welding decreases its shear strength by 33% (decrease
from 572 MPa to 383 MPa, determined according to PN-EN13445:2014) [22]. The heat treatment of the
explosively welded clad-plate may result in such changes in the joint zone as grainy microstructure
evolutions (recrystallization, grain growth), diffusion processes, as well as, the formation of new
phases [16,21,25–28]. The character of the diffusion zone depends on the mutual solubility of the alloy
chemical components. As a result of the diffusion changes within joint zone it is possible of brittle
intermetallic compounds to be formed, new solid solutions or precipitates [29,30]. The important
phenomenon, which can take place during heat treatment of the bimetal system is the Kirkendall
effect, which results in the formation of the voids in the joint area as a consequence of the differences
in diffusion rates of specific alloying elements of the welded materials [25,27,31–33]. The second
important aspect that has to be taken into consideration is the fact that exposing of Inconel alloys
to the long-term annealing process may have consequences in the formation of precipitates in their
microstructure (e.g. carbides, γ” and δ phases) [34–37]. Although, the classic heat treatments of
the clad-plates are not long enough to cause the precipitation processes in Inconel alloys, the severe
plastic deformation which affects the material in the joint area influence the kinetic of precipitating
significantly promotes quicker formation of precipitates [38–40]. Beside plastic deformation, another
important factor which promotes formation of carbide precipitates during heat treatment is the carbon
diffusion from steel into Inconel alloy which contains chemical elements having a high affinity for
carbon (Cr, Mo, Nb) [41]. For this reason, Inconel 625 layer close to joint line has a high potential
to form the precipitates during heat treatment of the investigated explosively welded clad-plate.
These precipitates can not only decrease the mechanical properties of Inconel alloy but also cause the
reduction of the joint strength between welded materials, what can result in high risk of delamination
of clad plate during its utilization. Although Inconel/steel explosively welded clad-plate has been
a subject of some studies, the literature does not contain sufficient research on the influence of the
heat treatment on the changes in the joint zone microstructure [11–14]. Heat-activated phenomena
may significantly decrease strength of the joint and cause the risk of failure during heat treatment and
forming at the manufacturing stage of specific component. The present work is aimed to investigate
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the influence of stress relief annealing and normalizing on the microstructure of Inconel 625/steel
P355NH bimetallic joint.

2. Materials and Methods

In this study, the materials used for the manufacturing of bimetal clad-plate were a 10 mm thick
plate of steel P355NH and a 3 mm thick sheet of Inconel 625 alloy. The dimensions of plates were
equal to 860 × 1000 mm. The surfaces to be joined have been polished and cleaned with acetone
before welding. The chemical compositions of the materials are presented in Table 1. The samples
were cut out of the workpieces in order to perform a microstructure investigation of materials in the
as-received. The process of explosive welding of steel P355NH and Inconel 625 alloy was performed
by EXPLOMET High-Energy Techniques Works company (Opole, Poland). The explosive used in the
process was modified ammonium nitrate fuel oil (ANFO), with detonation velocity of 2700 m/s, which
has been determined using optical fiber sensors. The stand-off distance between plates was equal to
3 mm. The explosive has been placed directly on Inconel 625 plate and no buffer plate has been used.
Three samples were cut out of the bimetallic clad-plate produced by explosive welding, as shown in
Figure 1.

Table 1. Chemical composition of the joined alloys [% mass].

Inconel 625
Al Cr Fe Mo Nb Ti Ni

0.16 21.5 4.6 8.7 3.32 0.18 Base

St. P355NH
C Cr Si Mn Ni Cu Fe

0.18 0.02 0.35 1.19 0.22 0.2 Base
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Figure 1. Area from which samples of bimetallic-clad plates were collected for microstructure
investigation.

In order to analyze the influence of the post-weld heat treatment on the microstructure of the
obtained joint, the first sample has been investigated in the as-welded state, the second sample
has been subjected to heat treatment of stress relief annealing (at 620 ◦C for 90 min), and the third
sample was subjected to the normalizing (at 910 ◦C for 30 min). The parameters of the post-weld
heat treatment have been selected for base material (P355NH), which plays a load-bearing role in the
investigated clad-plate. As a result, for the further investigation the three samples were obtained:
a sample after explosive welding (InSt EXW), sample after post-weld stress relief annealing (InSt HTR)
and sample after post-weld normalizing (InSt HTN). In order to perform the microstructure analysis,
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the samples have been subjected to the metallographic preparation. The cut samples were mounted
in hot-mounting resin, ground with abrasive paper of 80, 320, 600, 1200 and 2400 gradations and
polished using diamond paste of 1 µm gradation. In order to reveal the microstructure of steel P355NH,
2% nital etchant with etching time of 5–10 seconds was used and in case of Inconel 625 alloy, acetic
glyceregia (15 mL HCl 38%, 10 mL of acetic acid 99%, 5 mL HNO3 65%, 1–2 drops of glycerol) with
etching time of 15 min. Grain size of the materials has been measured with Mountains Map 7 software.
The microstructure of the samples was investigated using light microscope OLYMPUS LEXT OLS 4100
(Military University of Technology, Warsaw, Poland) and scanning electron microscope (SEM) Jeol
JSM 6610 (Military University of Technology, Warsaw, Poland) equipped with energy-dispersive x-ray
spectroscopy (EDS) and back-scattered electron (BSE) detector. The diffusion zone, which has been
formed in the post-weld normalizing (InSt HTN) sample was investigated using scanning transmission
electron microscope (STEM) Hitachi S-5500N (Military University of Technology, Warsaw, Poland).
The sample for STEM was prepared using dual beam system Hitachi NB-5000 (Military University
of Technology, Warsaw, Poland). In order to establish the strain hardening of analyzed samples the
Vickers microhardness test was performed with loading of 100 g. Microhardness distributions were
prepared for each sample. The first two measurements were performed 200 µm from the joint line,
in the layer of Inconel 625 alloy and in steel P355NH as shown in Figure 2. Subsequently, measurement
imprints were guided towards the edge of the samples, at the distance of 2000 µm.
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3. Results

3.1. Microstructure of the Raw Materials

In the first part of the investigation the light microscopy observations of the base materials after
etching have been performed. The microstructures of steel P355NH (Figure 3A) and Inconel 625 alloy
(Figure 3B) in the as-received state are presented in Figure 3. As it can be observed, the steel P355NH
has a ferrite-pearlite microstructure with noticeable pearlite bands, characteristic for the plates after
rolling process. The microstructure of steel has fine equiaxial grains with their measured size equal
to 15.5 ± 4.1 µm. At the same time, Inconel 625 alloy has far more heterogenous microstructure
characterized by presence of twins and measured grain size of 49.4 ± 15.6 µm. Additionally,
the microhardness of base materials has been measured with registered values of 150.6 ± 4.9 HV0.1 for
steel P355NH and 249.6 ± 16.3 HV0.1 for Inconel 625 alloy, respectively.
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3.2. Microstructure of a Sample After Explosive Welding (InSt EXW) Joint

The obtained joint has a wavy structure, typical for explosively welded bond. The grains of both
materials in the joint zone are deformed due to severe plastic deformation during collision, as it can be
observed after etching of steel P355NH (Figure 4A) and Inconel 625 alloy (Figure 4B).
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Figure 4. Microstructure of the joint in sample after explosive welding (InSt EXW): (A) after etching of
steel P355NH; (B) after etching of Inconel 625 alloy.

The observations using scanning electron microscope (BSE) show the occurrence of melted zones
in the joint, where the two welded materials have been stirred together (Figure 5A). In the melted
zones, the investigation revealed the presence of joint imperfections in the form of both cracks and
fragments of steel P355NH surface layer, which underwent partial fragmentation during explosive
welding process, as evidenced by linear analysis of the chemical composition (Figure 5B). The results
of the chemical composition analysis indicate on the highest participation of Inconel 625 alloying
elements in this area with small fluctuations near to the steel P355NH fragment.
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3.3. Microstructure of Sample After Post-Weld Stress Relief Annealing (InSt HTR) Joint

Post-weld stress relief annealing of Inconel 625/steel P355NH bimetallic clad-plate, performed at
620 ◦C for 90 min slightly influences the microstructure of the joint zone. The partial recrystallization of
steel P355NH microstructure has been reported in the area of 20–30 µm from the joint line (Figure 6A).
New, equiaxial grains formed on the joint line do not have deformation texture of previous compressed,
elongated grains. The microstructure of steel P355NH farther from the joint line (about 30 µm)
maintains the deformation texture and no recrystallized grains have been observed. On the other hand,
the microstructure of Inconel 625 alloy did not reveal any visible changes in the grain morphology
after stress relief annealing compared with its microstructure in the as-welded state (Figure 6B).
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Figure 6. Microstructure of the joint in sample after post-weld stress relief annealing (InSt HTR) sample:
(A) after etching of steel P355NH; (B) after etching of Inconel 625 alloy.

The scanning electron microscope observations did not show any visible changes in the
concentration of the chemical elements in the joint zone (Figure 7). Both the bound between joined
materials and melted zone are not affected by stress relief annealing in terms of chemical composition.
The small imperfections in form of voids are possible to observe in melted zone, which is localized on
one side of the intersurface wave (Figure 7).
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3.4. Microstructure of InSt HTN Joint

The microstructure of the joint subjected to normalizing at 910 ◦C for 30 min changed significantly.
It has been reported that due to this post-weld heat treatment the complete recrystallization of
microstructure of both joined materials—steel P355NH (Figure 8A) and Inconel 625 (Figure 8B) occurs.
The welded materials have microstructures consisting of fine, equiaxial grains and no deformation
texture is noticeable. The size of steel grains is about 20 µm, which is a typical value for this material
after normalizing. Additionally, it has been observed the presence of ultrafine grains with size about
5 µm of steel P355NH on the joint line (Figure 8A). In case of Inconel 625 grains have size also
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about 20 µm with low participation of twins and significant amount of precipitates localized on
grain boundaries.Metals 2018, 8, x FOR PEER REVIEW  8 of 17 
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Figure 8. Microstructure of the joint in post-weld normalizing (InSt HTN) sample: (A) after etching of
steel P355NH; (B) after etching of Inconel 625 alloy.

The observations using scanning electron microscope show significant changes in the
concentration of alloying elements in the joint area. It has been stated that alloying elements of
Inconel 625 were found to diffuse into steel P355NH along grain boundaries (Figure 9A). Additionally,
diffusion zone contains voids, which are localized mainly on grain boundaries and the joint line at the
side of steel P355NH (Figure 9B). Another noticeable change compared with the joint in the as-welded
state is formation of precipitates in the joint zone, which are localized in Inconel 625 alloy (Figure 9A,B).
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Scanning electron microscope observations revealed the presence of two types of precipitates in
Inconel 625 alloy—light precipitates (suggesting a high concentration of alloying elements heavier than
nickel) and dark precipitates (high concentration of alloying elements lighter than nickel). The size of
precipitates is about 0.5–1 µm (Figure 10A). In order to establish a chemical composition of precipitates
EDX area analysis has been performed. Dark precipitates are characterized by high concentration of
chromium and increased participation of molybdenum (Figure 10B). At the same time, it has been
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found that chemical composition of light precipitates has high molybdenum and niobium content
(Figure 10C). Additionally, the presence of carbon in both types of precipitates has been reported.Metals 2018, 8, x FOR PEER REVIEW  9 of 17 
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The width of the diffusion zone in InSt HTN sample (Figure 11A) has been estimated using linear
analysis of chemical composition (Figure 11B). The diffusion zone has about 15 µm width and can be
divided into two sections: iron-rich and chromium and nickel-rich. (Figure 11B).
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Figure 11. Image of the joint in InSt HTN sample: (A) microstructure of the joint; (B) linear analysis of
the chemical composition (yellow marker).

3.5. Scanning Transmission Electron Microscope Observations of the Diffusion Zone

Observations of the diffusion zone performed on scanning transmission electron microscope allow
to investigate the grainy microstructure of this area. It has been stated that in terms of grain structure
the diffusion zone consists of two subzones: area of equiaxed grains (at side of Inconel 625 alloy)
and area of columnar grains (at side of steel P355NH) (Figure 12A). In both cases, the microstructure
consists of ultrafine grains with their size within the range of 400 nm–1 µm. Predominantly, the finer
grains close to Inconel 625 are equiaxed and columnar grains close to P355NH have slightly larger size.
Additionally, it has been reported the occurrence of precipitates with their width about 50 nm in the
diffusion zone (Figure 12B).
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The linear analysis of chemical composition has been performed in order to investigate subzone of
columnar grains (Figure 13). Results indicate on similar concentration of chromium and niobium in the
analyzed area. On the other hand, the elements such as iron and nickel, which are main components of
the diffusion zone, show significant fluctuations in their concentration in this zone. It has been reported
that concentration of nickel decreases drastically on the border between columnar grains area of the
diffusion zone and steel P355NH. At the same time the concentration of iron increases, also rapidly.
The results of linear analysis together with scanning transmission electron microscopy observations of
this area suggest the predominate role of nickel and iron concentration ratio in the forming of diffusion
zone. The precipitates founded in this area were a subject of further investigation and observations
performed on scanning transmission electron microscope reveal their specific structure consisted of
core and shell (Figure 12B). In order to examine chemical composition of precipitate in the diffusion
zone the linear analysis was performed (Figure 14). The shell-core structure has been confirmed
in terms of chemical composition, since it has been reported that in the precipitate area there are
significant differences in distribution of alloying elements. The shell has high concentration of niobium
and molybdenum, while core consists of chromium and also of niobium and molybdenum (compared
to the average value of concentration of these elements in the diffusion zone).
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3.6. Microhardness Analysis

The influence of the explosive welding process on the joined materials in terms of strain hardening
was established by microhardness analysis (Figure 15). The highest degree of strain hardening
has been revealed close to the joint line, where welded materials were subjected to the severest
plastic deformation due to high velocity collision during explosive welding process. In this area,
the microhardness of Inconel 625 alloy increased by about 200 HV0.1 and in case of steel P355NH by
about 100 HV0.1. Stress relief annealing reduced the microhardness of steel P355NH by about 40 HV0.1.
It is mostly related to recrystallization of steel P355NH grains and presumably the decreasing of the
residual stress of the welded materials in the joint zone. The post-weld heat treatment in the form
of normalizing reduced the microhardness of steel P355NH and Inconel 625 to their baseline value,
measured in the as-received state.
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4. Discussion

Both heat treatments cause changes in the microstructure of investigated joint. Stress relief
annealing has a lowest impact on grainy microstructure and leads only to partial recrystallization of
steel P355NH grains in the joint zone. On the other hand normalizing the complete restructure of
steel grainy microstructure has been noticed. It is a well-known fact that the higher degree of plastic
deformation, the lower energy is necessary to initiate and complete heat-activated phenomena and
therefore the recrystallization temperature is lower, which explains the incomplete restructure of the
deformed steel structure after stress relief annealing. Additionally, it can be observed a disappear of
pearlite bands close to the joint line, what can suggest the diffusion process of carbon into Inconel
625 alloy. Inconel contains chemical elements having a high affinity for carbon, such as chromium,
molybdenum and niobium and for this reason carbon diffusion can result in formation of brittle
carbides in the joint zone [15,41–43]. Inconel 625 isothermal transformation diagram shows that the
parameters of the normalizing are close to the area of carbides formation, especially MC and M6C
types (Figure 16).
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As it was mentioned in the introduction part, the plastic deformation of Inconel 625 alloy, which
took place in the joint results in reducing of the energy of heat-activated processes, including precipitate
processes. The diffusion of carbon from steel P355NH into Inconel 625 alloy is an additional factor,
which has a significant impact on the carbides precipitation processes in the layer of Inconel 625 near to
the joint line. Scanning electron microscopy observations of sample subjected to the normalizing
revealed presence of precipitates in Inconel 625 close to the joint line. The results of chemical
composition analysis of precipitates indicate to two types of compounds: light, molybdenum-rich and
dark, chromium-rich. The presence of carbon in both precipitates has been reported. The literature
on the diffusion bonding of Inconel 625 and low-alloy steel describes both morphology and chemical
composition of carbides formed in that bimetallic system, identifying the precipitates as carbides
of M6C type in the case of high molybdenum concentration and of M23C6 type in the case of high
chromium concentration [41,43]. Additionally, M6C carbides have been characterized by increased
concentration of niobium and iron what has been confirmed in this investigation [41]. Scanning
electron microscopy observation of the diffusion zone formed due to normalizing, allow one to
draw a conclusion that chemical elements of Inconel 625 alloy diffuse into steel P355NH along grain
boundaries. Diffusion zone has about 15 µm width and can be divided into two sections in terms of
iron, nickel and chromium concentrations. The first, iron-rich section consists of about 90% of iron and
below 10% of nickel and chromium. An analysis of the Fe-Ni-Cr phase equilibrium diagram suggests
that this section is composed predominantly of γ phase and very small amount of α phase (Figure 17).
At the same time, the second section is characterized by high concentration of nickel (ca. 45%) and
chromium (ca. 30%). Phase diagram analysis also indicates on γ phase, as the main component of the
section with the small addition of α’ phase (Figure 17).

Scanning transmission electron microscopy observations, allowed to investigate the diffusion zone
microstructure, which consists of equiaxed, columnar grains with presence of 50 nm chromium-rich
precipitates having core-shell structure. It can be stated that both observed diffusion-based phenomena
in sample after normalizing, including diffusion zone with presence of voids and carbides in Inconel
625 alloy have their detrimental effect on the joint strength. The carbides localized in Inconel 625
alloy layer, also result in decreasing of material coherence at the most crucial region—the joint. These
factors might cause the deterioration of the joint quality established by the shear test in the previous
investigation performed by the authors of this paper [22].
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5. Conclusions

Analysis of Inconel 625/steel P355NH joint microstructure in the as-welded state and after two
different, separated types of heat treatment (stress relief annealing and normalizing) allowed the
following conclusions to be drawn.

1. The explosive welding process allowed to obtain joint between steel P355NH and Inconel 625
alloy. The wavy-shape joint was found to include melted zones having high concentration of
imperfections such as cracks, voids and fragments of steel P355NH surface layer.

2. Stress relief annealing (620 ◦C/90 min) led to partial recrystallization of steel P355NH in the
joint area. At the same time no changes in the grainy microstructure of Inconel 625 and chemical
composition of the joint have been noticed.

3. Heat treatment in the form of normalizing (910 ◦C/30 min) resulted in complete recrystallization
of grainy microstructure of both bonded materials.

4. As the result of normalizing the diffusion of Inconel 625 alloying elements into steel P355NH
took place along the grain boundaries with tendency to formation of voids.

5. Additionally, another effect of post-weld normalizing is the formation of M6C and M23C6 carbides
in Inconel 625 alloy in the joint zone.
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taxonomy for the term explanation. Authorship must be limited to those who have contributed substantially to
the work reported.
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