
metals

Article

Study of Solidification Cracking Susceptibility
during Laser Welding in an Advanced High
Strength Automotive Steel

Gautam Agarwal 1,* , He Gao 1,† , Murugaiyan Amirthalingam 2 and Marcel Hermans 1

1 Department of Materials Science and Engineering, Faculty of 3mE, Delft University of Technology,
Mekelweg 2, 2628 CD Delft, The Netherlands; H.Gao@tudelft.nl (H.G.); M.J.M.Hermans@tudelft.nl (M.H.)

2 Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras,
Chennai 600036, India; murugaiyan@iitm.ac.in

* Correspondence: G.Agarwal@tudelft.nl; Tel.: +31-152-786-036
† Current address: Tata Steel, P.O. Box 10000, 1970 CA IJmuiden, The Netherlands.

Received: 10 August 2018; Accepted: 24 August 2018; Published: 28 August 2018
����������
�������

Abstract: Susceptibility to weld solidification cracking in transformation-induced plasticity steel
sheets was studied using a modified standard hot cracking test used in the automotive industry.
To vary the amount of self-restraint, bead-on-plate laser welding was carried out on a single-sided
clamped specimen at increasing distances from the free edge. Solidification cracking was observed
when welding was carried out close to the free edge. With increasing amount of restraint, the crack
length showed a decreasing trend, and at a certain distance, no cracking was observed. With the
aid of a finite element-based model, dynamic thermal and mechanical conditions that prevail
along the transverse direction of the mushy zone are used to explain the cracking susceptibility
obtained experimentally. The results indicate that the transverse strain close to the fusion boundary
can be used as a criterion to predict the cracking behavior. The outcome of the study shows
that optimum processing parameters can be used to weld steels closer to the free edge without
solidification cracking.

Keywords: weld solidification cracking; thermal mechanical FE-modeling; AHSS; automotive;
laser welding

1. Introduction

Solidification cracking, known as hot tearing in casting, is one of the prominent defects in
welding, casting and/or additive manufacturing. Mitigating the occurrence of solidification cracking
is important to achieve good weldability. For more than five decades, solidification cracking in
welding/casting of various alloys has been studied extensively [1–4].

Recently, increasing environmental concern has motivated the automotive industry to develop
thinner gauge steels with high strength, ductility and toughness. The use of lightweight steel in the
automotive body reduces the average fuel consumption. Reduced fuel consumption leads to lower
CO2 emission, thereby making the vehicle environmentally greener. For this purpose, a class of steels,
called Advanced High Strength Steels (AHSS), is being continuously put into use. AHSS differs from
mild steels in terms of chemical composition and microstructure. The higher alloying content in AHSS
renders it susceptible to solidification cracking during welding. During weld metal solidification,
grains grow perpendicular to the fusion boundary since the temperature gradient is steepest, and
accordingly, the heat extraction is maximized. The solidifying dendrites meet at the weld centerline.
Upon solidification, the solidifying weld metal shrinks due to solidification shrinkage and thermal
contraction. As solidification progresses, the solid in the mushy zone begins to form a rigid continuous
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network, i.e., tensile strain is induced by the surrounding material. If the deformation exceeds a
certain threshold, separation of the dendrites at the grain boundary can occur. At the terminal stage
of solidification, such an opening cannot be compensated by the remaining liquid due to both low
permeability and a high solid fraction [5,6]. As a result, solidification cracking occurs. Solidification
temperature range, segregation of impurity elements, morphology of solidifying grains, interdendritic
liquid feeding and dendrite coherency are some of the important metallurgical aspects affecting the
solidification cracking tendency [7]. In a recent study [8], it was reported that impurity elements
like phosphorus lead to narrow liquid channels that are difficult to fill with the remaining liquid at
the last stage of solidification. The shrinkage-brittleness theory proposed by Pumphrey et al. [1] is
based on the concept of coherency temperature. At the coherency temperature, the solid in the mushy
region begins to form a rigid continuous network. The theory says that cracking occurs when there
is some extent of coherency in the mushy region, i.e., below the coherency temperature. Pellini [2]
proposed a strain-based theory for hot cracking in castings. This theory has been extended to weld
solidification cracking and states that cracking occurs due to the rupture of liquid films that persist
until the last stage of solidification. Building upon the work of Pellini, Prokhorov [3] considered the
mushy zone as a single entity and defined the ductility of a material as solidification occurs. Later
on, Zacharia [9] used the stress-based approach to describe the thermo-mechanical behavior in the
weld pool vicinity. Eskin et al. [10] in their review paper elaborated existing hot tearing theories and
models. These models are based on the existence of a critical stress, critical strain or critical strain
rate criterion, which leads to cracking. Recent physical models from Rappaz et al. [11] and Kou [12]
indicate that in the presence of local deformation, insufficient liquid feeding in the interdendritic
or intergranular region results in cracking. Matsuda et al. [13] and Coniglio et al. [4], based on
the experiments, concluded that the presence of a critical strain rate is responsible for cracking.
However, Katgerman [14] in his mathematical model considered stresses and insufficient feeding in the
vulnerable temperature range to be the cause of hot cracking. Experiments focusing on determining
the physical mechanism that leads to the separation of grains at the microscopic level under welding
conditions are still lacking.

Some automotive industries have reported solidification cracking in certain AHSS grades during
laser welding [15]. For instance, Larsson [16] reported that solidification cracking can occur during
laser welding of B-pillar made of Ultra High Strength Steels (UHSS) used in the Volvo XC60 car body
(Figure 1). In order to test the resistance to solidification cracking in thin sheets, VDEh(German Steel
Institute) has developed a self-restraint hot cracking test [17]. In this test, bead-on-plate laser welding
is conducted on single-sided clamped rectangular steel sheets with dimensions of 90 × 45 mm2.
The starting position is set at a distance of 3 mm from the free edge with the welding direction inclined
7° to the edge. Crack length is used to assess the hot cracking susceptibility of various alloys. The test
is of practical importance for overlap and flange welding geometries in order to minimize the flange
width. A typical car body has 40 m of weld flanges that are welded using resistance spot welding [18].
Resistance spot welding requires 16 mm of the flange width to fit the electrode system on either
side [19]. The flange width can be minimized by using laser welding (Figure 2) and can lead to an
overall weight reduction of up to 30–40 kg [18]. The distance from the free edge at which the welding
is carried out is considered important for cracking behavior in terms of the response of the material
to the amount of restraint. In this work, a different approach was adopted compared to the standard
hot cracking test. Different laser welding experiments were conducted at various starting positions
from the free edge at an inclination of zero degrees, i.e., parallel to the free edge. This approach
was followed,

• to maintain a constant restraint with respect to distance from the free edge during welding,
• to understand the effect of self-restraint on susceptibility to cracking,
• to identify the critical condition as a function of welding distance from the free edge in which no

crack occurs,
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• to develop an FE-based model to understand the process and delineate the critical factor(s) that
may be responsible for the cracking behavior.

Figure 1. Solidification cracking in the B-pillar of a Volvo XC60 car body. With permission from [16].

(a) Resistance spot welding (b) Laser welding

Load

Load

Flange 
width Flange 

width

Figure 2. A schematic showing the flange width required in the case of: (a) resistance spot welding
and (b) laser welding.

2. Materials and Methods

In the present work, the weld solidification cracking susceptibility of a Transformation-Induced
Plasticity (TRIP) steel was studied using the aforementioned test arrangement. Crack length was
measured for each case, and the fracture surface was observed by scanning electron microscopy.
A Finite Element (FE)-based thermal elasto-plastic model of the welding was constructed to
substantiate the results obtained from experiments. The occurrence of a crack was not simulated
explicitly. Rather, the accumulated transverse strain along the direction perpendicular to the weld was
used to assess the solidification cracking susceptibility. Based on the developed understanding,
optimum processing conditions can be defined to weld steels that are otherwise susceptible to
solidification cracking.

2.1. Experimental Section

A 3 kW Nd:YAG laser was used as the heat source. The bead-on-plate laser welding experiments
were conducted in keyhole mode using a power of 1100 W and a welding speed of 10 mm s−1.
Specimens were kept at the focal point of the optical system, and the laser spot size was 0.6 mm.
The experimental arrangement is shown schematically in Figure 3. The coordinate system used in
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the FE model is also included. The dimensions of the rectangular steel sheets were 90 × 45 mm2

and 1.25 mm thick. Table 1 shows the elemental composition of the TRIP steel used in this work.
For all the experiments, the starting beam position was at x = 0 mm, and welding was carried out
along the x direction. The starting y ordinate for different experiments was varied from 3 mm to
13 mm with each increment being 2 mm. Each experiment was repeated with a fresh plate at least
three times. The experiment at 5 mm was repeated ten times. Hereafter, each experiment at a certain
distance from the free edge is referred to as a case. Images during welding were captured using a
high speed camera. For the 13 mm case, the temperature cycle was measured at three Positions (P1,
P2 and P3) near the fusion boundary, by using spot welded K-type thermocouples. Furthermore,
the evolving transverse strain near the weld fusion boundary was measured in situ using the digital
image correlation method [20]. The width of the weld bead was approximately 2.8 mm. The length of
the weld centerline crack was measured for each case. The fracture surface of the crack was observed
with a JEOL 6500F scanning electron microscope (JEOL, Tokyo, Japan). Additional experiments were
conducted with different heat input for the 13 mm, 11 mm, 9 mm and 7 mm cases. Heat input was
varied by changing the welding speed to 11 mm s−1, i.e., 10% decrease in heat input, 12 mm s−1, i.e.,
20% decrease in heat input, and 9 mm s−1, i.e., 10% increase in heat input. The overall experimental
scheme is listed in Table 2.

45 mm

90 mm

20 mm

X

Y

L1 (x = 5 mm)
P1

P2
P3

Distance from the
free edge (Y)

: Weld line

       L1
P1, P2, P3  

: Transverse strain
   calculated along this line
   

: Thermocouple positions 

Clamp    e.g., for the 13 mm case, the
   equation of L1 is x = 5, and 
   strain is calculated from 
   y = 11 mm to y = 0 mm

Figure 3. Schematic of the hot cracking test arrangement.

Table 1. Composition of the Transformation-Induced Plasticity (TRIP) steel used in this work (in wt. %).

Elements, wt. % C Mn Al Si Cr P Fe

TRIP 0.19 1.63 1.1 0.35 0.019 0.089 bal.

Table 2. Experimental scheme.

Welding Distance (Yordinate, mm)
Welding Parameters

Laser Power (W) Speed (mm s−1)

3, 5, 7, 9 and 11
10

1100 11
12

13 1100

9
10
11
12
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2.2. Modeling Approach

A sequentially-coupled 3D Finite Element (FE) thermal mechanical model with isotropic
hardening was utilized for laser bead-on-plate welding. Initially, a transient heat transfer analysis
was carried out to obtain the time-dependent thermal history. In this study, a frequently-used [21–23]
3D conical Gaussian heat source was adopted to describe the laser beam heat input (see Figure 4).
The power density distribution at any plane perpendicular to the z-axis is expressed as:

Qv = Qo exp
(
−3r2

r2
o

)
(1a)

where Qv is the net volumetric heat flux in W m−3, Qo is the maximum heat source intensity in W m−3

and r is the radial distance from the center of the heat source and expressed as:

r =
√

x2 + y2 (1b)

re

ri

ro

z = ze

z = zix

z
y

v (travel speed)

Conical heat source

Q

Qo

Figure 4. 3D conical heat source with the Gaussian distribution adopted in the present work.

The radius of the heat source (ro) is assumed to decrease linearly through the thickness of the
cone and can be expressed as:

ro = re −
(re − ri)(ze − z)

(ze − zi)
(1c)

where re and ri are the radii of the top and bottom surfaces of the conical heat source, respectively.
The z coordinates of the top and bottom surfaces are ze and zi, respectively. Qo can be determined via
the energy conservation principle:

ηP =
∫ H

0

∫ 2π

0

∫ ro

0
Qo exp

(
−3r2

r2
o

)
rdrdθdh (2a)

using ze − zi = H and z = zi + h further leads to,

Qo =
9ηP exp(3)
π(exp(3)− 1)

.
1

(ze − zi)(r2
e + r2

i + reri)
(2b)

Here, η is the process efficiency of the laser welding and P is the laser power. The height of the
heat source, i.e., H was considered to be equal to the sheet thickness, and re = 1 mm, ri = 0.9 mm were
chosen to achieve the dimensions of the weld observed in the experiments.

The thermal history, i.e., temperatures (T) at (x, y, z, t), was obtained by solving the following
Fourier heat transfer equation using the temperature-dependent thermal properties of the material,

∂

∂x

(
k(T)

∂T
∂x

)
+

∂

∂y

(
k(T)

∂T
∂y

)
+

∂

∂z

(
k(T)

∂T
∂z

)
+ Qv = ρ(T)Cp(T)

(
∂T
∂t

)
(3)
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Here, k(T) is the temperature-dependent thermal conductivity in W m−1 K−1, ρ(T) is the
temperature-dependent density in kg m−3 and Cp(T) is the temperature-dependent specific heat
in J kg−1 K−1.

Subsequently, the obtained thermal history was imported into the mechanical model.
Hibbitt et al. [24] used the sequential thermal-mechanical modeling approach and based on the
comparison with welding experiments concluded that the effect of mechanical behavior on thermal
load was negligible. Since then, the sequential coupling approach was frequently applied in welding
research [25–27]. A commercial software, COMSOLTM (version 5.2, COMSOL, Stockholm, Sweden)
was used for the present analysis. Quadratic elements with a minimum mesh size of 0.3 × 0.3 mm2

and a thickness of 1 mm were used. The process efficiency of laser welding, i.e., η was assumed to be
40% based on previous work [28] on the similar experimental arrangement. In this way, heat losses
due to convection and radiation in the keyhole were taken into account. To implement the clamping
conditions in the mechanical model, the displacements of the nodes between the clamp in the three
directions were fixed.

The temperature-dependent thermal and mechanical properties of the steel (Figure 5) used
in the present work were taken from [29]. Note that the chemical composition of the TRIP
steel used in [29] was similar to the one used in this work. Latent heat, absorbed or released
during melting (or solidification), was incorporated in the temperature-dependent specific heat
capacity. The latent heat absorbed during melting was related to the temperature-phase fraction data,
obtained using the Scheil–Gulliver solidification approximation. The thermal expansion coefficient
(α) during solidification was considered to be dependent on the amount of solid and liquid phases.
The solidification temperature range, solid and liquid phase fraction data of the steel composition were
obtained from a commercial thermodynamic software, Thermo-CalcTM (database TCFE7, Thermo-Calc,
Stockholm, Sweden).
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Figure 5. (a) Thermophysical material properties, (b) thermophysical material properties used in the
mushy zone and (c) temperature-dependent mechanical properties.
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3. Results

Figure 6 shows the experimental and simulated thermal cycle at points P1, P2 and P3,
when welding was carried out a distance of 13 mm. The position of the points P1, P2 and P3 with respect
to the weld centerline is also indicated in the figure. P1 is at a distance of 3 mm (towards the free edge),
while P2 and P3 are at 2.5 mm and 4 mm (towards the fixed edge). The maximum difference
between the experimental and simulated temperature is 4.9%, and the standard deviation is 2%.
The simulated weld bead size was also found to be in good agreement with the experimental obtained
size. Therefore, the thermal history from the heat transfer model was applied in the mechanical
analysis. The thermomechanical model was validated using the transverse strain measured by the
digital image correlation method [20].

Free edge
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Time, s
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Figure 6. Experimental and calculated temperature cycles for the 13 mm case. The position of the
points P1, P2 and P3 with respect to the weld centerline is also indicated. P1 is at a distance of 3 mm
(towards free edge), while P2 and P3 are at 2.5 mm and 4 mm (towards the fixed edge).

3.1. Observation of Solidification Cracking

Figure 7a,b shows high speed camera images captured while welding was carried out for the 5 mm
case. It is clear from these images that crack formation occurs during welding, and the crack follows
the trailing edge of the mushy zone. Figure 7c shows the image when welding was carried out at a
distance of 7 mm from the free edge. After a certain distance, the crack ceased to propagate. The videos
are available as Supplementary Data in the online version of this manuscript. The measured average
crack length and the standard deviation for different cases and heat inputs are shown in Figure 8.
For the case of 5 mm, fracture was observed along the entire weld in all experiments. On further
increase of the distance from the free edge, the crack length decreased, and for the case of 13 mm
(and onwards), no solidification cracks were observed. With a 10% decrease in heat input, the crack
length reduced for the 7 mm and 9 mm cases, while no crack was observed for the 11 mm case. With a
20% reduction in heat input, the crack length reduced further for the 7 mm case, and no crack was
observed for the 9 mm case. When the heat input was increased by 10%, a crack was also observed
in the case of 13 mm. The run-on plate was not used in the experiments, the use of which may effect
the crack initiation. The standard hot cracking test does not mention the use of run-on and run-off
plates. The extent of edge effect on crack initiation was also material dependent. In our earlier work [8],
identical hot cracking tests were performed on Dual Phase (DP) steel sheets, and solidification cracking
was not observed in any of the cases.
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The fracture surface of welded TRIP steel sheet was further studied by means of scanning electron
microscopy. Figure 9a indicates that a liquid film entrapped between the dendrites led to cracking.
This is an important observation as it helps to conclude that the cracks are indeed formed during
the terminal stage of solidification. Figure 9b shows microcracks, which occur at the last stage of
solidification on the dendrite tips.

Figure 7. High speed camera images showing solidification cracking during welding. (a) Solidification
crack initiating at the trailing edge of the mushy zone (5 mm case); (b) full fracture observed (5 mm case);
and (c) the solidification crack stops propagating further (7 mm case).
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Figure 8. Measured crack length for the set of experiments.

Figure 9. Micrographs of the fracture surface of TRIP steel (5 mm case). (a) Liquid film entrapped
between dendrites that lead to cracking and (b) micro-cracks on the dendrite tip.

The high speed camera and SEM images both corroborate the previous studies on solidification
cracking [10]. Moreover, it is apparent that a material is most susceptible to cracking when the fraction
of solid ( fs) becomes close to one [11,12,30].
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3.2. Thermomechanical Analysis of the Process

Figure 10 shows the simulated results of peak temperature at the weld centerline as a function of
distance for the 5 mm case. Due to the introduction of the heat source, the peak temperature is low at
the beginning. The peak temperature reaches the steady state after approximately 5 mm (x = 5 mm).
However, due to accumulation of heat, a higher peak temperature is reached towards the last 2–3 mm.
Thermal and transverse strain analysis was conducted under the steady state regime at x = 5 mm along
the y direction. Transverse strain data along a line L1 with starting point 2 mm from the weld centerline
were extracted from the simulation results. The region in the mushy zone and the prevailing conditions
where the analysis was performed are shown schematically in Figure 11 at t = 1 s. At t = 1 s and
x = 5 mm, the fraction of solid ( fs) approaches one at the weld centerline. Temperature and transverse
strain along the line L1 were extracted at various times. Using the constitutive behavior, the total
transverse strain can be decomposed as:

εTot = εel + εpl + εth (4)

Here, εTot is the total transverse strain and terms on the right hand side are the elastic, plastic and
thermal transverse strains, respectively. Note that the volumetric strain due to phase transformation is
included in the linear coefficient of thermal expansion.
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Figure 12. (a) simulated temperature field along L1 at t = 0.5 s for different cases, (b) simulated
temperature field along L1 at t = 1 s for different cases, (c), simulated strain contributions and total
strain for the 5 mm case, (d) simulated transverse strain (in %) along L1 for different cases at t = 0.5 s
and (e) simulated transverse strain (in %) along L1 for different cases at t = 1 s.

Figure 12a,b shows the temperature as a function of distance along L1 at t = 0.5 s and t = 1 s
for different experimental cases. Figure 12c shows the simulated elastic, plastic, thermal and
total transverse strain for the 5 mm case. Here, the thermal strain includes the contribution from
solidification shrinkage, thermal contraction and phase transformation. From this figure, it can be
inferred that the elastic and plastic strains are small compared to the thermal strain. It is thus the
thermal strain that forms the significant portion of the total strain. Note that the viscoplastic effect
of the material at high temperature is not considered in this work. Safari et al. [31] found the effect
of viscoplasticity on the total transverse strain to be negligible. Figure 12d,e shows the transverse
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strain (in %) as a function of distance along L1 at t = 0.5 s and t = 1 s for different experimental cases.
At t = 1 s, the transverse strain is a maximum at the starting point of line L1 for the 3 mm case and
decreases as the welding distance from the free edge is increased. For the 13 mm case; in which no
crack was observed, the threshold transverse strain is ≈1.7%.

3.3. Effect of Heat Input on Transverse Strain and Crack Susceptibility

To study the effect of heat input on the transverse strain, travel speed was varied in the FE model.
The maximum transverse strain for the 11 mm case (Figure 13a) with 10% less heat input was ≈1.6%,
i.e., lower than the threshold strain of the 13 mm case in which no cracking was observed. With 20%
less heat input, the maximum transverse strain for the 9 mm case was ≈1.5%, i.e., below the threshold
strain, while with 10% less heat input, the maximum transverse strain was ≈1.8%, i.e., above the
threshold strain (Figure 13b). For the 7 mm case, the maximum transverse strain was higher than the
threshold strain for both 10% and 20% reduced heat input. For the 13 mm case, with 10% higher heat
input, the maximum transverse strain increased to 2.1%, as shown in Figure 13c.

Tr
an

sv
er

se
 st

ra
in

, %

0.5

1

1.5

2

Distance, mm
0 0.1 0.2 0.3 0.4 0.5

t = 1 s (normal heat input)
t = 1 s (10 % less heat input)

11 mm case

(a)

Tr
an

sv
er

se
 st

ra
in

, %

1

1.5

2

Distance, mm
0 0.1 0.2 0.3 0.4 0.5

9 mm case

t = 1s (normal heat input)
t = 1s (10% less heat input)
t = 1s (20% less heat input)

(b)

Tr
an

sv
er

se
 st

ra
in

, %

1

1.5

2

2.5

Distance, mm
0 0.1 0.2 0.3 0.4 0.5

t = 1 s (normal heat input)
t = 1 s (10 % high heat input)

13 mm case

(c)

Figure 13. Effect of heat input on the transverse strain along L1 at t = 1 s. (a) The 11 mm case with
normal and 10% less heat input, (b) 9 mm case with normal and 10% and 20% less heat input and (c)
13 mm case with normal and 10% high heat input.

In order to vary heat input, welding experiments were conducted with different travel speeds.
A reversal in cracking tendency was observed; no crack was observed in the 11 mm case with 10% less
heat input, and no crack was observed in the 9 mm case with 20% less heat input. With 10% higher
heat input, a crack was observed even in the 13 mm case. The average crack length as a function of
distance from the free edge and heat input is shown in Figure 8.

4. Discussion

The measured temperature cycles at the thermocouple positions and the simulated results show
good agreement (Figure 6). Furthermore, the slow heat dissipation (or heat accumulation) due to a
reduced amount of material towards the free edge is captured well in the simulated thermal cycles.
The experimental fusion zone dimensions were also found to be in agreement with the simulated ones.

The maximum transverse strain along line L1 decreases from the 3 mm case to the 13 mm case.
This result agrees well with the cracking susceptibility observed experimentally. It is observed that
as the degree of self-restraint increases, the susceptibility to solidification cracking decreases, which
is consistent with earlier studies [32,33]. For the 13 mm case, no solidification cracks were observed,
and the maximum transverse strain along L1 is ≈1.7%. This value can be used as a safety factor to
avoid solidification cracking in the steel tested in this work, i.e., a threshold value. A lower heat input
reduces the thermal strain along line L1. Since thermal strain contributes significantly towards the total
transverse strain (refer to Figure 12c), the overall transverse strain decreases. This leads to a reduction
in the critical distance from the free edge at which no solidification cracking occurs. Reduction of heat
input by 10% decreases the critical distance by 2 mm, while a 20% reduction decreases it by 4 mm.
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An increase in travel speed could be beneficial in reducing the flange width and obtaining good welds
in materials that are otherwise susceptible to solidification cracking.

Tensile strains are built up behind a moving weld pool due to both solidification shrinkage and
thermal contraction [9,34]. Solidification cracking occurs when the resistance of a material to cracking
is overridden by the mechanical driving force for cracking. Generally, the Brittle Temperature Range
(BTR) of an alloy, the temperature range over which cracking is found to occur, is used as a measure
of susceptibility to solidification cracking. Sometimes, BTR is also defined as the difference between
liquidus and solidus temperatures [35]. Senda et al. [36] and later on Nakagawa et al. [37], using the
transvarestraint test, measured temperatures at the tail of the weld pool by plunging thermocouples.
The BTR was assumed to be proportional to the maximum crack length and was defined as the
temperature difference between the two extremities of the crack. However, large disparities exist
in the BTR of the same material [38], raising issues with the accuracy of the method. BTR, being a
material-dependent parameter, is essentially constant for the steel investigated in this study. Therefore,
BTR alone cannot explain the different cracking behaviors. Clyne et al. [39] reported that the cracking
susceptibility index of an alloy is directly related to the freezing time. Freezing time at the weld center
was extracted from the simulated thermal histories of two cases, first the 9 mm case with normal heat
input, i.e., in which a crack was observed, and second, the 9 mm case with a 20% reduction in heat
input, i.e., in which no crack was observed. Liquidus and solidus temperatures were taken from
the Scheil-Gulliver non-equilibrium solidification model (Figure 14). The freezing time for the first
case is 0.25 s, while for the second case, it is 0.16 s. Reduction in heat input leads to higher cooling
rates, and thus, the freezing time decreases. In the second case, the material spends less time in the
vulnerable cracking regime and therefore is less susceptible to cracking. To compare, freezing time was
also extracted for the 13 mm case with normal heat input and was found to be 0.25 s. No crack was
observed in this case. It can be inferred that freezing time can only be used as a cracking susceptibility
index when the mechanical restraint conditions do not change, and therefore, only relative tendencies
can be compared.
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Figure 14. Solid fraction ( fs) versus temperature for the TRIP steel calculated using the non-equilibrium
Scheil-Gulliver solidification model.

Although implicit, the calculation of macroscopic strain using the FE method is based on
continuum mechanics. Thus, the cracking process that occurs at the microscopic level is directly related
to the local macroscopic stress/strain development in the crack vulnerable regime [40]. This approach
accounts for both the thermal histories and the related mechanical response of the material.
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5. Conclusions

1. With the use of the presented hot cracking test, in general, any given material is most susceptible
to solidification cracking when welding is carried out close to the free edge. As the distance
from the free edge increases, i.e., the degree of self-restraint increases, the susceptibility to
cracking decreases.

2. The FE simulation study shows that macroscopic transverse strain near the mushy zone can be
used as an indicator to explain the experimentally-observed cracking susceptibility with regards
to crack length.

3. A threshold transverse strain at a point close to the fusion boundary is determined for which no
cracking was observed. It is further validated by varying the heat input both in the model and
the experiments.

4. Reducing the heat input decreases the susceptibility to solidification cracking or, in other words,
it decreases the critical distance from the free edge at which cracking does not occur.

Supplementary Materials: The following are available online at http://www.mdpi.com/2075-4701/8/9/673/s1,
Video S1: Welding at a distance of 5 mm from the free edge, Video S2: Welding at a distance of 7 mm from the
free edge.
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