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Abstract: This study characterizes the microstructure and its associated crystallographic features of
bulk maraging steels fabricated by selective laser melting (SLM) combined with a powder bed
technique. The fabricated sample exhibited characteristic melt pools in which the regions had
locally melted and rapidly solidified. A major part of these melt pools corresponded with the
ferrite (α) matrix, which exhibited a lath martensite structure with a high density of dislocations.
A number of fine retained austenite (γ) with a <001> orientation along the build direction was
often localized around the melt pool boundaries. The orientation relationship of these fine γ

grains with respect to the adjacent α grains in the martensite structure was (111)γ//(011)α
and [-101]γ//[-1-11]α (Kurdjumov–Sachs orientation relationship). Using the obtained results,
we inferred the microstructure development of maraging steels during the SLM process. The results
depict that new and diverse high-strength materials can be used to develop industrial molds and dies.

Keywords: additive manufacturing; maraging steel; microstructure; martensite structure; orientation
relationship; electron backscattering diffraction (EBSD)

1. Introduction

Metal additive manufacturing based on three-dimensional computer-aided design (CAD) models
is a promising technology for fabricating metal products with arbitrary complex geometries within
short time-frames [1–4]. A popular additive manufacturing process for metals is powder bed fusion
(PBF) [2] in which the powder particles of metals (alloys) are melted and fused using either laser
or electron beams. PBF technologies include the commonly used selective laser melting (SLM),
selective laser sintering, selective heat sintering, and electron beam melting [3,4]. The SLM process has
been recently applied to various steel powders [3,4], yielding geometrically complex components of
maraging steels [5]. Maraging steels with high strength and adequate toughness [6] are extensively
applied as tool steels in the mold and die-making industries. When applied to maraging steels,
SLM could enable efficient manufacturing of an extensive variety of high-performance molds and dies
for pressing or forging complex-shaped metal products.

The maraging steel would be favorable for the SLM process in terms of microstructure
development. The local heating by laser-beam irradiation produces melt pools, which is followed
by rapid solidification at an extremely high cooling rate [7,8]. During the cooling process, the locally
irradiated areas are rapidly quenched from the austenitic region to reach temperatures that are
lower than the martensite start temperature, resulting in the formation of a martensite structure
that contributes strengthening materials. The strength level of SLM-fabricated maraging steels is
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approximately 1 GPa [9–11]. The subsequent aging at elevated temperatures (~460 ◦C) enhances the
precipitation of fine intermetallic phases within the martensite structure, which further strengthens
the materials [9–11]. However, most previous studies have investigated the effect of laser scanning
conditions and aging treatments on the mechanical properties (strength and fatigue) of SLM-fabricated
maraging steels [11–14]. Although the crystallographic orientation relation has been determined in
as-quenched maraging steels [15], the microscopic features of the SLM-generated martensite structure
remain unclear.

The current study characterizes the microstructural and crystallographic features of the martensite
structure in the SLM-fabricated maraging steel using electron microscopy and electron backscatter
diffraction (EBSD). Based on the results, the current study further discusses the development of
microstructure in maraging steel during the SLM process.

2. Experimental Procedure

Table 1 presents the nominal and measured compositions of the maraging steel powder (depicted
in Figure 1) and fabricated bulk sample, analyzed by inductively coupled plasma-atomic emission
spectrometry (ICP–AES). A SEM image of the studied powder is shown in Figure 1. The proportions
of major alloy elements were observed to be almost identical in both the initial powder and the
SLM-fabricated bulk samples. The SLM processing was conducted at room temperature using a 3D
systems ProX 200 (3D SYSTEMS, Rock Hill, SC, USA) additive-manufacturing system equipped with
a Yb-fiber laser operating at 255 W (Figure 2a). The hexagonal grid laser-scanning pattern that has
been applied in this study is depicted in Figure 2b. The fabrication parameters were as follows: laser
spot size = approximately 100 µm, applied scan speed = 2.083 m/s, bedded-powder layer thickness
= 30 µm, hatch spacing between adjacent laser-scanning tracks = 50 µm, and rotation angle between
the bedded-powder layers = 90◦. The optimization of the laser scanning parameters will be described
in the following papers. The oxidation during the SLM process was prevented using high-purity Ar
gas. Hereafter, the directions that are normal and parallel to the bedded-powder layer are designated
as the Z and X/Y directions, respectively. To perform optical microscopy and scanning electron
microscopy (SEM), the built bulk samples were cut out from the base plate and then mechanically
polished, followed by etching with a natal solution at room temperature. The microstructures were
observed using an SEM operating at 20 kV. The orientation was analyzed by EBSD with a 0.3 µm
step size. The thin foil sample for transmission electron microscopy (TEM) was ion-polished by an
ion-slicer (JEOL, Akishima, Japan) at 6.0 V. The TEM observation was performed using a JEM-2100
plus (JEOL, Akishima, Japan) operating at 200 kV.

Table 1. Nominal and measured compositions of the investigated powdered and bulk maraging steels
(wt. %), analyzed using inductively coupled plasma-atomic emission spectroscopy.

Composition Ni Co Mo Ti Al C Cr, Cu Mn, Si P, S

Nominal 17~19 8.5~9.5 4.5~5.2 0.6~0.8 0.05~0.15 ≤0.03 ≤0.5 ≤0.05 ≤0.05

ICP-analyzed powder 18.2 9.5 4.9 1.0 0.07 0.01 - - -

built 18.2 9.1 5.1 0.8 0.06 0.01 - - -
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powder layer applied in this study. 

3. Results 
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comprises semi-cylindrical melt pools corresponding to the locally melted and rapidly solidified 

regions that are exposed to scanning laser irradiations [16–18]. The melt pools were approximately 

50–100 µm high (Figure 3a) and approximately 50 µm wide (Figure 3b). They contained elongated 

cellar structures with a mean spacing of approximately 500 nm (Figure 3c,d), as reported in the 
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Figure 2. (a) Appearance of the used selective laser melting (SLM) machine (3Dsystems ProX 200) and
(b) inside a chamber for powder-bed system; (c) schematic of the laser-scanning tracks on each powder
layer applied in this study.

3. Results

Figure 3 depicts the microstructures of the SLM-fabricated maraging steel at various
magnifications. The characteristic microstructure of the SLM-fabricated sample (Figure 3a,b) comprises
semi-cylindrical melt pools corresponding to the locally melted and rapidly solidified regions that are
exposed to scanning laser irradiations [16–18]. The melt pools were approximately 50–100 µm high
(Figure 3a) and approximately 50 µm wide (Figure 3b). They contained elongated cellar structures
with a mean spacing of approximately 500 nm (Figure 3c,d), as reported in the literature [10,11,19–21].
The elongation direction of the cellar structure appears to be independent of the presence of the
melt pool boundaries. Fine grains with relatively granular morphologies were locally observed
at the boundaries between the melt pools (indicated by arrows in Figure 3d). These morphologies
differ from the cellar morphologies observed inside the melt pools. Figure 4 presents a TEM bright
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filed image showing the dislocation substructure in the SLM-fabricated maraging steel. The TEM
observation reveals a lath structure with a high density of dislocations. The mean lath width is
approximately 200 nm. The electron diffraction pattern obtained from the observed area indicates
the diffused orientation inside the lath structure. These features correspond well to previous studies
on microstructural characterization of as-quenched maraging steels [15]. At the resolution level of
conventional TEM, no precipitates larger than 10 nm were observed inside the lath structure, which is
consistent with a previous result of atomic-probe tomography [19–21].
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Figure 3. (a,b) optical micrographs, (c,d) SEM image showing microstructure of the maraging steel
fabricated by selective laser melting of power bed metal, which were observed from (a) z direction and
(b–d) normal to z direction.
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Figure 4. Transmission electron microscope (TEM) bright-filed image showing dislocation substructures
in the maraging steel fabricated by selective laser melting of power bed metal, which were observed
from a normal to z direction.
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Figure 5 presents the EBSD result of the SLM-fabricated sample. The EBSD analysis of the
melt-pool microstructure revealed that a number of fine austenite (γ) grains were distributed in a
ferrite (α) matrix (Figure 5a,b). The retained γ phases often appeared along the grain boundaries in the
α-Fe matrix. This result strongly agrees with the results of previous studies [9,10,21]. Notably, the fine
γ grains were often localized at the melt pool boundaries. The microstructural morphologies observed
in the α phase (Figure 5c) corresponded well with the lath martensite structure characterized by EBSD
analyses [15,22], indicating that a martensite structure developed in the SLM-fabricated maraging
steels. Many of the fine γ grains were oriented at <001> along the Z direction (Figure 5d), forming a
{001} texture of the retained γ phase (Figure 5e). Note that no particular crystallographic textures were
observed in the α phase (Figure 5c).
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Figure 5. (a) SEM image depicting the microstructure of the SLM-fabricated maraging steel; (b) its
corresponding phase map for α(bcc) and γ (fcc) phases; (c) orientation color map of the α phase;
(d) orientation color map of the γ phase; and (e) stereographic projection of the 001 poles in the γ phase
presented in Figure 5d.

Figure 6a,b presents the EBSD color maps of the α and γ phases. The corresponding stereographic
projections depicting the low-index orientations obtained by performing the EBSD analyses are
displayed in panels c–f. EBSD analysis revealed the orientation relationship between the fine retained
γ grains oriented at <001> along the Z direction (Figure 6b) and the adjacent α grains in the martensite
structure (Figure 6a). As exhibited in the obtained stereographic projections (Figure 6c,d), the fine γ

grain has an orientation relation of (111)γ//(011)α and [-101]γ//[-1-11]α with respect to the adjacent
α grain (indicated by αA in Figure 6a). The stereographic projections (Figure 6e,f) represent the fine
γ grain also has a different variant of (111)γ//(011)α and [-101]γ//[-1-11]α with respect to another
adjacent α grain (indicated by αB in Figure 6a). The determined orientation relationship corresponds
to the Kurdjumov–Sachs (K–S) orientation relationship between lath martensite and austenite [22]
and is consistent with the crystallographic features of the lath martensite structure in conventionally
quenched maraging steels [15].
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Figure 6. High-magnification orientation color maps in the (a) α and (b) γ phases, (c–f) stereographic
projections of the (c,e) 111γ /011α and (d,f) 011γ /111α poles. The orientation of the γ phase was
extracted from the γ grains depicted in (b). The αA and αB grains adjacent to the γ grain are indicated
in (a).

4. Discussion

In general, the characteristic microstructures of SLM-fabricated metals and alloys develop through
local melting and rapid solidification during SLM [7,8]. To assess the phase transition in the maraging
steel sample in solidification (during SLM process), the Fe-Ni-Co-Mo-Ti system was predicted
via thermodynamic equilibrium calculations performed based on the CALPHAD approach [23]
using an existing thermodynamic database for Fe-based multi-component systems (PanIron) [24].
Figure 7 shows the composition of the studied maraging steel in a vertical section representing
Fe–18Ni–9Co–5Mo–1Ti (wt. %) of the Fe–Ni–Co–Mo–Ti system. The ICP–AES analyzed composition
(Table 1) was used for the alloy composition. In the studied composition, the initial solid phase is γ (fcc)
below 1440 ◦C, whereas a γ single-phase region forms below the solidus temperature of approximately
1400 ◦C, and has a wide temperature range from 800 ◦C to 1400 ◦C. Below 800 ◦C, µ-Fe7Mo6 phase
appears and then α (bcc) phase form at lower temperature than 650 ◦C. The thermodynamic calculation
assesses γ phase initially forms in liquid (L) phase. The assessment indicates the γ grains solidifying
in the direction of the hottest point of the melt pool, considering the <001> preferential solidification
direction of the fcc solid phase [25] as well as other fcc metals (Ni [26,27] or Al alloys [16–18]). This result
is consistent with the observed retained γ grains oriented at <001> along the Z direction (Figure 5).
Although the calculated phase diagram predicts the formation of inter-metallics phases (µ-Fe7Mo6 [28]
and η-Ni3Ti [29]) at lower temperature than 800 ◦C (Figure 7), the martensite transformation could
occur inside the initially solidified γ phase because of sluggish kinetics for the formation of α phase in
the maraging steels [30] in the subsequent cooling (after the solidification).
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Figure 7. A composition of maraging steel studied on a vertical section of Fe–9Co–5Mo–1Ti (wt. %) in
a Fe–Ni–Co–Mo–Ti phase diagram calculated utilizing the reported thermodynamic database [24].

Based on the aforementioned experimental and calculated results, we can infer the development
process of the microstructure in maraging steels during the SLM process. Figure 8 is a schematic of this
development process. The laser-beam irradiation locally heats up and melts the bedded alloy powder
layer, forming the melt pools. The primary solid phase (γ phase in the studied composition as indicated
in Figure 7) is observed to form at the interface between the solid and liquid phases and grows to
the center of the melt pool (the hottest point under the laser irradiation) in solidification (Figure 8a),
as reported in the literature [16,17]. The γ grains solidify along the preferential <001> solidification
direction, as reported in other fcc metals (Ni [26,27] or Al alloys [16–18]) that have been fabricated
using the SLM process. The preferential solidification direction can explain the observed {001} texture
of the retained γ phase (Figure 8e). During the rapid cooling process, the melt pool can rapidly solidify
to a number of {001} oriented γ grains (Figure 8b). At temperatures that were lower than the initial
martensite temperature (approximately 200 ◦C in the studied composition [30]), the solidified melt
pool transformed into martensite (α phase) with a K–S orientation relation (determined in Figure 6),
resulting in the development of the lath martensite structure (Figure 8c). The higher cooling rate
around the liquid-solid interfaces in the irradiated regions would enhance the formation of the retained
γ phase at the melt pool boundaries rather than inside the melt pools.

The present study revealed a number of fine retained γ phases in the maraging steels fabricated by
SLM, which are renowned to improve the ductility of steels with the martensite structure. The tensile
ductility of SLM-fabricated alloys (Al, Ni, and Co alloys [31]) depends on the building direction,
which is responsible for preferential fracturing along the melt pool boundaries [16,17,32]. However,
in the SLM-fabricated maraging steel, the tensile ductility is apparently independent of direction [33]
because the retained γ phase that is localized at the melt pool boundaries could suppress the
preferential fracture along the melt pool boundaries. Consequently, controlling the retained γ phase
inside the lath martensite structure could improve the mechanical performance of SLM-fabricated
maraging steel. The proposed mechanism of microstructure development provides new insights
about microstructure control by subsequent heat treatments. Furthermore, it has been interestingly
reported that introducing carbides in the alloy powder enhances the formation of γ phase during
the SLM process [34]. To control the microstructure (in particular the distribution of γ phase) by
laser-scanning strategies during the SLM process and subsequent heat-treatments, it must await our
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future works to fundamentally investigate the austenite reversion of the SLM-fabricated maraging
steel at elevated temperatures.
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5. Summary

In this study, we have characterized microstructure and its associated crystallographic features
of bulk maraging steels fabricated by selective laser melting (SLM) combined with a powder
bed technique. The fabricated sample exhibited characteristic melt pools in which the regions
had locally melted and rapidly solidified. A major part of these melt pools corresponded with
the α- matrix, which exhibited a lath martensite structure with a high density of dislocations.
A number of fine retained γ phase with a <001> orientation along the build direction was often
localized around the melt pool boundaries. The orientation relationship of these fine γ grains with
respect to the adjacent α grains in the martensite structure was determined as (111)γ//(011)α
and [-101]γ//[-1-11]α (Kurdjumov–Sachs orientation relationship). Utilizing the obtained results,
we inferred the microstructure development of maraging steels during the SLM process. These results
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