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Abstract: Deformation behavior and microstructure evolution of NiTiCu shape memory alloy (SMA),
which possesses martensite phase at room temperature, were investigated based on a uniaxial
compression test at the temperatures of 700~1000 ◦C and at the strain rates of 0.0005~0.5 s−1.
The constitutive equation of NiTiCu SMA was established in order to describe the flow characteristic of
NiTiCu SMA, which is dominated by dynamic recovery and dynamic recrystallization. Dislocations
become the dominant substructures of martensite phase in NiTiCu SMA compressed at 700 ◦C.
Martensite twins are dominant in NiTiCu SMA compressed at 800 and 900 ◦C. Martensite twins are
not observed in NiTiCu SMA compressed at 1000 ◦C. The microstructures resulting from dynamic
recovery or dynamic recrystallization significantly influences the substructures in the martensite
phase of NiTiCu SMA at room temperature. Dislocation substructures formed during dynamic
recovery, such as dislocation cells and subgrain boundaries, can suppress the formation of twins in
the martensite laths of NiTiCu SMA. The size of dynamic recrystallized grains affects the formation
of martensite twins. Martensite twins are not easily formed in the larger recrystallized grain, since the
constraint of the grain boundaries plays a weak role. However, in the smaller recrystallized grain,
martensite twins are induced to accommodate the transformation from austenite to martensite.

Keywords: shape memory alloy; NiTiCu alloy; constitutive behavior; phase transformation; microstructure

1. Introduction

NiTi shape memory alloys (SMAs) have deserved increasing attention in the engineering field
because they have shape memory effect [1]. With a view to widening the application of NiTi SMA in
the domain of engineering, third elements are added to the binary NiTi SMA in order to change the
transformation temperature or hysteresis [2–6]. For example, Cu element is added to binary NiTi SMA
so as to significantly lower the phase transformation hysteresis, which lays the foundation for the
application of an actuator or micro-electro-mechanical system (MEMS) [7,8]. As a consequence, over
the last few decades, many researchers have paid more attention to NiTiCu SMAs [9–12]. It is well
known that plastic deformation substantially influences the microstructures and transformation
behavior of NiTi-based SMAs [13,14]. In particular, thermomechanical processing, especially plastic
working, is an important step in manufacturing NiTi-based SMA products [15]. Consequently,
it is very important to understand deformation behavior as well as microstructural evolution of
NiTi-based SMAs at high temperatures [16–20]. Up to date, many scholars have devoted themselves
to studying the flow behavior of NiTi-based SMAs at high temperatures based on the Arrhenius-type
constitutive equation [21–25], which lays the foundation for clarifying deformation mechanisms of
NiTi-based SMAs.

Metals 2017, 7, 294; doi:10.3390/met7080294 www.mdpi.com/journal/metals

http://www.mdpi.com/journal/metals
http://www.mdpi.com
http://dx.doi.org/10.3390/met7080294
http://www.mdpi.com/journal/metals


Metals 2017, 7, 294 2 of 10

In the present study, the deformation behavior and microstructure evolution of Ni45Ti50Cu5 (at %)
SMA were investigated based on a uniaxial compression test, where the temperatures range from
700 to 1000 ◦C and the strain rates range from 0.0005 to 0.5 s−1. In particular, the Ni45Ti50Cu5 SMA
of interest possesses martensite phase at room temperature. Therefore, it is of great significance to
investigate the deformation behavior and microstructure evolution of Ni45Ti50Cu5 SMA.

2. Materials and Methods

As-rolled Ni45Ti50Cu5 (at %) SMA bar with a diameter of 30 mm was commercially received from
Xi’an Saite Metal Materials Development Co., Ltd. (Xi’an, China). The phase transformation of the
as-rolled NiTiCu SMA was measured using Pyris Diamond type differential scanning calorimetry
(DSC, Perkin Elmer Inc., Waltham, MA, USA). The DSC test was carried out in the range of
−150~150 ◦C, where the heating and cooling steps were 10 ◦C/min. The DSC curve of the as-rolled
NiTiCu SMA can be found in Reference [26]. The phase transformation temperatures of the as-rolled
NiTiCu SMA were as follows: Ms = 53.8 ◦C, M f = 8.3 ◦C, As = 73.1 ◦C and A f = 113.5 ◦C.

NiTiCu SMA samples, which possess a height of 9 mm and a diameter of 6 mm,
were electro-discharge machined from the as-rolled NiTiCu SMA bar. Subsequently, they were used
for the compression test. An INSTRON-5500R universal material testing machine (Instron Corporation,
Norwood, MA, USA) was used for implementing the compression tests. The NiTiCu SMA samples
were compressed by the deformation extent of 60%, where the temperatures range from 700 to
1000 ◦C and the strain rates range from 0.0005 to 0.5 s−1. Subsequently, all of the compressed
NiTiCu SMA specimens were put into ice water for the purpose of guaranteeing complete martensite
phase transformation.

As for the as-rolled and compressed NiTiCu SMA samples, the microstructures were captured
by transmission electron microscopy (TEM). The NiTiCu SMA samples used for TEM observation
were made into foils with the thickness of 70 µm by means of mechanical grinding. Subsequently,
the foils were thinned by twin-jet polishing in an electrolyte which is composed of 6% HClO4,
34% CH3(CH2)3OH, and 60% CH3OH by volume fraction. Finally, the NiTiCu SMA samples for
TEM observation were characterized by virtue of an FEI TECNAI G2 F30 microscope (FEI Corporation,
Hillsboro, OR, USA). TEM observation results indicate that the substructure of martensite phase
contains martensite laths and martensite twins, as shown in Figure 1.
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Figure 1. Transmission electron microscope (TEM) micrographs of as-rolled NiTiCu shape memory
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3. Results and Discussion

3.1. Deformation Behavior of NiTiCu SMA

Figure 2 indicates the true stress-strain curves of NiTiCu SMA undergoing uniaxial compression
at the temperatures ranging from 700 to 1000 ◦C and the strain rates ranging from 0.0005 to 0.5 s−1.
As can be seen in Figure 3, the flow stress of NiTiCu SMA increases with increasing strain rate.
Furthermore, elevating the temperature contributes to lowering the flow stress of NiTiCu SMA. It can
be noted from the stress-strain curves of NiTiCu SMA that dynamic recovery (DRV) or dynamic
recrystallization (DRX) can occur during compression deformation.
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Based on the stress-strain curves of NiTiCu SMA at high temperatures, it can be found that
the plastic flow of NiTiCu SMA at high temperatures is dependent on the strain rates as well as
the deformation temperatures. As a consequence, the constitutive equation of NiTiCu SMA at high
temperatures is established according to the Arrhenius type equation [22–25], namely:

.
ε = A[sinh(ασ)]n exp(− Q

RT
) (1)

where
.
ε is the strain rate, σ the flow stress, T the absolute temperature, Q the activation energy, R the

universal gas constant (8.314 J·mol−1·K−1), and A, α and n the material constants.
At a low stress level, Equation (1) is approximately expressed by:

.
ε = A1σn exp

(
− Q

RT

)
, ασ ≤ 0.83373 (2)

where A1 is still a material constant and A1 = Aαn.
At a high stress level, Equation (1) is approximately simplified as:

.
ε = A2 exp(βσ) exp

(
− Q

RT

)
, ασ ≤ 1.60944 (3)

where A2 and β remain the material constants and A2 = A
2n , β = nα.

It is generally accepted that the Zener-Hollomon parameter Z, which is viewed as the function of
strain rate and temperature, can be expressed as follows:

Z =
.
ε exp

(
Q

RT

)
(4)

Substituting the parameter Z into Equation (1) leads to:

Z = A[sinh(ασ)]n (5)

The following equation can be obtained by transforming Equation (5):

σ =
1
α

ln


(

Z
A

) 1
n
+

√√√√(Z
A

) 2
n
+ 1

 (6)

As a consequence, Equation (6) is the constitutive equation which is expressed by the parameter Z.
The constitutive equation of NiTiCu SMA can be obtained after the values of A, α, n, and Q can

be determined on the basis of the experimental data. In the present work, the peak stress is used to
determine the corresponding parameters, as shown in Table 1.

Table 1. Peak stress of NiTiCu SMA at the various strain rates and deformation temperatures (MPa).

.
ε/s−1 ln

.
ε

T/K

973 1073 1173 1273

0.0005 −7.6009 80.878 50.8828 33.95 23.8579
0.005 −5.2983 114.8027 79.0071 56.1214 46.1041
0.05 −2.9957 156.7221 109.9611 85.8336 61.5655
0.5 −0.6931 229.1717 160.2669 118.3127 98.6517

To solve the value of n, the following equation can be obtained by employing the natural logarithm
for Equation (2):
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ln
.
ε = ln A1 + n ln σ− Q

RT
(7)

According to Equation (7), the value of n can be obtained by means of the linear fitting method on
the basis of experimental data, as shown in Figure 3a. The value of n is determined as 5.7988.

Prior to obtaining the value of α, the value of β needs to be determined by employing the natural
logarithm of Equation (3), and consequently the following equation is obtained:

ln
.
ε = ln A2 + βσ− Q

RT
(8)

In the same manner, the value of n can be obtained by virtue of the linear fitting method
on the basis of experimental data, as shown in Figure 3b. As a consequence, the value of β is
calculated as 0.07059. Finally, according to the values of n and β, the value of α can be determined as
α = β/n = 1.217× 10−2 MPa.

In order to further modify the value of n, the following equation can be obtained by employing
the natural logarithm of Equation (1):

ln
.
ε = ln A + n ln[sinh(ασ)]− Q

RT
(9)

Similarly, the value of n can be modified as 4.1318 according to the linear fitting method on the
basis of experimental data, as shown in Figure 3c.

For the purpose of obtaining the value of Q, in the case of the given strain rates, the following
equation can be obtained by differentiating T−1 in Equation (9):

Q = nR
(

∂ ln[sinh(ασ)]

∂T−1

)
.
ε

(10)

The value of Q can be determined as 198.84 × 103 J·mol−1 by combining the modified value of n
and the value of R with the fitting value derived from Figure 3d.

For the purpose of obtaining the value of A, the following equation can be obtained by employing
the natural logarithm of Equation (5):

ln Z = ln A + n ln[sinh(ασ)] (11)

According to Equation (11), the value of ln A can be determined as 16.3994 based on the
experimental data, as shown in Figure 4, and consequently the value of A is further calculated
to be 1.3249 × 107.
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As a consequence, the constitutive equation of NiTiCu SMA is represented by the following
two equations:

.
ε = 1.3249× 107[sinh(1.217× 10−2σ)]

4.1318
exp

(
−1.9884× 105

RT

)
(12)

σ = 82.17 ln

(Z
A

) 1
4.1318

+

√√√√(Z
A

) 2
4.1318

+ 1

 (13)

3.2. Microstructural Evolution of NiTiCu SMA

The microstructural evolution of several representative NiTiCu SMA samples, which undergo
compression deformation, is captured in order to reveal the corresponding plastic deformation
mechanisms at high temperatures. It can be generally accepted that DRV or DRX can take place
when metallic alloy experiences plastic deformation at elevated temperatures. In the case of DRX,
in particular, the size of the recrystallized grains increases with increasing the deformation temperature
or decreasing the strain rate. According to the phase transformation temperatures of NiTiCu SMA,
it can be noted that when NiTiCu SMA samples are subjected to compression deformation at high
temperatures and are quenched into the ice water, they are transformed from B2 austenite into B19′

martensite because of complete martensite phase transformation.
For the purpose of better revealing the martensite structure of NiTiCu SMA, TEM micrographs of

the NiTiCu SMA samples, which are subjected to compression at the temperatures of 700~1000 ◦C at
the strain rate of 0.005 s−1, were captured, as shown in Figures 5–8.

It can be found that dislocation substructures, such as dislocation cells and subgrain boundaries,
appear in the martensite phase of NiTiCu SMA subjected to compression deformation at 700 ◦C,
as shown in Figure 5a. It can thus be concluded that dislocations become the dominant substructures
of martensite phase in the NiTiCu SMA specimen undergoing compression at 700 ◦C. Martensite twins
are dominant in the NiTiCu SMA specimen undergoing compression at 800 and 900 ◦C, as shown in
Figures 6 and 7. However, martensite twins are not observed in the NiTiCu SMA specimen undergoing
compression at 1000 ◦C, as shown in Figure 8. According to the aforementioned analysis, it is noted
that DRV or DRX can occur in NiTiCu SMA samples subjected to compression deformation at high
temperatures, which depends on the deformation temperatures. It can be deduced that DRV or DRX
microstructures have an influence on the substructures of martensite phase of NiTiCu SMA. In general,
DRV is the dominant mechanism when NiTi-based SMAs are subjected to compression deformation
at 700 ◦C [21]. As a consequence, DRV leads to the deformation of grains and thus dislocation
substructures, such as dislocation cells and subgrain boundaries, are formed in the grain interior.
These dislocation substructures are kept in the martensite phase of the NiTiCu SMA sample during
subsequent martensite phase transformations. These retained dislocation substructures suppress
the formation of martensite twins. It can be generally accepted that complete DRX can take place in
NiTi-based SMAs suffering from compression at temperatures above 800 ◦C [18,21]. It is proposed
that the size of the dynamic recrystallized grains influences the formation of martensite twins in
NiTiCu SMAs. In general, the size of the dynamic recrystallized grains increases with increasing the
deformation temperature [18]. Furthermore, it is generally accepted that the occurrence of martensite
twins aims to accommodate the formation of martensite phase during the transformation from
B2 austenite to B19′ martensite. It can be inferred that when the dynamic recrystallized grains
possess a smaller size, the grain boundaries are able to suppress the formation of martensite phase.
Consequently, the occurrence of martensite twins contributes to the formation of martensite phase.
When the dynamic recrystallized grains possess a larger size, there is sufficient space to guarantee the
formation of martensite phase in the grain interior. Therefore, martensite twins are not easily formed
in NiTiCu SMA samples subjected to compression deformation at 1000 ◦C.
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4. Conclusions

The deformation behavior and microstructure evolution of NiTiCu SMA, which possesses
martensite phase at room temperature, were investigated based on a uniaxial compression test at the
temperatures of 700~1000 ◦C and at the strain rates of 0.0005~0.5 s−1. The following conclusions can
be drawn:

(1) The constitutive equation of NiTiCu SMA based on the Zener-Hollomon parameter was
established in order to describe the flow characteristic of NiTiCu SMA. The results show that the
flow stress of NiTiCu SMA depends on the strain rates. Depending on temperatures, DRV or DRX
are the main mechanisms for the plastic deformation of NiTiCu SMA at elevated temperatures.

(2) The microstructures resulting from DRV or DRX have a significant influence on the substructures
in the martensite phase of the NiTiCu SMA sample at room temperature. Dislocations become
the dominant substructures of martensite in the NiTiCu SMA specimen undergoing compression
at 700 ◦C. Martensite twins are dominant in the NiTiCu SMA specimen undergoing compression
at 800 and 900 ◦C. Martensite twins are not observed in the NiTiCu SMA specimen undergoing
compression at 1000 ◦C.

(3) Dislocation substructures resulting from DRV, such as dislocation cells and subgrain boundaries,
are able to suppress the formation of martensite twins in the martensite laths of NiTiCu SMA.



Metals 2017, 7, 294 9 of 10

The size of dynamic recrystallized grains has an effect on the formation of martensite twins.
Martensite twins are not easily formed in larger dynamic recrystallized grain, since the constraint
of the grain boundaries plays a weak role. However, in smaller dynamic recrystallized grain,
martensite twins are induced in order to accommodate the occurrence of the transformation from
austenite phase to martensite phase.
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