
metals

Review

Advances and Challenges of Biodegradable Implant
Materials with a Focus on Magnesium-Alloys and
Bacterial Infections

Muhammad Imran Rahim 1, Sami Ullah 2 and Peter P. Mueller 3,* ID

1 Department of Prosthetic Dentistry and Biomedical Materials Science, Lower Saxony Centre for Biomedical
Engineering, Implant Research and Development, Hannover Medical School, Carl-Neuberg-Straße 1,
30625 Hannover, Germany; M.Imran.Rahim@outlook.com

2 Department of MSYS, Helmholtz Center for Infection Research, Inhoffenstrasse 7,
38124 Braunschweig, Germany; Sami.Ullah@helmholtz-hzi.de

3 Department of Chemical Biology, Helmholtz Center for Infection Research, Inhoffenstrasse 7,
38124 Braunschweig, Germany

* Correspondence: pmu@gbf.de; Tel.: +49-531-6181-5070

Received: 12 June 2018; Accepted: 4 July 2018; Published: 10 July 2018
����������
�������

Abstract: Medical implants made of biodegradable materials could be advantageous for temporary
applications, such as mechanical support during bone-healing or as vascular stents to keep blood
vessels open. After completion of the healing process, the implant would disappear, avoiding
long-term side effects or the need for surgical removal. Various corrodible metal alloys based
on magnesium, iron or zinc have been proposed as sturdier and potentially less inflammatory
alternatives to degradable organic polymers, in particular for load-bearing applications. Despite the
recent introduction of magnesium-based screws, the remaining hurdles to routine clinical applications
are still challenging. These include limitations such as mechanical material characteristics or
unsuitable corrosion characteristics. In this article, the salient features and clinical prospects of
currently-investigated biodegradable implant materials are summarized, with a main focus on
magnesium alloys. A mechanism of action for the stimulation of bone growth due to the exertion
of mechanical force by magnesium corrosion products is discussed. To explain divergent in vitro
and in vivo effects of magnesium, a novel model for bacterial biofilm infections is proposed which
predicts crucial consequences for antibacterial implant strategies.

Keywords: bioresorbable implants; corrosion layer; vascular stents; orthopedic implants;
microbial infections

1. Introduction

For metallic implants, industrially-developed, inert and long-lasting materials, such as titanium
(Ti) alloys, stainless steel (SS) and cobalt–chromium (CoCr) alloys, are most frequently used [1–4].
The duration of the healing process is highly variable depending on the extent of injury, disease
state, age and treatment. In general, healing time may range from a brief one month period, up to
a six month period in more complex cases. Permanent implants are frequently removed after the
completion of the healing process to avoid diverse side effects. Long-term disadvantages of this practice
include the failure to adapt to rapid growth in young children, bone degradation by stress shielding,
microbial implant infections, excessive fibrosis or persistent inflammation. Novel bioresorbable
metal implants could provide support during the healing process, and then disappear to avoid
long-term side effects without requiring surgical removal [5,6]. Conventionally, initial material tests
are done most economically in vitro under precisely defined technical conditions. Subsequent assays
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are performed under increasingly complex and more costly cell culture conditions, followed by
small animal experiments and eventually tested in large animals or in clinical trials. However,
corrosion results obtained under simple technical conditions cannot be extrapolated to clinical
circumstances. In one study, the corrosion rate for magnesium alloys was reported to differ four orders
of magnitude between in vitro and in vivo conditions [7]. Due to inherent limitations in reproducing
the complexities of living tissue in vitro, this review preferentially refers to animal models or clinical
trials if available [8,9]. For molecular genetic and economic reasons, small animal studies are most
popular. However, for load bearing applications in particular, size is an important parameter that must
be kept in mind, and eventually large animal experiments and clinical data are essential. Even though
intense research efforts recently culminated in clinical reports, degradable metallic implants are not
yet routinely applied (see Section 7 for details). Compared to organic polymers, biodegradable metals
can achieve higher strengths and ductility and would therefore would be preferential for load bearing
applications such as bone plates, screws or coronary stents [10]. Three types of metal alloys have been
commonly-investigated as degradable implants for biomedical applications based on magnesium, iron
or zinc. The main purpose of this article is a brief and easily understandable overview of virtues and
clinical hurdles of self-degrading implants as screws, plates or intramedullary rods for load-bearing
orthopedic (musculoskeletal) applications or as vascular stents. In addition, a novel model for implant
infections is proposed to explain divergent effects of magnesium on bacteria in vitro and in vivo.

2. Material Requirements for Fully-Bioresorbable Vascular Stents

Clinical requirements provide the basis for the required implant material characteristics.
Age-related vascular malfunctions such as vessels clogged by a blood clot are of growing
importance [11,12]. One of the earliest effective treatments was antithrombotic therapy, but this
required some time until the clot was dissolved. Then, vascular stents, used to keep blood vessels
open, were shown to be superior, despite the fact that treatment had to be delayed to prevent patient
deaths. Balloon angioplasty is routinely applied and requires minimal invasive surgery. A small
folded stent on a balloon at the tip of a catheter is maneuvered through blood vessels until it is
located at the site of the restriction. The position within the body can be monitored with the help of
an X-ray camera. For this reason, an X-ray dense stent material is an advantage. Once positioned,
the balloon is inflated to unfold the stent. Stents are overextended to a limited degree to allow a
firm anchoring in the vessel wall to prevent migration, and to compensate for the inherent elastic
recoil of the stent after the balloon had deflated. The stent material must be sturdy enough to allow
for thin struts, minimize the recoil, and withstand the pressure of the tissue and the forces during
movements of the body [13]. It is clinically well established that thin, yet robust and highly ductile,
stainless steel or shape memory alloy stents fulfill these requirements. Nevertheless, initial stent
overextension and subsequent persistent mechanical stress, due to interactions with pulsing blood
vessel walls, stimulates smooth muscle cell proliferation in the vessel walls. In a process, termed
restenosis, a growing mass of proliferating vascular smooth muscle-related cells eventually obstruct
the stented vessel again. The blood flow may be reestablished by inserting a second stent or through
surgical bypass, leading to additional patient discomfort, risks and costs [14,15]. In clinical applications
restenosis has been successfully curbed by drug-eluting stents [16]. Thereby, unwanted cell growth is
suppressed locally by clinically well-established drug-loaded polymer coated stents that gradually
release immune suppressive agents like sirolimus or the antiproliferative-acting drug paclitaxel.
Even though these drugs could reduce the incidence of restenosis, serious side effects include a
delayed healing response, inflammation and persistent thrombosis risks [17–20]. This results in the
requirement of costly regular and prolonged antiplatelet treatments, and non-complying patients
drastically increase the thrombosis hazard [21]. Therefore, the application of drug-eluting stents
must be carefully considered for each patient individually depending on the restenosis risks and the
treatment-associated bleeding vulnerability. As an alternative, long-term side effects could be avoided
by using fully biodegradable stents which provide the essential support for a few weeks during the
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healing process, and then completely disappear [22–25]. Key degradable stent material requirements
are appropriate corrosion characteristics, biocompatibility, high elasticity to allow for small folded
stents and sufficient strength to resist collapsing.

3. Material Requirements for Degradable Orthopedic Implants

To allow healing, broken bones must be firmly stabilized to avoid even micro-movements under
the influence of considerable forces. Since inflammation may antagonize bone repair, the implant
must be highly biocompatible. Clinically, all requirements are met by sturdy plates, screws or
intramedullary nails made of titanium alloys or stainless steel. Nevertheless, after completion of
the healing process stress shielding implants are mostly removed since their prolonged presence
can lead to bone degradation [26]. Strong, tissue friendly self-degrading implants with bone-like
mechanical parameters, to minimize stress-shielding, and suitable degradation characteristics could
reduce such side effects. Furthermore, they allow patients to avoid a second surgery for implant
removal, making them a highly attractive option. Whereas conventional permanent implant materials
are sturdy and biologically inert, resorbable polymeric materials, as well as corrodible metals, have
distinct biological characteristics (Table 1). In the following table, the cardinal properties of the most
intensively investigated prospective biodegradable implant materials for load-bearing applications
are described.

Table 1. Basic properties of degradable implant materials.

Implant
Material Degradation Speed Physical and Corrosion

Characteristics Biological Effects References

Organic
polymers Adjustable

Potentially flexible but mostly
too weak for load-bearing

applications; Implant swelling
in moist environments; X-ray

transparent

Inflammatory acidic
hydrolysis products [27,28]

Iron
Very slow, complete

degradation may require
several years

Sturdy but irregular corrosion
characteristics

Accumulation of
inflammatory iron

hydroxide particles in
various tissues

[29–31]

Zinc-based
Slow, life-time by far

exceeds expected
healing periods

Suboptimal strength Non-inflammatory [32,33]

Magnesium-based

Rapid, danger of
mechanical implant

failure before the healing
process is completed

Alloys with sufficient strength
available; compliance can be

adjusted; irregular pitting
corrosion; corrosion coat
formation due to slowly

dissolving solid precipitates
resulting in reduction of initial

corrosion rates

Non-inflammatory; gas
accumulation in the
tissue; accumulating

solid corrosion products
or gaseous hydrogen

may exert pressure on
non-yielding bony tissue

[34–36]

Surgical steel inert

Sturdy, suitable for
load-bearing applications,

allows for ductile thin
vascular stent struts

Non-inflammatory, inert [1]

Titanium inert Sturdy, highly suitable for
load-bearing applications

Non-inflammatory,
bone-friendly surface

oxide layer
[1]

4. Polymeric Vascular Stents

Even though they may act somewhat inflammatory compared to metals, biodegradable polymeric
implants have been routinely employed as suture material and to temporarily fix tendons to bones until
they eventually adhere by themselves [37,38]. Popular hydrolysable polymers used for bioresorbable
scaffolds are poly(lactic-co-glycolic) acid (PLGA), polylactic acid (PLA) or polyglycolic acid (PGA) [39].
A main research focus has been polymeric stents, resulting in data that revealed several features that
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had to be optimized. Since polymeric materials are generally less sturdy than metals, thicker struts
are required. This results in stents that are more difficult to direct through small vessels. Moreover,
they are X-ray transparent and therefore harder to localize in the patient. Polymers also tend to swell
in aqueous environments and acidic hydrolysis products can act inflammatory [27]. In experimental
animal models degrading polymer stents resulted in increased restenosis rates [40,41]. One of the first
commercially available fully absorbable polylactic acid stent (Absorb, Abbot) that was FDA approved
in 2016 dissolved in two to three years, but despite promising short-term results long-term side
effects were negative and sales were terminated by 2017 [42,43]. In clinical trials these polymer stents
were more difficult to insert due to the increased efforts required for imaging, and over a two-year
period induced higher rates of in-stent thrombosis than drug eluting metal stents [44]. In summary,
the presently investigated resorbable polymer stents were deemed inferior to established metal stents.

5. Iron as a Prospective Stent Material

Pure iron and iron alloys were proposed in 2001 for corrodible stent materials [45]. Despite
appropriate mechanical properties, iron implants take years to disappear. The corrosion rate is an
order of magnitude too small for the implant to disappear without long-term side effects [30,46,47].
The immediate oxidation products (Fe2+) and ferrous (Fe3+) ions are essential for life and presumably
non-toxic at the expected concentrations [48–52]. In pioneering animal experiments iron implants
analysis revealed insoluble iron hydroxide precipitates that accumulated mainly at the site of
implantation [45,53]. Further analyses, in a mouse model, revealed iron precipitates engulfed by
local cells. After a few weeks these iron laden cells could be detected in various organs throughout
the body [54]. In war veterans, corroding iron fragments from grenade splinters have been shown to
migrate in the body and to cause chronic inflammation [55–57]. Overall, the slow degradation rate
prolonged possible side effects after completion of the healing process, and inflammatory precipitates
impede clinical applications of iron implants.

6. Zinc Alloy Stents

Corrodible zinc-based implants have been introduced relatively recently in 2013 (reviewed
in [58]). Even though the mechanical properties can be adjusted according to the requirements,
zinc alloys, with a reported yield strength up to 300 MPa, are not as strong as titanium or stainless
steel [59]. When tested, zinc alloys corroded with favorable kinetics, faster than iron, but less
rapidly than magnesium alloys. Zinc alloy degradation products were considered sufficiently
biocompatible [60]. In a rat model, zinc stents were still structurally intact after four months in
the abdominal aorta. The implant and the relevant degradation product Zn2+ appeared non-toxic
and even anti-inflammatory [61]. One year after the implantation of a pure zinc stent in a rabbit
aorta, an examination revealed artery remodeling and tissue healing without signs of inflammation,
platelet aggregation or thrombosis [33]. It was therefore concluded that selected zinc alloys had
promising strength and excellent biocompatibility for prospective bio-corrodible stent applications [62].
Nevertheless, it remains to be demonstrated in clinical trials that zinc alloys provide advantages over
clinically established permanent metal alloys.

7. Characteristics of Magnesium-Based Implants

The first reported medical application of degradable magnesium alloys in humans, as ligature
wire, was investigated in 1878 [63]. Side effects included the occurrence of gas pockets in the tissue,
and rapid, irregular pitting corrosion leading to premature implant failure. In part, pure magnesium
has been experimentally used to simplify the interpretation of biological responses. In general, alloy
metals such as aluminum, calcium, lithium, zirconium and rare earth elements have been used to
adjust mechanical properties such as the same stiffness as bony tissue or to reduce the degradation rate.
In addition, grain refinement, protective surface coatings, and metallic glasses obtained by ultrafast
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cooling techniques resulted in improved degradation characteristics, increased material strength and
bone-compatible elastic moduli [64–75].

In biological environments magnesium reacts with water molecules in a pitting type corrosion
with kinetics that depend on the surrounding tissue [76–78]. In addition, irregular corrosion could lead
to premature mechanical implant failure [79,80]. The primary magnesium corrosion products—soluble
magnesium ions (Mg2+), hydroxide ions (OH-), and hydrogen gas (H2)—are well tolerated by the
body. Mg2+ ions are essential for living cells, by complexing with the energy carrier adenosine
triphosphate and numerous enzymatic processes, and excess Mg2+ can be excreted in the urine [81,82].
Soluble hydroxide ions could in principle lead to toxic pH increases [76]. However, in biological
environments magnesium implants appear highly biocompatible presumably due to an adequate
buffering capacity of the tissue. In addition, magnesium and hydroxide ions combine in a pH neutral
way, and, together with carbonic acid, phosphates and other components present in surrounding
body fluids, precipitate to form a corrosion-retarding and highly biocompatible implant-tissue
interface [83,84]. However, perhaps initially surprisingly, during corrosion these precipitates can
transiently lead to increases of the overall implant mass and volume. This is particularly critical
for implants in non-yielding bony tissue. Stimulation of new bone growth and calcium phosphate
deposition has also been observed. This may be due to magnesium hydroxide deposition, calcium
phosphate precipitation at the tissue interface and the exertion of mechanical stress by the resulting
volume increase [85–87]. One gram of Mg can generate around one liter of hydrogen gas. Hydrogen
gas is non-toxic and easily diffusible, but excessive corrosion can nevertheless lead to formation
of undesirable gas bubbles (emphysema) in surrounding soft tissue. Excessive corrosion may also
lead to a buildup of pressure in bone enclosed cavities and may, therefore, stimulate bone growth in
appropriate setups [88,89].

In orthopedic applications selected magnesium alloys could achieve mechanical properties
more similar to human bone than titanium or steel. This could be favorable as it would reduce
implant-associated stress shielding and bone degradation [90,91]. Magnesium-based screws have
been used in bone healing clinical trials without notable side effects reported by patients [92,93].
The first commercial magnesium screws (Magnezix, Syntellix, Hannover, Germany) were available
in 2013, and completely disappeared one to two years after implantation [94]. Furthermore, recently
an additional interference screw, made of an MgYREZr-alloy, has been introduced to the market
(Milagro; DePuy Mitek, Leeds, United Kingdom) [95]. A transient appearance of radio translucent
areas around magnesium implants was reported [96]. In fact, such a phenomenon would be expected
from the above proposed mechanism; an initial magnesium implant size expansion by the deposition
and the subsequent resorption of solid corrosion products, leaving a temporary void space to be filled
by bony tissue.

Vascular magnesium alloy stents with reduced corrosion rates have been shown to be mechanically
stable for up to 6 months in animal experiments and were eventually evaluated in clinical trials [97–103].
Polymer-coated drug-eluting magnesium stents (Magmaris and DREAMS; Biotronik AG, 231, Bülach,
Switzerland) were commercially offered and claimed to be resorbed to 95% within a year in clinical
trials. Thus, they may thereby overcome long-term side effects [104–106]. Both orthopedic and vascular
magnesium implants appear promising but, with the exception of small orthopedic implants like pins
or screws, the development of these options is still in its infancy, and a broader clinical applicability
needs to be demonstrated [107].

8. Magnesium Implant Infection Susceptibility Mechanism: Race for the Surface versus
Susceptible Tissue Surface Model

Bacterial implant infections are difficult problem to treat in orthopedics, particularly in non-sterile
environments like the oral cavity [108]. Bacteria can form recalcitrant biofilms on implant surfaces that
are resistant to conventional antibiotic treatments. As a last resort, the entire implant may have to be
removed to allow an efficacious antibiotic treatment before the implant can be replaced. Corroding
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magnesium has been shown to act as an antibacterial in vitro due to the generation of hydroxide
ions and pH increases [109–112]. In animal studies, an enhanced susceptibility to bacterial infections
has been observed [113,114]. The reasons that could enhance the susceptibility to infection in vivo
are not understood, and difficult to explain. Any model must take into account that the corrosion
effects are no different in vitro, where there is no such enhanced susceptibility. The proposed model is
an attempt to explain this observation. Conventionally, exposed implant surfaces are thought to be
susceptible to bacterial adherence in competition with host tissue adhesion [115]. To allow bacterial
adhesion and survival on the freshly implanted magnesium, toxic pH increases directly at the interface
would have to be prevented in vivo. Unfortunately, experimental observation of the initial steps of
bacterial invasion has not been accomplished so far. However, this scenario appears unlikely if a
freshly implanted magnesium surface does act bactericidal. Importantly, despite systemic antibiotic
treatment, bacterial biofilms on magnesium were observed. Not only were they observed on the
implant surface but, also in the adjacent tissue (Figure 1), suggesting that bacterial adhesion to the
implant may actually not be essential for biofilm formation [113].

Alternatively, similar to burn wound infections or keratitis, initial bacterial invasion could occur
via the wound liquid to susceptible wounded tissue surfaces (Figure 2) [116,117]. If true for implanted
materials other than magnesium, this scenario would predict dire consequences for implant infection
prevention strategies.
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Figure 1. Bacterial biofilm in tissue pockets at a distance from the implant surface. Magnesium
discs subcutaneously implanted into standard BALB/c mice were immediately infected with
Pseudomonas aeruginosa. After one week, tissue adjacent to the implants was subjected to scanning
transmission electron microscopic analysis (for a more detailed description see Reference [113]).
Bacteria (upper arrow) surrounded by clear areas (lower arrow), indicating the presence of
exopolysaccharide matrix material, a typical biofilm component. Reproduced with permission from
J. Biomed. Mater. Res.; Published by Wiley 2016.
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Figure 2. Model proposing tissue infection as initial key step of bacterial implant infections.
(A) Conventional model. Consecutive steps of biofilm infections are shown from left to right. Planktonic
bacteria (brown) enter the wound-liquid-filled interspace (colorless) between implant (grey) and tissue
(pink). As a crucial step towards biofilm formation, bacteria first adhere to the implant surface and
form micro-colonies. After reaching a critical density, bacteria switch to the biofilm mode and secrete
extracellular matrix compounds. Biofilm features, such as the encapsulation in the matrix, nutrient
restriction and slow growth, render the associated bacteria highly resistant to the host immune defenses
and to antibiotics. Subsequently, secreted exotoxins and proteases allow bacteria to invade the adjacent
host tissue. Alternatively, adhesion of host tissue to the implant acts to protect the implant surface
from bacterial attachment and subsequent biofilm formation. Based on the in vitro results, in this
scenario magnesium implants would be expected to act bactericidal. (B) Tissue infection model. Under
normal circumstances contiguous epithelial cell layers protect living tissue, whereas wounding renders
tissue highly susceptible to bacterial infections. After implant insertion the essential initial bacterial
attachment occurs primarily at the susceptible injured tissue surface. Bacterial colonies growing on the
tissue surface eventually switch to the biofilm mode with analogous outcomes as in the conventional
model. While bacterial adhesion to the implant may occur, it plays no essential role for the course of the
infection. Adhesion of host tissue to the implant would still be important to antagonize infections but
predominantly to protect the wound tissue surface, and not the implant, from bacterial colonization.
Despite acting bactericidal upon close contact, the observed enhanced infection susceptibility of
magnesium implants is explained by interference of corroding magnesium with host tissue adhesion.
Factors that prolong the wound surface exposure to bacteria could be alkaline pH immediately after
implantation, and hydrogen gas evolution or eroding solid corrosion layers thereafter.

9. Implications for the Design of Antibacterial Implants

A wide variety of anti-infective implant strategies have been investigated, mostly in vitro [118].
In the light of the proposed tissue invasion model, in order to be efficacious, antibacterial substances
would need to be diffusible to reach bacteria in the vicinity of the implant. Therefore, implant
nanostructures that act antiadhesive, or passive coatings that act bactericidal upon contact, would not
be expected to curb infections in patients. In addition, implant features that affect tissue adhesion play
an important, through different, role than previously thought. That is, to primarily prevent bacterial
adhesion to the injured tissue rather than to the implant (Table 2). Even though magnesium implants
could not curb bacterial infections in mice, clinical data is needed before a final conclusion can be
drawn. In addition, several alternative strategies are presently investigated, such as antibiotic-releasing
coatings for magnesium-based implants or the addition of antibacterial acting alloy metals like silver,
copper, or zinc that release cytotoxic ions [119–125]. The major challenge for such an approach is to
maintain the balance of achieving efficacious bactericidal ion concentrations in vivo without damaging
the host tissue.
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Table 2. Implant features predicted by the tissue infection model to influence the susceptibility to
infections in vivo.

Ineffective Coatings Infection Risks Favorable Measures

Surfaces that antagonize
bacterial adhesion

Factors that hinder host tissue
adhesion; convex or

microporous surfaces

Surfaces favoring tissue
integration; smooth, flat or

concave forms;

Contact-dependent
bactericidal surfaces

Relative movement of
implants versus tissue

Antibacterial
substance-releasing coatings

10. Conclusions

In long-term clinical trials biodegradable polymeric stents were inferior to conventional
drug-eluting metal stents, while recently introduced biocorrodible magnesium-based bone screws
were without noticeable side effects. However, since in vitro tests and even small animal studies
cannot predict the outcome in human patients, long-term clinical confirmation of the expected benefits,
with regard to potential risks, are needed. In addition, a novel model for implant infections suggests
that host cell adhesion to implants is important to prevent bacterial invasion of the exposed host tissue
surface, and not, as previously thought, to prevent bacterial adhesion to the implant. The model
predicts that passive antibacterial implant coating strategies would not be efficacious in vivo.
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