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Abstract: In this study, the CoCrAlYTa-10%Al2O3 coatings were prepared by the high-velocity
oxygen-fuel (HVOF) spraying. A series of ball-on-disk sliding wear tests were conducted to evaluate
the tribological properties of the coatings at different temperatures (25 ◦C, 200 ◦C, 400 ◦C, and 600 ◦C).
The results showed that the average coefficients of friction (COFs) of the CoCrAlYTa-10%Al2O3

coatings were lower than that of H13 steel at different temperatures. The average COFs of the
CoCrAlYTa-10%Al2O3 coatings and H13 steel both decreased with increasing temperature. The wear
rate of the CoCrAlYTa-10%Al2O3 coatings increased first and then decreased. The microhardness of
worn surface of the CoCrAlYTa-10%Al2O3 coatings increased with increasing temperature, while the
microhardness of worn surface of H13 steel at 25 ◦C and 200◦C was higher than that at 400 ◦C and
600 ◦C. The wear mechanism of the two materials was mainly abrasive wear. The tribofilms were
formed on the worn surface of the CoCrAlYTa-10%Al2O3 coatings, which had a good protective effect.
Due to thermal softening and low binding strength of debris, it was difficult for H13 steel to form
the tribofilms. The wear rate of H13 steel was much higher than that of the CoCrAlYTa-10%Al2O3

coatings at 400 ◦C and 600 ◦C, indicating that the high temperature wear resistance of the coatings
was much better than that of H13 steel.

Keywords: CoCrAlYTa-10%Al2O3; high temperature wear; H13 steel; wear mechanism; high-velocity
oxygen-fuel spraying

1. Introduction

Improving the life of the hot extrusion dies and wear-resistant mechanical parts has crucial
significance in the industrial application [1–7]. Reducing friction and wear is an important way to
prolong the life of the hot extrusion dies and wear-resistant parts [8–10]. High temperature environment
often results in significant loss of mechanical properties of the dies and wear-resistant parts in industrial
production [8,11,12]. Commonly, changing the material composition or heat treatment of the material
can improve the high temperature wear resistance [13–18]. However, this can still not meet some
industrial application requirements. Preparing high-performance coatings on the hot extrusion dies and
wear-resistant mechanical parts can also improve the mechanical performance and wear resistance of
worn surface. In the production process, the wear-resistant parts not only need higher high temperature
mechanical properties to prevent the deformation, but also have lower wear rate to maintain the
working precision. The coatings often contain elements with outstanding high-temperature mechanical
properties. Li et al. [19] used an atmospheric plasma spraying system depositing the NiCrAlY-Mo-Ag
composite coatings, and found that the NiCrAlY-Mo-Ag composite coatings possessed an excellent
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lubricating property and wear resistance at 500 ◦C. At the same time, adding hard phases (TaC,
Al2O3, and TiC) is an important way to improve the high temperature mechanical properties of
the coatings [6,20–25]. Hou et al. [26] added Al2O3 to the CoCrAlYTaCSi coatings to increase the
microhardness of the coatings from 573 HV0.1 to 654 HV0.1. Meanwhile, it significantly increased the
modulus, contact stiffness, and high temperature wear resistance. Amiriyan et al. [6,27] studied the
effect of TiC content on the wear resistance of the coatings and noted that the coatings with 50 and
70 mol% TiC exhibited excellent sliding wear resistance.

Wear is not a simple process of material removed. Although, increasing the microhardness of
the coatings can effectively improve the wear resistance of the material, the brittleness of the coatings
would also be improved [28]. Nitesh et al. [29] found that high temperature heat treatment increased
the brittleness of the WC-12Co and Cr3C2-25NiCr coatings. The fracture and spalling of carbide
aggravated abrasive wear. A large number of hard phase particles spalled from the metal-ceramic
coatings would influence the precision of the dies processing and damage the tribopair. During the
wear process, not only deformation and oxidation would occur, but also new microstructures would
appear. The tribofilms produced during wear process can improve the wear resistance of the coatings.
Wimmer et al. [30] found that the dense tribofilms appeared on the worn surface of the CoCrMo alloy
in a specific load range which made the alloy have excellent wear resistance. Although the preparation
technology and high temperature wear behavior of the high temperature wear-resistant coatings have
been studied a lot, few researches have been reported on the high-temperature wear resistance and the
wear mechanism of the CoCrAlYTa-10%Al2O3 coatings at different temperatures.

In this paper, the CoCrAlYTa-10%Al2O3 coatings are prepared by high-velocity oxygen-fuel
(HVOF) spraying. In order to approach industrial application, the heat treated H13 steel is used as
the matrix and the contrast sample. The microhardness of H13 steel is similar to that of the coatings.
The effects of high temperature resistance and tribofilms on the wear resistance of the coatings are
mainly studied. The microstructures of the coatings are observed by scanning electron microscope
(SEM) equipped with energy dispersive spectrometer (EDS). Comparing the surface morphologies,
microhardness, and phase composition after the wear tests, the wear mechanisms of two kinds of
materials at different temperatures are analyzed and the wear properties of the two kinds of materials
at high temperatures are investigated. The data obtained can be used as a reference for the selection of
high temperature wear coatings on hot-working dies and wear-resistant mechanical parts.

2. Materials and Methods

2.1. Material and Preparation

In this paper, commercially agglomerated and sintered powder of CoCrAlYTa-10%Al2O3 (FUJIMI,
Japan, having nominal composition as 24.7 wt.% Cr, 7.3 wt.% Al, 0.7 wt.% Y, 8.9 wt.% Ta, 1.8 wt.%
C, and balance Co) had a particle size distribution of 15–45 µm. The CoCrAlYTa-10%Al2O3 coatings
were fabricated on H13 steel by HVOF spraying under parameters (i.e., oxygen flow 944 L·min−1,
kerosene flow 0.41 L·h−1, argon carrier gas flow 10.86 L·min−1, spray distance 370 mm, powder
feed 5 rpm, and relative traverse speed 280 mm·s−1). Our previous studies [31] had shown that the
CoCrAlYTa-10%Al2O3 coatings was prepared by HVOF spraying technology. The coating with a
thickness of approximately 300 µm was composed of Al2O3, Al5Co2, Co, Cr, Cr3C2, Cr7C3, Cr2O3,
and TaC. The contrast samples were made of H13 steel and hardened to 595 ± 30 HV0.1 (after heat
treated by quenching and tempering), which was similar to that of hot working dies and slightly lower
than that of the CoCrAlYTa-10%Al2O3 coatings (640 ± 50 HV0.1).

In order to study the effect of temperatures on the wear properties and mechanisms of the coatings
and H13 steel, the microstructure and phase composition were determined with X-ray diffraction
(XRD, Bruker D8-Advanced, Bruker Inc., Karlsruhe, Germany) and SEM (Hitachi S-3400N, Hitachi
Inc., Tokyo, Japan) equipped with energy dispersive spectrometer. In order to study the effect of wear
on the microhardness of wear surface, the microhardness was measured by a Vickers microhardness
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tester (HXD-1000TC, Taiming Optical Instrument Inc., Shanghai, China) and from the bottom of the
worn surface to the inside along the cross section, as shown in Figure 1. The load and holding times
were 0.98 N and 15 s, respectively. In order to ensure the data repeatability, at least 10 measurements
were done for each specimen.
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Figure 1. Schematic of microhardness test of the CoCrAlYTa-10%Al2O3 coatings and H13 steel.

2.2. Sliding Wear Test

The high temperature fiction-wear tests were performed on a HT-1000 type ball-on-disk tribometer
(ZhongKeKaiHua Technology Development Inc., Lanzhou, China). The tests were conducted at 25 ◦C,
200 ◦C, 400 ◦C, and 600 ◦C with a 6 mm Si3N4 ball. The wear parameters: Time of 60 min, frequency of
15.9 Hz, rotation diameter of 10 mm, and load of 10 N. As the tests went on, a computer was connected
with the tribometer and the coefficient of friction (COF) of the coatings and H13 steel was measured.
The contour curves of worn tracks were measured on a Contour GK-K (AUTOMATED, Bruker Inc.,
Karlsruhe, Germany) three-dimension optical interferometry profiler (Bruker Inc., Karlsruhe, Germany),
after the wear tests.

3. Results and Discussion

3.1. Sliding Wear Properties

The COF curves against time are shown in Figure 2. The two-stage trend could be distinguished
from the COF curves of the CoCrAlYTa-10%Al2O3 coatings at different temperatures. At room
temperature, the COF curve of the CoCrAlYTa-10%Al2O3 coating was similar to that of H13 steel
testing at different temperatures. A rapid increase to a peak value in the COF curves could be seen
within the initial running-in stage and then remained stable, as shown in Figure 2a,b. At the higher
temperature, the COF first increased to a peak value within a short duration, then decreased and
stabilized for the remainder of test, as shown in Figure 2a. It suggested that the wear mechanism might
change, when the temperatures was higher than 200 ◦C.
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The COF curves of H13 steel at 400 ◦C was quite different from the COF curves at other
temperatures, as shown in Figure 2b. The COF curves first increased to a peak value, then slowly
decreased and finally stabilized. During the wear process, the flash temperature in the contact area
of friction couple was much higher than testing temperature [32]. The temperature of worn surface
increased with the wear testing. Meanwhile, the wear properties and COF of H13 steel changed with
the increase of worn surface temperature. The peak value of 400 ◦C was similar to the value of the
stable stage at 200 ◦C. In the final stage of wear testing, the COF curves of 400 ◦C and 600 ◦C was close.
It might be indicated that the microstructure of the worn surface at the initial stage of 400 ◦C was
similar to that at the stable stage of 200 ◦C and the microstructure of the worn surface at the final stage
of 400 ◦C was similar to that at the stable stage of 600 ◦C.

The average COF curves and wear rate are shown in Figure 3. The average COF curves of
the CoCrAlYTa-10%Al2O3 coatings were lower than that of H13 steel at different temperatures.
The average COF curves of CoCrAlYTa-10%Al2O3 coatings and H13 steel decreased with increasing
temperature. When the temperature was 600 ◦C, the wear rate of the CoCrAlYTa-10%Al2O3 coating
was lower than that at 400 ◦C. At 400 ◦C, the wear rate of H13 steel was about four times to that of the
CoCrAlYTa-10%Al2O3 coating. When the temperature increased to 600 ◦C, the wear rate of H13 steel
was about five times to that of the CoCrAlYTa-10%Al2O3 coating. It indicated that the coatings had
excellent wear resistance in the high temperature.
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The profile curves of the CoCrAlYTa-10%Al2O3 coatings and H13 steel are shown in Figure 4.
When the temperature was higher than 200 ◦C, the depth and width of wear surface of H13 steel were
much larger than that of CoCrAlYTa-10%Al2O3 coatings. As shown in Figure 4a, the uneven curves
showed that a large number of grooves existed on the worn surface. As shown in Figure 4b, with
the increase of temperature, the volume loss of H13 steel increased. Especially, the volume loss of
H13 steel increased dramatically when the temperature was higher than 200 ◦C.
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3.2. Morphologies, Microstructures, and Microhardness of Worn Surface

The worn surface images of the CoCrAlYTa-10%Al2O3 coatings at different temperatures are
shown in Figure 5. Some discontinuous strip-like tribofilms paralleling with the sliding direction were
formed on the worn surface, as shown in Figure 5a. At higher magnification, some white particles
(TaC) with a size of 1–2 µm were uniformly distributed on the worn surface (Figure 5b), which made
the coatings have excellent high temperature mechanical properties [23,26]. In addition, the number of
TaC in the tribofilms was lower than that in the coatings, which indicated that the carbide was difficult
to sinter into tribofilms. During the wear process, some debris was compacted and sintered on worn
surface. But lower temperature and higher friction coefficient made debris difficult to sinter on the
worn surface. The brittleness of the tribofilms made microcracks easy to form and propagate, then led
to some spalled pits on the worn surface, as shown in Figure 5b.
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When the temperature increased from 25 ◦C to 200 ◦C, the morphologies of abrasive wear had
changed obviously and a large number of grooves appeared on the wear surface, which indicated the
abrasive wear was aggravating, as shown in Figure 5c. The continuous tribofilms were formed on
the worn surface, which had a significant antifriction effect on the worn surface. The average COF
of the CoCrAlYTa-10%Al2O3 coatings decreased from 0.83 to 0.65. As shown in Figure 5d, a large
number of spalled pits appeared on the tribofilms, which was caused by the impact and cutting of
abrasive particles and the rapid growth of microcracks in the tribofilms under the cyclic stress [33].
As temperature increased from 200 ◦C to 400 ◦C, due to the tribofilms were more compact with the
increase of temperature, the number of spalled pits on the worn surface decreased rapidly, as shown
in Figure 5e. Some TaC and spalled pits were observed on the worn surface, as shown in Figure 5f.
It indicated that the spalled pits might be formed by carbide peeling off. Previous research showed
that when the fine hard phase was distributed on the worn surface, plastic flow would slowly pull out
the hard phase [34].

As shown in Figure 5g, the worn surface was smoother than that of 400 ◦C. The average COF
of 600 ◦C was the lowest at different temperatures and the wear rate was smaller than that of 400 ◦C.
It indicated that the smooth tribofilms had good protective effect on the coatings. As shown in
Table 1, the results of the EDS analysis showed that all elements of tribofilms were similar at different
temperatures, which suggested that the microstructure of worn surface was an important factor to
high temperature wear resistance. The Y content was too low to be detected. Some finer debris were
present in the worn surface, as shown in Figure 5h.

Table 1. Chemical composition of the worn regions of the CoCrAlYTa-10%Al2O3 coatings.

Region
Composition (at.%)

O Co Cr Al Ta C

A 58.67 11.53 11.15 8.69 0.04 6.61
B 61.35 11.26 11.12 9.22 0.97 6.09
C 60.86 11.75 9.93 8.75 0.83 7.88
D 60.01 12.19 11.02 8.58 0.95 7.25

The morphologies of worn surface of the H13 steel at different temperatures are shown in Figure 6.
At 25 ◦C, some pits appeared on the worn surface (Figure 6a), which might be resulted from fatigue
wear [13]. At high magnification, a few chip wear debris and micro-ploughing formed on the worn
surface, which were caused by the extrusion and cutting action of the micro-convex of Si3N4, as shown
in Figure 6b. With the increase of the temperature, the increasing volume loss of H13 steel resulted
in a rapid increase of the wear debris on the worn surface, a large number of wear debris appeared
on the worn surface and some debris agglomerated into the lump particles, as shown in Figure 6c.
Under high magnification, it could be found that the large particles were poorly bonded to the
worn surface as shown in Figure 6d. At elevated temperature of 400 ◦C, severe micro-cutting and
grooves were observed on worn surface (Figure 6e), which were caused by abrasive wear and thermal
softening. In addition, the debris accumulated in the grooves (Figure 6f). At elevated temperature
up to 600 ◦C, some discontinuous tribofilms formed on the worn surface, which reduced abrasive
wear and friction coefficient, as shown in Figures 6g and 3. At high magnification, the worn surface at
600 ◦C was smoother than that at 400 ◦C. Micro-cutting and plastic deformation decreased. A number
of discontinuous tribofilms appeared in the grooves and some interlaced microcracks were distributed
on the tribofilms, as shown in and Figure 6h. Because of the low binding force between debris, it was
difficult to form the dense and continuous tribofilms.
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The XRD patterns of the worn surface of the CoCrAlYTa-10%Al2O3 coatings and H13 steel after
wear testing were shown in Figure 7. The unworn CoCrAlYTa-10%Al2O3 coating consisted mainly
of Al2O3, Al5Co2, Co, Cr, Cr3C2, Cr7C3, Cr2O3, and TaC at room temperature, as shown in Figure 7a.
The phases of the all worn tracks were basically same. With the increase of temperature, the diffraction
peak of Al5Co2 gradually weakened and finally disappeared in the XRD patterns. It indicated that the



Metals 2019, 9, 1224 8 of 12

Al5Co2 of the coatings might be oxidized to form the Al2O3 and CoO. The H13 steel mainly consisted
of Fe and Fe2O3, as shown in Figure 7b. At 600 ◦C, the obvious diffraction peaks of Fe3O4 and Fe2O3

were found in the XRD pattern, which indicated that worn surface and debris were both oxidized
during the wear process.
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The microhardness profiles along the cross-section of the bottom of worn surface are shown in
Figure 8. For the CoCrAlYTa-10%Al2O3 coatings, the microhardness of worn surface increased with
increasing temperature, as shown in Figure 8a. When the distance from the bottom of worn surface
was higher than 50 µm, the microhardness was similar at different temperatures. It suggested that
work hardening and the tribofilms formed on the worn surface [35,36]. The tribofilms were found
in the Figure 5d,f,h. At the same time, some studies showed that when the temperature was from
200 ◦C to 800 ◦C, the microhardness of the Cr3C2-NiCr and WC-Co coatings increased with the increase
of heat treatment temperature. The decarburization and dissolution of carbide phases in cobalt and
NiCr matrix increased the microhardness of the coatings [29,37]. Carbide decarburization might also
occur on the surface of worn surface, resulting in the increase of the microhardness of worn surface.
As shown in Figure 8b, the results showed the microhardness of H13 steel possessed different rules.
At 25 ◦C and 200 ◦C, the microhardness of worn surface was almost the same and the microhardness
of worn surfaces was higher than that at 400 ◦C and 600 ◦C, which might result from work hardening.
At 400 ◦C and 600 ◦C, the friction heat made the temperature of worn surface higher than testing
temperature. The dynamic recovery and recrystallization of the worn surface generated during the
wear testing, which prevented work hardening [38]. Meanwhile, it indicated the CoCrAlYTa-10%Al2O3

coatings exhibited higher high-temperature mechanical property than that of H13 steel.
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3.3. Wear Mechanisms

Based on the previous analysis, the schematic diagrams of the evolution of wear characteristics of
the CoCrAlYTa-10%Al2O3 coatings and H13 steel are shown in Figure 9.
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At the low temperature (or in the initial running-in stage), the volume loss of the coatings and
H13 steel was low, which resulted in some debris and grooves appearing on the worn surface, as shown
in Figure 9a. With the increase of temperature, sliding wear increased the temperature of the worn
surface. Thermal softening (the contact areas between the micro-convex) and adhesive wear led to the
increase of wear debris. Subsequently, the abrasive wear gradually increased and the adhesive wear
was inhibited. Some debris accumulated in the grooves. If the debris was compacted and sintered on
the worn surface, the tribofilms would form on the grooves. If the binding force between the debris
was poor, some spalled pits were obvious on the tribofilms, as shown in Figure 9b. With the increase
of temperature and wear debris, the continuous tribofilms were formed on the worn surface like the
CoCrAlYTa-10%Al2O3 coatings, as shown in Figure 9c. During the wear process, the Al, Co elements
in the coatings would form a compact and continues oxide layer under high temperature and block
the diffusion of oxygen from the surface to the inside [39]. The wear debris without serious oxidation
had good plasticity, so that the wear debris could be sintered together to form tribofilms. When the
temperature increased to 200 ◦C, the tribofilms appeared on the worn surface, as shown in Figure 5d.
In addition, the work hardening caused by the plastic deformation and the oxide produced in the
wear process effectively improved the microhardness of the worn surface. The tribofilms reduced the
cutting effect of abrasive wear on the worn surface. With the increase of temperature, the tribofilms
became more and more compact and smooth, which made the average COF of the coatings decreased
(Figure 3). At 600 ◦C, the worn surface had the highest microhardness and the lowest COF, which
resulted in the wear rate of the coating at 600 ◦C was lower than that at 400 ◦C, as shown in Figure 3.

At 25 ◦C and 200 ◦C, the woke hardening improved the wear resistance of H13 steel. When the
temperature increased to 400 ◦C, the microhardness of worn surface decreased and the wear debris
did not form the tribofilms. It was difficult to resist the cutting effect of abrasive wear on the worn
surface, which caused a sharp increase of wear rate (Figure 3). Even at 600 ◦C, only some discontinuous
tribofilms with a number of microcracks appeared on the worn surface (Figures 9d and 5h). It was
mainly formed by debris accumulation rather than sintering. With the increase of temperature,
the amount of wear debris increased, which restrained the adhesive wear and reduced the wear.
Therefore, the average COF decreased with the increase of temperature, as shown in Figure 3. The wear
mechanism of the two materials was mainly abrasive wear. However, due to the influence of tribofilms
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and high temperature resistance, the high temperature wear resistance of the coatings was much better
than that of H13 steel.

4. Conclusions

The CoCrAlYTa-10%Al2O3 coatings were prepared by HVOF spraying. The influence of
temperatures (25 ◦C, 200 ◦C, 400 ◦C, and 600 ◦C) on the sliding wear behaviors of the coatings
and H13 steel against Si3N4 ball were investigated. The results could be summarized as follows:

(1) The wear mechanism of the two kinds of materials was mainly abrasive wear. Tribofilms were
formed on the surface of the CoCrAlYTa-10%Al2O3 coatings. The tribofilms had a good protective
effect. Due to thermal softening and low binding strength of debris, it was difficult for H13 steel to
form tribofilms. The wear rate of H13 steel was much higher than that of the CoCrAlYTa-10%Al2O3

coatings at 400 ◦C and 600 ◦C. The results show that the high temperature wear resistance of the
CoCrAlYTa-10%Al2O3 coatings was infinitely superior to that of H13 steel.

(2) The average COF values of the CoCrAlYTa-10%Al2O3 coatings were lower than that of H13 steel
at different temperatures. The average COF values of the CoCrAlYTa-10%Al2O3 coatings and H13 steel
decreased with increasing temperature. On the contrary, the wear rate of H13 steel increased with
increasing temperature. With increasing of the temperature, the wear rate of the CoCrAlYTa-10%Al2O3

coating first increased and then decreased as the temperature was higher than 400 ◦C.
(3) At 25 ◦C and 200 ◦C, the work hardening occurred on the worn surface of H13 steel. With the

increase of temperature, the dynamic recovery, and recrystallization of the worn surface generated
with the wear testing, which prevented work hardening. For the CoCrAlYTa-10%Al2O3 coatings,
the microhardness of worn surface increased with increasing temperature.
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