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Abstract: The superalloy 718 stands out for its excellent manufacturability and strength at ambient
temperature. However, its application temperature is limited to about 650 ◦C due to the instability
of the γ” precipitates. Here, we provide an in-depth account of an alloy development concept,
allowing for the design of superalloys with 718-type properties, yet with a significantly improved
microstructural stability. The article begins with a detailed discussion on how the microstructural and
chemical composition must be altered to achieve this objective. Then, model alloys were used to explore
and validate the outlined strategy. Finally, it is shown how these considerations ultimately led to a
new 718-type superalloy with far more improved microstructural stability— namely, VDM Alloy 780.
The introduction of a large amount of Co as a substitute for Fe (and partially Ni) is the most important
element of our alloy development concept in terms of chemical composition. The most important
microstructural feature is the introduction of low solvus temperature, high misfit γ′-strengthening,
replacing γ”-hardening.
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1. Introduction

Alloy 718, developed in the 1950s with the respective patent filed in 1958 [1], remains the most
widely used Ni-based superalloy to date. As mentioned by Eiselstein [2], the original intent at that time
was the development of a Ni-based solid solution-strengthened alloy with niobium being one of the
investigated alloying elements. In the course of this work, an outstanding age hardening response was
noted in the case of Nb addition, leading eventually to alloy 718. As is well known today, sufficiently
high amounts of Nb in combination with relatively small amounts of the γ′ formers Al and Ti lead to
the precipitation of the γ”-phase of the Ni3Nb type (Strukturbericht designation D022). Its large lattice
parameter misfit to the γ-matrix is responsible for the high strength of the alloy despite a moderate
precipitate content of about 21% after extended aging at 700 ◦C [3]. Even though alloy 718 also contains
some amount of γ′, the principal strengthening phase is γ”. Besides its excellent strength and ductility,
a key feature of alloy 718 is its sluggish precipitation kinetics, see the time–temperature transformation
diagrams for alloy 718 [3,4]. This leads to excellent weldability and manufacturability of large wrought
and cast components simply because the alloy remains in a soft state during processing, so that large
internal stresses cannot build up.

A third precipitate phase present in alloy 718 is the δ-phase (Strukturbericht designation D0a),
which is the thermodynamically stable variant of the metastable γ”-phase. Necessarily, its solvus
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temperature exceeds that of the γ”-phase, which is about 1000 ◦C in alloy 718 [3,4]. Due to the relatively
large nucleation barrier, the δ-phase typically precipitates heterogeneously at grain boundaries.
Especially in combination with hot working and concomitant recrystallization, it tends to form blocky
particles there with a few micrometers in size. However, it may also grow in the form of plates into the
grain interior with a (010)δ || {111}γ, [100]δ || <110>γ orientation relationship [5]. While the δ-particles
are too large to cause strengthening, they are small enough to cause sufficient Zener drag for effective
grain boundary pinning. This leads to a further advantage of alloy 718: if the material is hot deformed
above the solvus temperature of the strengthening phases but below the solvus temperature of the
δ-phase, it is in a soft state. Nevertheless, a small grain size of ten micrometers and less can be attained
due to the presence of the δ-phase. This is especially beneficial for turbine disc applications, as a small
grain size significantly improves fatigue strength and examinability by ultrasound. The situation
is quite different in the case of conventional γ′-strengthened wrought superalloys like Waspaloy or
Udimet 720. Here, large γ′ particles obtained by sub-solvus heat treatment must be used for grain size
control [6]. The drawback is that slight temperature excursions during processing lead either to γ′

dissolution (i.e., large grains) or a severe reduction of deformability due to additional γ′ formation and
concomitant strengthening. This makes fine grain forging a tedious and costly endeavor.

Despite these advantages there is, however, one major drawback of alloy 718. As γ” is a metastable
phase, microstructural stability is limited. Extended exposure above approximately 650 ◦C leads to the
transformation of γ” to the thermodynamically stable δ-phase, now precipitating in the grain interior in
the form of large plates with the above given orientation relationship to the γ-matrix. Consequently, γ”
strengthening is lost, rendering the material unsuitable for applications beyond about 650 ◦C [7]. Given
this situation and the ever-increasing demand for materials with improved temperature capability in
gas turbine applications, a 718-type material with improved temperature capability would be highly
beneficial. As the advantageous features of high strength and slow precipitation kinetics are linked to
the γ”-phase as mentioned above, the aim of past alloy development efforts was mainly to maintain
this phase. Tien and coworkers concentrated on the (Al+Ti)/Nb and Al/Ti ratios while leaving the
concentration of the remaining elements essentially as so in alloy 718 [8,9]. They demonstrated that
γ′/γ” microstructures can be maintained at higher (Al+Ti)/Nb and Al/Ti ratios compared to that in
alloy 718. As the ratio of γ′ to γ”-content increases by these measures, the transformation of γ” to δ
becomes more sluggish, thus improving the microstructural stability compared to alloy 718. It was
also noticed that these measures reduce the fraction of δ-phase nucleating along grain boundaries [8].
Fundamentally, this is an unwanted effect as the δ-phase is needed to ensure fine grain forging.
In Reference [8], the investigated compositional range for Al, Ti, and Nb was 0.46–0.87%, 0.95–1.41%,
and 4.32–5.67%, i.e., close to the typical specification limits of alloy 718 (all chemical compositions
are given in wt.% unless otherwise stated). Similar efforts to improve the microstructural stability,
primarily by increasing the (Al+Ti)/Nb ratio have also been made by other authors [10].

Mignanelli et al. [11] investigated the role of the Al/Nb ratio on the stability of the γ′/γ”-phases,
suggesting an atomic ratio between 0.3 and 1.0 for the formation of microstructures containing
both precipitate phases in comparable quantities. Based on these findings, they report on the alloy
Ni–13.3Cr–1.85Al–9.53Nb, having stable γ′/γ” precipitates after thermal exposure at 700 ◦C/1000 h, i.e.,
a microstructural stability superior to that of alloy 718. As in Reference [8], the results suggest that the
microstructural stability increases with the γ′/γ” ratio even though the total contents of precipitate
forming elements were quite different in these studies.

With ATI 718Plus®, a 718-type alloy was developed containing predominantly γ′ as the
strengthening phase [7]. Essential compositional differences to alloy 718 are a reduced Fe content (10%
instead of 18%), addition of 9% Co, an increased amount of Al (1.45% instead of 0.45%), and a slightly
reduced Ti content (0.7% instead of 1.0%). It is emphasized that a higher Al/Ti ratio and an increased
sum of Al+Ti are required to achieve the alloy development objective of a 55 ◦C improvement in
temperature capability compared to alloy 718. The best mechanical properties were found at an Al/Ti
ratio and Al+Ti content of 4 and 4%, respectively (obtained from the chemical composition in at.%) [7].
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It is also stated that the selected Co content improves the mechanical properties and thermal stability.
The ability of Co to reduce the stacking fault energy is mentioned in this context. Initially, it was thought
that the high-temperature phase for grain refinement is the δ-phase with a D0a crystal structure [12].
More recent analysis suggests an ordered type of the η-phase (Strukturbericht designation D024) with
Ni6AlNb stoichiometry [13] and/or a layered structure within individual particles, consisting of η and
δ [14]. Note that η- and δ-phase can be used alike for grain refinement. Alloy 706 is a well-known
example where η-phase is utilized for that purpose.

There were also efforts to develop classical γ′-strengthened wrought superalloys with improved
weldability and manufacturability compared to Udimet 720Li, a widely used wrought γ′-strengthened
superalloy for disc applications. Examples include the development of the alloys AD730TM [15]
and René 65 [16]. However, these alloys lack a fundamental advantage of 718-type alloys, namely,
the non-strengthening high-temperature phase for ease of grain refinement.

Recently, a 718-type superalloy aiming at an even higher temperature capability than ATI 718Plus®,
approximately +100 ◦C compared to alloy 718, was developed collaboratively between the Technische
Universität Braunschweig and VDM Metals GmbH [17–19]. Currently, this alloy is in the phase of
market introduction under the trade name VDM Alloy 780. In this article, we provide a full account of
the development concept behind this work.

The article is structured as follows: In Section 2.1, basic considerations regarding the precipitation
kinetics of the γ′- and γ”-phases are provided and the strategy for the development of 718-type
superalloys with improved microstructural stability is established. We will qualitatively deduce
the required changes with respect to the chemical composition and microstructure to attain the
development objective. Then, systematic chemistry modifications along with microstructure analysis
and thermodynamic calculations are conducted in Section 2.2 to explore and proof the alloy development
strategy, leading finally to VDM Alloy 780.

A Zeiss Leo 1550 scanning electron microscope was used for microstructural analysis. Secondary
electron (SE) and in-lens detectors were used as indicated in the figure captions. A V2A-etchant
(200 mL H2O, 200 mL HCl, 20 mL HNO3, 0.6 mL Vogels Sparbeize), which preferentially leaches the
matrix, was used to reveal the microstructure. The HV10 Vickers hardness testing was conducted on a
A Leco LV 100AT hardness tester.

2. Alloy Development

2.1. Basic Considerations and Development Strategy

Clearly, developing an alloy with 718-type properties but with a significantly improved
microstructural stability for service at temperatures beyond 650 ◦C is a difficult task. This is
reflected in the fact that the amount of commercially available alloys achieving this requirement
is sparse despite considerable research. For long, the γ”-phase was considered essential to fulfill
the requirements for strength in combination with sluggish precipitation characteristics, i.e., good
manufacturability. However, as mentioned, this phase is metastable, and it is understandable that
the improvements in temperature capability are limited as long as this phase is used as the essential
strengthening phase. Thus, it seems worthwhile to revisit these considerations regarding the γ”-phase.
Concentrating on precipitation kinetics first, there are a number of essential factors controlling the
speed of precipitation processes. Firstly, the solvus temperature of the precipitate phase matters.
If it increases, also the onset of precipitation is shifted to higher temperatures. This leads then to
faster diffusion, i.e., faster precipitation kinetics. The effect is quite dramatic. Taking the activation
energy for self-diffusion of nickel (i.e., 284 kJ/mol [20]) as a reasonable approximation for diffusion
processes in superalloys and assuming precipitation at 900 ◦C instead of 800 ◦C, the diffusion kinetic is
accelerated by a factor of 15. Thus, one intent of any effort to develop a 718-type alloy with sluggish
hardening response must be to limit the solvus temperature of the phase leading to precipitation
strengthening. Secondly, the diffusivity of the elements forming the precipitates is of concern. If one
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could select elements with particularly low diffusion coefficients, it would be possible to slow down the
precipitation kinetics. Al, Ti and Nb are the essential elements to form γ′ and γ” in wrought superalloys.
In Reference [21], the diffusion coefficient of Al in Ni is given as DAl = 1.4 × 10−4 (m2/s)·exp[−263
(kJ/mol)/RT]. The data for the lowest given Al concentration of 1.0% were used, as this amount well
reflects typical concentrations in 718-type alloys. The diffusion coefficient of Nb in Ni is DNb = 8.8
× 10−5 (m2/s)·exp[−257 (kJ/mol)/RT] [22]. Taking 800 ◦C as an example, DAl = 2.2 × 10−17 (m2/s) and
DNb = 2.7 × 10−17 (m2/s) result, demonstrating very similar diffusivities. Furthermore, investigation
of diffusivities in the ternary Ni–Al–Ti system shows similar diffusivities of Al and Ti in nickel [21].
Data for Al and Ti in binary Ni–X systems [23] suggest a slightly faster diffusion of Al than Ti by a
factor of about 1.6 at T ≥ 1200 ◦C. Thus, it is noted that the diffusivities of these three elements are very
similar. In this respect, there is no reason for the Nb-rich γ” phase to precipitate more slowly than the
Al-rich γ′-phase. A third aspect relates to the interface energy. As it increases, the nucleation barrier at
a given chemical driving force increases and the nucleation process slows down. The interface energy
of γ” in alloy 718 was determined as 95 mJ/m−2 [24]. The interfacial energies of the γ′-particles were
examined by Li et al. [25]. According to their literature analysis, values between 6 and 80 mJ/m−2

have been found in binary Ni–Al alloys. However, they also point out that γ′-interface energies in
superalloys tend to be higher, giving a range between 58 and 91 mJ/m−2 for a number of superalloys.
These values come close to the value reported for γ” in alloy 718. In summary, none of these aspects
yield a fundamental reason for the γ′-phase to necessarily precipitate much faster than the γ”-phase at
a given solvus temperature. However, it is well known that the solvus temperature of the γ”-phase in
alloy 718 is considerably lower than that of the γ′-phase in comparable γ′-strengthened superalloys
such as Waspaloy and Udimet 700. While the former is about 930 ◦C [3,4], the Tγ′,solvus in Waspaloy
and Udimet 700 is about 1050 ◦C and 1135 ◦C, respectively [26]. This appears to be the main reason for
the slower precipitation kinetics of the γ”-phase in alloy 718. To study these differences, we conducted
Jominy end-quench tests according to DIN EN ISO 642, using rods with a 25 mm diameter and 100 mm
length. The heat treatment protocols before quenching were 980 ◦C/1 h and 1080 ◦C/1 h for alloy 718
and Waspaloy, respectively, ensuring complete dissolution of the strengthening phase. After the water
quenching of one circular end, the hardness was measured as a function of the distance from this end
and the results are plotted in Figure 1a. Clearly, the differences are drastic. In the case of Waspaloy,
the hardness increased immediately with the distance from the quenched end, demonstrating that
γ′ precipitation takes place even close to the quenched end. At a distance of 20 mm and above,
a hardness of about 400 HV10 was reached. Actually, this value is larger than the hardness after a
typical solution and precipitation heat treatment. For example, 1080 ◦C/4 h/AC + 845 ◦C/24 h/AC +

760 ◦C/16 h/AC (AC: air cooling) yields a hardness of 361 HV10. In contrast, the hardness of alloy 718
remains essentially constant over the entire sample length. The measured value is essentially that of
the solution heat-treated alloy. Thus, there is no γ” precipitation at all. In this context, it is noteworthy
that the precipitate content of both alloys is not too different. It is about 21% in the case of alloy 718,
as mentioned above, and about 24% in Waspaloy [27,28].

Due to these considerations, it was concluded here that the need for sluggish precipitation does
not necessarily require γ” strengthening. Furthermore, no reasonable measure was seen to ensure the
long-term stability of the γ”-phase at service temperatures as high as 750 ◦C. For this reason, the focus
was on the development of an alloy with 718-characteristics yet containing γ′ for strengthening along
with the δ-phase for grain size control during processing. The key task was then to find a means to
combine a sufficiently low solvus temperature of the γ′-phase for control of the precipitation kinetics
with a sufficiently high γ′ content at service temperature for strengthening. In this respect, cobalt
was identified as a promising alloying element. It not only diminishes Tγ′,solvus. It also reduces
the solubility of the γ′ forming elements at typical operation temperatures, thus increasing the γ′

content for a given amount of γ′-forming elements in the temperature range where it is required [29].
This double effect appears to be ideally suited for the alloy development objective at hand. For this
reason, all alloy compositions investigated here contained significant amounts of Co, replacing Fe
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and, to a certain extent, Ni. As will become apparent in Section 2.2, Co has a third beneficial effect—it
also stabilizes the δ-phase. This is very important because Al, required for γ′ precipitation, has a
destabilizing effect on the δ-phase. Therefore, one would lose the δ-phase if one simply increased the
Al content while otherwise maintaining the composition of alloy 718. Furthermore, it is clear that the
solvus temperature of the strengthening phase must be below the solvus temperature of the phase
used for grain size control during processing. Otherwise, fine grain forging would not be possible in
a soft material state. For this reason, sufficient stability of the δ-phase must be ensured. Apart from
these benefits of Co specific to the alloy development objective at hand here, Co also improves the
creep strength by lowering the stacking fault energy as an additional advantage.

Figure 1. Results of the Jominy end-quench tests conducted for alloy 718 and Waspaloy (a), alloy L4 (b),
and alloy V17 (c). Shown is the HV10 Vickers hardness as a function of the distance from the quenched
end (after reference [19] with permission from Cuvillier Verlag).

In addition to the Co effect, there is another potential measure to keep Tγ′,solvus under control:
to achieve the strength level of alloy 718, a certain strengthening contribution by the γ′-phase is
required. The γ′ volume fraction needed for this purpose depends on the γ/γ′ misfit. With increasing
misfit, the required γ′ content (i.e., required amount of γ′-forming elements) decreases. This leads
then to a lower γ′ solvus temperature at given Co content. Thus, a further alloy development objective
must be to ensure a relatively large γ/γ′ misfit. Of course, increasing the misfit will reduce the critical
particle radius at which coherency is lost, making the γ′ precipitates less stable in this respect. However,
the intended application temperature here is moderate compared to the requirements for blade alloys.
For this reason, no negative side effect is expected when the misfit is raised. In this context, it appears
worthwhile to inspect some misfit values. Taking aγ = 0.3598 nm and aγ” = 0.3630 nm, measured
after heat treatment of alloy 718 at 750 ◦C/4 h [30], as relevant parameters, an unconstrained misfit of
0.89% results in the case of alloy 718. In contrast, a value of 0.02% was reported in the case of Udimet
700 [31]. For Waspaloy, aγ = 0.35768 nm and aγ′ = 0.35904 lead to an unconstraint misfit of 0.38% [28].
Constrained values reported for Udimet 720 and a number of Nimonic alloys were in the range of
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−0.04% to +0.34% [32]. Thus, the misfit of Waspaloy appears to be on the upper end for currently
available wrought γ′-strengthened superalloys.

From these considerations, two requirements for fundamental deviations from the chemical
composition of alloy 718 can be deduced. Firstly, a high Co content is required, replacing Fe, and,
to a certain extent, Ni. Secondly, the Al content must be significantly increased as precipitation
strengthening is switched from the γ”-phase to the γ′-phase. Nevertheless, a high Nb content is
required because the δ-phase is still wanted for grain size control. Will these measures lead then to a
large γ/γ′ misfit? Probably yes. If γ” is replaced by γ′, Nb will be enriched in the γ′-phase. As Nb is a
particularly large atom, it significantly increases the lattice parameter of the γ′-phase [33]. Replacing Fe
with Co will reduce the lattice parameter of the γ-matrix at the same time, as Fe increases aγ while Co
does not [34,35]. This may lead then to a positive γ/γ′ misfit, being large compared to values otherwise
achieved in γ′-strengthened wrought superalloys. However, one should not expect misfit levels as
high as in alloy 718, simply because γ′ is Ni3Al-based while γ” is Ni3Nb-based with Nb consuming
more volume than Al in these phases. Results regarding the lattice parameter misfit will be presented
in Section 2.2.

2.2. Investigation of Co-Rich Alloys

In order to explore the effect of the aforementioned changes in the chemical composition, model
alloys were produced, where the Co concentration varied between 10% and 30% and the amount of the
γ′-forming elements Al and Ti was altered. The alloying elements Cr, Mo, and Nb remained at the
level of alloy 718 while Fe was completely replaced by Co. Furthermore, 0.025% carbon was added
which is a typical content in alloy 718.

Table 1 shows a list of alloys discussed in the following. There are two series of alloys. In the
L series, discussed in Section 2.2.1, the amount of Co was varied at a constant Al and Ti content in
order to investigate the effect of Co on the microstructure and properties of the alloys. Section 2.2.1 is
concluded with a closer inspection of alloy L4. It is demonstrated that this alloy exhibits the intended
characteristics, namely presence of the δ-phase for grain refinement as in alloy 718, a slow precipitation
kinetics despite presence of the γ′-phase for strengthening, a hardness comparable to that of alloy 718
and, at the same time, an improved microstructural stability compared to alloy 718. This demonstrates
the validity of the alloy development concept proposed in Section 2.1. In Section 2.2.2, the question of
whether further improvements in the microstructural stability, beyond that of alloy L4, are possible is
addressed. For this purpose, the V-alloy series was investigated where the focus was on the Al/Ti ratio
at a given Co content. These investigations finally led to alloy V17 which essentially became VDM
Alloy 780. The section closes with remarks concerning this new 718-type superalloy.

The alloys investigated here were produced by vacuum arc melting, typically in quantities of
600 g per melt; in the following, this is referred to as laboratory scale, unless otherwise stated. The melt
was poured into copper crucibles, leading to rods with a 13 mm diameter and approximately an 80 mm
length. The materials were then homogenized in a vacuum furnace at 1140 ◦C/6 h + 1175 ◦C/20 h
and hot deformed by rotary swaging, leading to a diameter of 9 mm and a true strain of ϕ = −0.37.
Unless otherwise stated, the materials were then heat treated at 980 ◦C/1.5 h/water quenching (WQ)
+ 718 ◦C/8 h + furnace cooling (FQ) at 50 ◦C/h to 621 ◦C/8 h; in the following, this is referred to as
standard heat treatment. This is a typical solution and precipitation heat-treatment procedure for alloy
718. Additionally, thermodynamic calculations were conducted using the software ThermoCalc®,
Version S with a TTNi7 database.
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Table 1. Nominal chemical compositions of selected 718-type superalloys in wt.%. The corresponding
compositions in at.% are given in brackets. Systematic variations of concentrations within an alloy
series are highlighted.

Name Ni Cr Co Fe Mo W Al Ti Nb Ref.

Alloy 718 Bal. 18.1
(20.3) - 18.0

(18.8)
2.90

(1.76) - 0.45
(0.97)

1.00
(1.22)

5.40
(3.38) [7]

ATI
718Plus® Bal. 18.0

(20.1)
9.0

(8.89)
10.0

(10.4)
2.80

(1.70)
1.0

(0.32)
1.45

(3.13)
0.70

(0.85)
5.45

(3.41) [7]

VDM
Alloy 780 Bal. 18.0

(20.0)
25.0

(24.5) - 3.0
(1.81) - 2.0

(4.29)
0.2

(0.24)
5.4

(3.36) [36]

L14 Bal. 18.7
(20.3)

10.0
(9.59) - 2.96

(1.74) - 1.20
(2.51)

1.10
(1.30)

5.40
(3.28)

L15 Bal. 18.7
(20.3)

14.0
(13.4) - 2.96

(1.74) - 1.20
(2.51)

1.10
(1.30)

5.40
(3.29)

L4 Bal. 18.7
(20.3)

17.0
(16.3) - 2.96

(1.74) - 1.20
(2.51)

1.10
(1.30)

5.40
(3.29)

L17 Bal. 18.7
(20.3)

25.0
(24.0) - 2.96

(1.74) - 1.20
(2.52)

1.10
(1.30)

5.40
(3.29)

L18 Bal. 18.7
(20.3)

30.0
(28.8) - 2.96

(1.74) - 1.20
(2.52)

1.10
(1.30)

5.40
(3.29)

L3 Bal. 18.7
(20.5)

17.0
(16.4) - 2.96

(1.76) - 0.65
(1.37)

0.75
(0.89)

5.40
(3.31)

L6 Bal. 18.7
(20.5)

30.0
(29.0) - 2.96

(1.76) - 0.65
(1.37)

0.75
(0.89)

5.40
(3.31)

V12 Bal. 18.7
(20.4)

17.0
(16.3) - 2.96

(1.75) - 1.20
(2.52)

0.50
(0.59)

5.40
(3.29)

V14 Bal. 18.7
(20.3)

17.0
(16.3) - 2.96

(1.74) - 1.60
(3.34)

0.50
(0.59)

5.40
(3.28)

V13 Bal. 18.7
(20.2)

17.0
(16.2) - 2.96

(1.73) - 2.00
(4.16)

0.50
(0.59)

5.40
(3.26)

V16 Bal. 18.7
(20.2)

17.0
(16.2) - 2.96

(1.73) - 2.00
(4.16)

0.20
(0.23)

5.40
(3.26)

V17 Bal. 18.7
(20.2)

25.0
(23.8) - 2.96

(1.73) - 2.00
(4.16)

0.20
(0.23)

5.40
(3.26)

2.2.1. The effect of the Co Content

In the first set of experiments using the L-alloys in Table 1, we were interested in studying the
effect of Co on the tendency to form the δ-phase. All micrographs were obtained after standard heat
treatment. Figure 2 shows a first series of alloys where the Co content varied from 10% to 30% at
an Al and Ti concentration of 1.2% and 1.1%, respectively. At low magnification and the lowest Co
contents of 10% and 14%, hardly any precipitation at grain boundaries (i.e., the typical precipitation
site of the δ-phase) could be seen (Figure 2a,c). In fact, it turns out at higher magnification that most of
what can be seen is a discontinuous precipitation reaction of the γ′-phase (see arrows in Figure 2b,d),
while very few discrete particles that can be associated with the δ-phase are visible. Probably, the lack
of grain boundary pinning by the δ-phase facilitated the discontinuous precipitation reaction. At a Co
content of 17% (Figure 2e), δ-phase can clearly be seen at grain boundaries, yet at a relatively small
content. In contrast, there was massive precipitation of particles along grain boundaries but also in
the grain interior at 25% Co and, particularly, at 30% Co (Figure 2f–i). This clearly shows the effect of
Co in promoting the precipitation of larger particles that can be effectively used for pinning of grain
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boundaries. Interrupted heat treatment experiments demonstrated that these particles form as a result
of the heat treatment at 980 ◦C/1.5 h.

Figure 2. Cont.
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Figure 2. The microstructure of alloys L14 (a,b), L15 (c,d), L4 (e), L17 (f,g), and L18 (h,i) according to
Table 1. Note that the Co content increases from (a) to (i) (a–d, f–h: in-lens detector, e: SE detector;
Figure 2e from reference [19] with permission from Cuvillier Verlag).

To analyze the effect of Co on phase formation in these superalloys further, a quasi-binary phase
diagram was calculated using a varying Co/Ni content at the same amount of C, Cr, Mo, Al, Ti, and Nb,
as in the abovementioned alloy series. The result is shown in Figure 3a. It can clearly be seen that
Co has a pronounced effect on the stability of the δ-phase in that it significantly increases its solvus
temperature. Consequently, the equilibrium volume fraction of the δ-phase at 980 ◦C increases with the
Co content according to the calculations. This prediction is in agreement with the experimental findings.
The calculations predict an analogous correlation between Co content and η-phase formation. At 10%
and 14% Co, η does not exist and the η-phase field is barely touched at 17%. This is further illustrated
in Figure 3b, where the calculated phase fractions are shown for the latter amount of Co. The field of
existence of the η-phase is only between approximately 940 ◦C and 990 ◦C and the calculated volume
fraction is very small. However, significant precipitation of the η-phase at 980 ◦C is predicted for alloys
L17 and L18, containing 25% and 30% Co, respectively. In this context, it is worthwhile to inspect the
corresponding micrographs again (Figure 2f–i). They show two particle populations with distinctively
different morphologies. One is essentially equiaxed with blocky morphology and the other is in the
form of narrow plates with high aspect ratio, respectively. While the δ-phase in alloy 718 is typically
blocky after billet forging and subsequent heat treatment at around 980 ◦C, the η-phase in alloy 706
always forms as narrow plates [37]. Thus, it stands to reason that the former population belongs to the
δ-phase while the latter to the η-phase. However, precise phase identification for these model alloys
was beyond the scope of this study and the assignment of the two particle morphologies to the δ- and
η-phases was conducted with this qualification. Coexistence of both phases in superalloys was also
reported in References [38,39].

According to Figure 3a, the solvus temperature of the γ′-phase remains essentially constant as long
as the η-phase does not form. Once η forms, Ti is removed from the matrix. Consequently, Tγ′,solvus
declines. It is always lower than Tδ,solvus. This is important for practical applications as fine grain
forging has to be conducted in the presence of the δ-phase but in the absence of the strengthening phase.
The M23C6 carbide occurs due to the small amount of carbon added. According to the calculations, the
σ-phase is also present; however, it was never observed experimentally in the investigated alloys.

To demonstrate that the aforementioned effect of Co in stabilizing the δ/η-phase is not limited to a
specific content of the γ′- forming elements, a further example is given. Here, the Al and Ti content
was essentially that of alloy 718, i.e., 0.65% and 0.75%, respectively. While alloy L3, containing 17% Co,
showed a small number of particles, being essentially located at grain boundaries (Figure 4a), alloy
L6 (30% Co) exhibited massive precipitation of particles at grain boundaries and in the grain interior
(Figure 4b). Again, two distinctively different particle morphologies were visible, which may be linked
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to the δ- and η-phases. Clearly, the Co content must be selected such that sufficient particles are present
for grain refinement but excessive δ/η-formation is prevented.

Figure 3. A quasi-binary Ni-Co phase diagram at Al = 1.2%, Ti = 1.1%, Cr = 18.7%, Mo = 2.96%,
Nb = 5.4%, and C = 0.025% calculated with Thermocalc® (a). Except for the solidus line, all lines mark
the onset of the formation of the respective phases. In (b), the calculated phase fractions are given as a
function of temperature for a Co content of 17% (database: TTNi7) (Figure 3b after reference [19] with
permission from Cuvillier Verlag).

Figure 4. The microstructures of alloys L3 and L6 according to Table 1. The chemical composition of
both alloys is identical except for a Co content of 17% (a) and 30% (b). Note that the relatively large
particles with a size of a few micrometers and protruding relatively far out of the surface are Nb-rich
carbides (SE detector).

Among the materials investigated thus far, alloy L4 appears to be particularly interesting.
It contains a moderate amount of δ-phase and is expected to be predominantly strengthened by the
γ′-phase due to the fact of its raised Al content. Hence, this alloy was studied in more detail. For this
purpose, it was not only produced on a laboratory scale but also in a larger quantity. Two hundred
kilograms were triple melted at the Institut für Metallurgische Prozesstechnik und Metallrecycling,
RWTH Aachen and forged at the Institut für Bildsame Formgebung, RWTH Aachen for this purpose.
In the following, this processing route is referred to as a technical scale. The microstructure of the
forged billet after standard heat treatment is shown in Figure 5. Blocky δ-precipitates are uniformly
distributed along grain boundaries. As a result, the grain size is fairly small. The particle morphology
and distribution resemble that of alloy 718. Compared to the same material fabricated on a laboratory
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scale (see Figure 2e), the precipitation was more pronounced. This can be attributed to the higher
degree of deformation, promoting the formation of the δ-phase.

Figure 5. The microstructure of alloy L4 after billet forging on a technical scale and subsequent standard
heat treatment (in-lens detector; from reference [19] with permission from Cuvillier Verlag).

In Figure 6a–d, the microstructure of alloy L4 is compared with that of alloy 718 after standard
heat treatment plus aging at 700 ◦C/500 h. While alloy L4 was produced on a laboratory scale, alloy
718 was produced as 30 kg melt in a vacuum induction furnace and hot deformed by rolling instead of
rotary swaging. Alloy L4 displays a stable microstructure after this heat treatment. Precipitation of
δ/η particles was still concentrated along grain boundaries (Figure 6c). Only occasionally were there
plate-shaped precipitates found in the grain interior. At high magnification (Figure 6d), a homogeneous
distribution of small cube-shaped precipitates could be seen. This demonstrates the presence of γ′

instead of γ” as the principal strengthening phase. In contrast, alloy 718 exhibited already significant
growth of particles from the grain boundaries into the grain interior (Figure 6a) and coarsening of the
γ” precipitates (Figure 6b). The result illustrates again that alloy 718 is not suitable for applications at
such a relatively high temperature. Note that the matrix was etched away in these images, leading to
the impression of an unrealistically high precipitate content.

To further test the microstructural stability of alloy L4, it was also aged at 750 ◦C/500 h (Figure 6e).
The microstructure now became unstable as well with long and narrow plate-shaped precipitates
forming in the grain interior. Thus, it is noted that the microstructural stability of alloy L4 is sufficient
for applications at around 700 ◦C but not beyond. There are two additional observations to be made
in Figure 6e. Firstly, it is noted that narrow plates and rounded particles coexisted in the grain
interior in immediate proximity (see area marked by an arrow). Secondly, the particle marked by two
arrows had a striped appearance. Apparently, the different regions were etched to a different depth,
leading to a bright contrast of the areas sticking out in the secondary electron image. The unequal
etching behavior points to different chemical compositions within the particle. Both observations
suggest that two different phases coexist in addition to the γ′-phase, namely, the Ti-rich η-phase and
Nb-rich δ-phase. The δ-phase is associated with the essentially equiaxed particles while the η-phase
is linked with the plate-shaped particles in the grain interior and narrow bands within some of the
δ-particles. As mentioned above, the coexistence of individual δ- and η-particles as well as layered δ/η
microstructures within one particle was previously observed in other superalloys [14,38]. According to
the thermodynamic calculations, compare with Figure 3a,b, the η-phase should not exist in alloy L4 at
750 ◦C. Thus, it seems that the field of existence of the η-phase is underestimated by the used database.

Heat-treatment experiments at 900 ◦C and 950 ◦C up to 5 h revealed an abundance of γ′ precipitates
at 900 ◦C but hardly any precipitates at 950 ◦C. Additionally, the hardness was measured as a function
of heat treatment temperature and time (Figure 7). For this purpose, material produced on a technical
scale was used. The results showed significant hardening due to the γ′ precipitation between 725 ◦C
and 900 ◦C. At 950 ◦C, the hardness was just slightly above the results obtained at 1000 ◦C. This is
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consistent with the microstructural information and shows that the γ′ solvus temperature is slightly
above 950 ◦C. The result is close to the calculated solvus temperature of 968 ◦C obtained from Figure 3b.
It is slightly higher than the solvus temperature of the γ”-phase in alloy 718 at approximately 930 ◦C [3].
According to the hardness results, γ′ precipitation is fastest at approximately 850 ◦C, which is similar
to the results obtained for the γ”-phase in alloy 718 [3,4]. The data obtained at 1000 ◦C suggest a
hardness of about 185 HV10 for the single-phase matrix. After standard heat treatment, comprising
precipitation at 718 ◦C/8 h and 621 ◦C/8 h, a hardness of 455 HV10 was obtained while measurement
of alloy 718 led to a hardness of 441 HV10. This is a very interesting result as it demonstrates that
strength levels comparable to alloy 718 can be obtained even though the γ” phase was replaced by the
γ′ phase. This aspect will be discussed in more detail below in the context of VDM Alloy 780.

Figure 6. The microstructure of alloy 718 after heat treatment at 700 ◦C/500 h (a,b) and alloy L4 after
the same heat treatment (c,d) and after 750 ◦C/500 h (e) (SE detector; Figure 6c,e from reference [19]
with permission from Cuvillier Verlag).
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Figure 7. The HV10 Vickers hardness of alloy L4 as a function of isothermal heat-treatment temperature
and time.

Heat treatment experiments were also conducted to determine the solvus temperature of the
δ-/η-phase. Large particles, belonging to either of the two phases were still present after heat treatment
at 1040 ◦C in a considerable amount. However, after 1050 ◦C hardly any larger particles were visible,
so that a solvus temperature between 1040 ◦C and 1050 ◦C can be deduced. Note that a Tδ,solvus ≈ 1100 ◦C
was predicted by Thermocalc® (Figure 3b). Thus, the existence field of the δ-phase is overestimated by
the used database.

To inspect the precipitation kinetics of alloy L4 further, Jominy tests were performed. The results
are displayed in Figure 1b. The hardness at the quenched end was slightly higher than the value
obtained above for the single-phase state, suggesting some amount of γ′ precipitation. Nevertheless,
the hardening response was sluggish, and the peak hardness obtained at a distance of about 65 mm
stayed well below the hardness of the alloy in the fully heat-treated state. The precipitation kinetics was
somewhat faster than in alloy 718. This can be attributed to the somewhat higher solvus temperature
of the strengthening phase. However, it was significantly slower than in Waspaloy. This demonstrates
that slow precipitation of the γ′-phase can be achieved provided the solvus temperature is kept low.

The results for alloy L4 showed that superalloys with the following characteristics can be designed:

• Strength on the level of alloy 718 despite replacement of γ” with γ′;
• Improved microstructural stability compared to alloy 718 because of this replacement;
• Sluggish precipitation kinetics for manufacturability due to low Tγ′, solvus;
• Presence of the δ-phase for grain refinement during processing.

Alloy L4 appears to be an interesting candidate for 718-type applications, where an improved
temperature capability of about 50 ◦C is required. The question is then: can the microstructural
stability be improved even further while maintaining the abovementioned characteristics? Clearly,
the microstructural instability of alloy L4 stems from the long plate-shaped particles forming at 750 ◦C.
With the interpretation that they consist of Ti-rich η-phase, the direction for further alloy development
becomes apparent. Firstly, the balance between the γ′-forming elements Al and Ti must be readjusted
in favor of aluminum so that the amount and solvus temperature of the γ′-phase stays essentially
constant while the tendency to form η-phase is reduced. Secondly, there is an upper limit for the Co
content as Co also stabilizes the η-phase; it is expected to depend on the relative amounts of Al and Ti.
While Co is an essential element of the alloy development strategy followed here, Ti is not.

2.2.2. The Effect of the Al/Ti Ratio

As mentioned above, the Al/Ti ratio was expected to play a major role regarding phase formation
and the microstructural stability of the alloys. These effects were investigated here. To inspect the
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role of Ti and Al on phase formation, isothermal sections of the quasi-ternary Ni–Al–Ti system were
calculated, keeping the content of all other alloying elements fixed at 18.7%Cr, 17%Co, 5.4%Nb,
and 2.96%Mo. Exemplarily, sections at 800 ◦C and 1000 ◦C are shown in Figure 8. At 800 ◦C, the alloy
should be in the γ + γ′ + δ three-phase field as γ′ is required for strengthening. In contrast, the phase
fields containing the η-phase (i.e., δ + η + γ′ + γ and δ + η + γ) must be avoided to ensure good
microstructural stability. Inspecting the phase boundary between δ + γ′ + γ and δ + η + γ′ + γ in
Figure 8a, this boundary is essentially a line of constant Ti/Al ratio. This actually holds also true for the
isothermal section at 1000 ◦C and all other calculated isothermal sections not shown here. At 1000 ◦C,
the γ′-phase should be dissolved in order to ensure a sufficiently slow precipitation kinetics while the
δ-phase should be present for grain refinement during processing. Of course, Tγ′,solvus should also
be not too small. Otherwise, the γ′ content at service temperature would be too low for sufficient γ′

strengthening. This sets clear boundaries for the required amount of Al + Ti. At 1000 ◦C, the calculated
phase boundary between δ + γ and δ + γ + γ′ is essentially a line of constant (Al + Ti) content with Al
+ Ti ≈ 2.5%. This amount sets a reasonable upper bound.

Figure 8. Calculated isothermal sections of the quasi-ternary Ni–Al–Ti system at 800 ◦C (a) and
1000 ◦C (b). The composition of the other alloying elements was set to 17% Co, 5.4% Nb, 18.7% Cr,
and 2.96% Mo. Lines of constant Ti/Al ratio and (Al+Ti) content are also shown (database: TTNi7)
(Figure 8b after reference [19] with permission from Cuvillier Verlag).

To check the predictions of the thermodynamic calculations, alloys V12 to V16 were cast. Together
with alloy L4, they formed a set of alloys with varying Al and Ti content but otherwise identical
composition (18.7%Cr, 17%Co, 5.4%Nb, 2.96%Mo). Their microstructural stability was investigated
at 800 ◦C/500 h. The resulting microstructures are shown in Figure 9a–f. Note that the Ti/Al ratio
decreases from Figure 9a (Ti/Al = 0.92) to Figure 9e (Ti/Al = 0.10). Apparently, the microstructures
became more and more stable as the Ti/Al ratio decreased. In case of alloy L4 (1.2Al, 1.1Ti) the entire
grain interior was consumed by narrow plate-shaped precipitates (Figure 9a). Sometimes, individual
precipitates extended through entire grains. In the case of alloy V12 (1.2Al, 0.5Ti) the situation was
similar (Figure 9b). However, the density of the plate-shaped precipitates was not quite as high. In the
case of alloy V14 (1.6Al, 0.5Ti), these precipitates grew from the grain boundaries into the grain interior.
Yet, they no longer consumed the whole interior. Towards alloy V13 (2.0Al, 0.5Ti) and V16 (2.0Al, 0.2Ti)
the trend that these precipitates were increasingly confined to the grain boundary regions continued.
The micrograph of alloy V16 at higher magnification (Figure 9f) shows a homogeneous distribution
of γ′ particles in the grain interior, demonstrating the excellent microstructural stability of this alloy.
The γ′ size was approximately 100 nm. One might infer that not only the Ti/Al ratio but also the sum
of Al+Ti changed in this alloy series. However, if the alloys L4, V14, and V16 are compared, the sum of
Al+Ti is nearly constant. Yet, there is a clear trend in the microstructural stability. Therefore, it can
be concluded that the Ti/Al ratio is a key factor in controlling microstructural stability at elevated
temperatures. This finding is in qualitative agreement with the thermodynamic calculations. However,
there is no quantitative match. According to the calculations, the critical Ti/Al ratio, below which the



Metals 2019, 9, 1130 15 of 20

η-phase does not form at 800 ◦C, is approximately 1.25. With the interpretation that the plate-shaped
intracrystalline precipitates are η, the required Ti/Al. ratio to prevent formation of that phase is
significantly smaller. It seems once again that the field of existence of the η-phase is underestimated.

Differential scanning calorimetry (DSC) measurements of alloy V16 were conducted. Using the
offset of the heating curves, a γ′ solvus temperature of about 1000 ◦C can be deduced. This is on the
upper acceptable bound. In this context, the effect of Co was explored. As mentioned in Section 2.1.,
Co is expected to reduce Tγ′,solvus. On the other hand, too much Co may adversely affect microstructural
stability. To investigate this effect, alloy V17 was prepared. The only difference to alloy V16 is its
increased Co content, namely, 25% instead of 17%. The DSC measurements revealed a reduction of
Tγ′,solvus by 15 ◦C, demonstrating the anticipated effect of Co. The microstructure of alloy V17 after
heat treatment at 800 ◦C/500 h is displayed in Figure 9g,h. It was very similar to that of alloy V16.
There were some narrow, plate-shaped precipitates visible in the grain interior. However, careful
inspection of Figure 9e shows the same for alloy V16 (see upper right corner). Figure 9h displays the
grain interior at high magnification. Homogeneous distribution of the γ′ particles is apparent. Also,
the aforementioned plates can be seen in this image.

Due to the fact of its promising characteristics, alloy V17 was investigated in more detail. Figure 1c
shows the result of the Jominy end-quench test. Compared to alloy L4, the initial hardness at the
quenched end was somewhat higher, the peak hardness was reached earlier (at a distance of about
40 mm instead of about 65 mm), and its value was higher. This is in line with the slightly higher γ′

solvus temperature of alloy V17. Still, there was a considerable difference to the results for Waspaloy,
reaching a higher hardness (approximately 400 HV10 instead of about 350 HV10) considerably earlier.
This once again points to the importance of Tγ′,solvus in determining the precipitation kinetics of the
γ′-phase. Furthermore, the hardness of alloy V17 was measured after standard heat treatment. A value
of 446 HV10 was obtained, being similar to the ones reported above for alloys L4 and 718.

Figure 9. Cont.
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Figure 9. The microstructure of alloy L4 (a), V12 (b), V14 (c), V13 (d), V16 (e,f), and V17 (g,h) after
heat treatment at 800 ◦C/500 h. The Ti/Al ratio decreases from (a) to (f). Note the 2× magnification
in (e) compared to (a–d). Alloy V17 differs from V16 in its higher Co content (25% instead of 17%).
(a–e,g) in-lens detector; (f,h): SE detector.

Despite the advantages of alloy V17, there is also a drawback—heat treatments at 980 ◦C revealed
slow formation of the δ-phase. Apparently, decreasing the Ti/Al ratio relative to alloy L4 increased the
stability of the microstructure at service temperature but also retarded δ-phase formation at typical
forging temperatures. This is of relevance, as δ-phase is required for grain refinement during the last
steps of the forging process. Thus, a series of isothermal heat treatments was conducted to investigate
the kinetics of δ-phase precipitation more closely. It turned out that δ-precipitation was fastest at
approximately 900 ◦C. Thus, a possible strategy is to heat treat the material at around 900 ◦C prior to
forging at around 980 ◦C. For example, Figure 10 displays the microstructure after heat treatment at
900 ◦C/100 h. An abundance of large δ/η-particles, situated mainly at grain boundaries, along with γ′

precipitates can be seen. It is emphasized that the kinetics of δ/η precipitation also depends strongly on
the prior deformation history. The higher the remaining dislocation density, the faster the precipitation
reaction. Billet forging at a temperature of 1050 ◦C was conducted prior to heat treatment in the case of
Figure 10.

As alloy V17 exhibited excellent microstructural stability, a high flow strength, reasonably slow
precipitation kinetics of the γ′-phase, and the ability for fine grain forging due to the presence of
the δ-phase, this composition essentially became VDM Alloy 780, being now introduced into the
market by VDM Metals GmbH. According to reference [36], the chemical composition of VDM Alloy
780 is Ni–25Co–18Cr–3Mo–2.0Al–0.2Ti–5.4Nb. Further information on the mechanical properties
and microstructural evolution of VDM Alloy 780 can be found in References [36,40]. This is not
the subject of discussion in this article, which had the objective to outline the history of the alloy
development with the underlying condsiderations. Nevertheless, a few findings warrant reflection in
the context of this paper. Firstly, a constrained γ/γ′ misfit of 0.48% at room temperature was measured
by neutron diffraction on VDM Alloy 780 [40]. This answers the question raised in Section 2.1, in that



Metals 2019, 9, 1130 17 of 20

the alloy development concept followed here indeed leads to a large positive misfit, exceeding values
otherwise reported for wrought γ′-strengthened superalloys. Noting, furthermore, that the sum of the
precipitate-forming elements Al+Ti+Nb is considerably larger in VDM Alloy 780 than in alloy 718,
namely, approximately 7.9 at.% instead of about 5.6 at.%, it becomes understandable why V17/VDM
Alloy 780 attains high strength levels similar to alloy 718 at ambient temperatures despite the switch
from a predominantly γ”-strengthened alloy to a γ′-strengthened alloy. Thermodynamic calculations
suggest a γ′ content in VDM Alloy 780 of approximately 25%, while the first analysis of the neutron
diffraction data indicates a content as high as 35% [40]. Even though more analysis is needed to
determine the exact volume fraction, the available information suggests that the γ′ content not only
exceeds that of alloy 718 but also that of Waspaloy. Nevertheless, Tγ′,solvus is considerably lower than
that in Waspaloy. This shows that a more favorable balance between the need for a sufficiently high
γ′ content at service temperature and a sufficiently low solvus temperature can be obtained than in
present-day wrought superalloys. The beneficial property combination in the case of VDM Alloy 780 is
mainly attributed to its high Co content.

Figure 10. The microstructure of alloy V17 after billet forging at 1050 ◦C and heat treatment at 900 ◦C/100
h (in-lens detector).

Secondly, a remark regarding the precipitation of δ- and/or η-phase is in order. Neutron diffraction
experiments conducted so far on VDM Alloy 780 can be acceptably fitted assuming either one of
the two phases. This is so because the major reflections of both phases are very close, while the
minor reflections are hard to detect given the relatively small amount of δ/η in the alloy. First TEM
investigations on a small number of particles demonstrated the simultaneous presence of δ and η
within one particle [41]. This fits to the observation made earlier in conjunction with Figure 6e and it
appears likely that both phases coexist not only in VDM Alloy 780 but also in the model alloys studied
here. In which form they coexist and whether our distinction between δ- and η-phase based on the
morphology of the precipitates holds true remains to be seen.

Finally, it is mentioned that solvus temperatures of the precipitate phases were determined by in situ
neutron diffraction [40]. The results suggest solvus temperatures of γ′ and δ/η of about 995 ◦C–1000 ◦C
and 1020 ◦C–1030 ◦C, respectively. The result on Tγ′,solvus fits well with the thermodynamic calculations
and the DSC results obtained on alloy V17, even though a slightly lower solvus temperature was
obtained in both cases. However, the results on the solvus temperature of the δ/η-phase are not in line
with the calculated results of Tδ,solvus ≈ 1150 ◦C. It shows again that the existence fields of δ/η are not
represented well in the used database. Compared to alloy L4, the microstructural stability is much
improved. However, the gap between Tγ′,solvus and Tδ/η,solvus also diminished somewhat, requiring a
more careful control of the forging process parameters.
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3. Summary

A new design concept for superalloys with 718-type properties, yet significantly improved
temperature capability was discussed. It was demonstrated that γ” strengthening can be replaced by
γ′ strengthening without losing the key advantages of alloy 718, namely, its slow precipitation
kinetics—leading to excellent manufacturability—and high strength at ambient temperatures.
The obtained benefit is a stable microstructure at elevated temperature, allowing for higher application
temperatures. Addition of Co, replacing Fe and Ni, is the single most important measure of the design
concept. This limits the solvus temperature of the γ′-phase and, thus, slows down the precipitation
kinetics. Furthermore, it increases the γ′ content at service temperature. This leads, in combination
with the large positive γ/γ′ misfit obtained in these alloys, to a flow strength similar to alloy 718.
Compared to Waspaloy as a classical γ′-strengthened wrought superalloy, the overall result is a lower
γ′ solvus temperature, a slower γ′ precipitation kinetics, a higher γ′ content, and a higher strength.
Furthermore, as Co also stabilizes the δ- and η-phases, fine grain forging by means of these phases is
still possible in contrast to conventional γ′-strengthened superalloys. Cobalt is important in this context
because the elevated Al content required for the switch from γ” to γ′ hardening would otherwise
prevent formation of these phases.

The results obtained here not only show a general route for the development of 718-type superalloys
with improved temperature capability. They have already been implemented for the design of VDM
Alloy 780, being now introduced in the market. It contains 25% Co replacing Fe and Ni, 2% Al, 0.2% Ti
while maintaining Cr, Mo, and Nb such as in alloy 718. A low Ti/Al ratio was deliberately chosen to
ensure microstructural stability at elevated temperatures.
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