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Abstract: Two environmental friendly triazinedithiol inhibitors 6-diallylamino-1,3,5-triazine-2,4-
dithiol monosodium (DAN) and 6-dibutylamino-1,3,5-triazine-2,4-dithiol monosodium (DBN) were
synthesized and their corrosion inhibition for aluminum alloy in a 1 M HCl solution was studied
using weight loss methods, electrochemical measurements, and scanning electron microscopy
(SEM) techniques. The inhibition efficiency of both DAN and DBN improved with increases in
inhibitor concentration but decreased with increases in temperature. Results from potentiodynamic
polarization and EIS showed that the corrosion inhibition efficiency of DAN and DBN was
excellent. The adsorption of inhibitors on the aluminum alloy surface followed Langmuir adsorption
isotherms. Morphology observation revealed that the aluminum alloy was greatly protected by
these triazinedithiol inhibitors. Further, density functional theory (DFT) was used to investigate the
relationships between molecular structural and inhibition efficiency.
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1. Introduction

Corrosion of aluminum and its alloys has attracted much attention from many researchers due to
their high mechanical intensity, low cost, low density, and good machinability, and they have been
widely used in industrial applications, especially in constructions, electronics, packing, storage, and
transportation equipment and machinery [1–6]. Corrosion is an electrochemical process and is often
activated by industrial processes such as acid descaling, acid pickling, acid cleaning, and oil well
acidizing [7]. Efforts have been made to protect the integrity of the aluminum surface in an aggressive
acid medium or other corrosive environment. In recent decades, the addition of inhibitors has been
considered to be the most common approach to hinder the corrosion of aluminum [7–10].

Many organic compounds have been widely reported as corrosion inhibitors of aluminum
in acid solution, such as aliphatic, aromatic amines, and nitrogen heterocyclic molecules [11–15].
However, some of these compounds are costly and not easily biodegradable. As high reactive, low
cost, high solubility, and environmentally friendly compounds, triazinedithiol, and its monosodium
salt have been reported to prepare the effective corrosion inhibitive film on metal surfaces by
electrochemical deposition [16–19]. The special tautomer of thiol–thione with highly electronegative
atoms like S and O, and the N-containing heterocyclic conjugate system, benefit the triazinedithiol
molecules to adsorb on metallic surface. However, the research on triazinedithiol inhibitors for
aluminum alloy is seldom reported. The purpose of present work is to investigate and compare
the corrosion inhibition action of 6-diallylamino-1,3,5-triazine-2,4-dithiol monosodium (DAN) and
6-dibutylamino-1,3,5-triazine-2,4-dithiolmonosodium (DBN), and their protective performance for
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aluminum alloy (AA5052) in 1 M HCl was studied utilizing a variety of electrochemical tests, weight
loss methods, scanning electron microscopy (SEM) techniques, and quantum chemistry analysis.

2. Materials and Methods

2.1. Materials and Sample Preparation

The aluminum alloy sheet AA5052 (Cu: 0.1%, Si: 0.2%, Fe: 0.4%, Mn: 0.1%, Mg: 2.8%, Zn: 0.1%, Cr:
0.3%, others: 0.15%) was mechanically press-cut into specimens of dimension 30 mm × 50 mm × 0.3 mm.
All test plates of AA5052 were ultrasonically degreased in the acetone for 15 min, and treated by the
immersion in alkaline solution (15 g Na2CO3 + 15 g Na2PO4 per liter) at 60 ◦C for the debinding
process [20]. After that, the aluminum alloy specimens were washed thoroughly with distilled water
and dried with nitrogen. The specimens with an exposed area of 1 cm2 were used for potentiodynamic
polarization and electrochemical impedance spectroscopy. AR (analytical reagent) grade hydrochloric
acid and double distilled water were used to prepare the corrosive media. Molecular structures
of DAN and DBN are displayed in Figure 1. In this paper, DAN was synthesized by the reaction
between 6-N,N-diallylamino-1,3,5-triazine-2,4-dichloride and NaSH, while DBN was synthesized by
the reaction between 6-N,N-dibutylamino-1,3,5-triazine-2,4-dichloride and NaSH according to the
method in previous studies [19].
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Figure 1. Molecule structures of two triazinedithiols of (a) 6-diallylamino-1,3,5-triazine-2,4-dithiol
monosodium (DAN) and (b) 6-dibutylamino-1,3,5-triazine-2,4-dithiol monosodium (DBN).

2.2. Weight Loss Test

The aluminum alloy specimens in triplicate were immersed in a 1 M HCl solution with different
concentration (0.01–1.00 mM) of inhibitors for 2 h. The temperature was controlled by a thermostat
aqueous bath at 30 ◦C. Furthermore, the aluminum alloy specimens were immersed into a 1 M HCl
solution with the presence of 1 mM inhibitors, and the experiments were conducted over the
temperature range from 30 ◦C to 50 ◦C. For all weight loss tests, the volume of prepared solution is
200 mL, and buffer solutions of citric acid/sodium citrate were used to adjust the pH value of tested
solution between 6 and 6.5. After the immersion, all specimens were brought out from the solution,
scrubbed with bristle brush under running water, then washed thoroughly with distilled water, dried
in acetone, and weighed accurately. At least three samples were tested and the average value was
obtained. The corrosion rates (CR g·m−2·h−1) and inhibition efficiency (ηw %) were determined from
the following equations:

CR =
W0 − Wi

ST
(1)

ηw =
C0

R − Ci
R

C0
R

× 100 (2)
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where S is the area of aluminum alloy specimen (m2); T is the exposure time (h); W0 and Wi are the
weight loss value in the absence and presence of inhibitor. C0

R and Ci
R are the corrosion rate (g·m−2·h−1)

in the absence and presence of inhibitor molecules, respectively.

2.3. Electrochemical Measurements

The potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) measurements
were carried out using CHI 660C electrochemical work station (CHI Instruments; Shanghai, China)
in a three-electrode cell system with a saturated calomel electrode (SCE) as reference electrode and
a rectangular piece of graphite as counter electrode. The working electrode was AA5052. Prior to
any electrochemical measurements, the immersion in the solution for 1 h was necessary for the open
circuit potential to reach a steady state. EIS was carried out at steady open circuit potential disturbed
with amplitude of 10 mV alternative current sine wave in the frequency range of 100 mHz to 10 kHz.
The polarization curves were obtained by changing potential from −250 mV to +250 mV versus OCP
with a scan rate of 0.5 mV/s.

2.4. Scanning Electron Microscopy (SEM)

The surfaces morphologies of the aluminum alloy immersed in a 1 M HCl solution for 2 h with
and without the triazinethiol inhibitors were observed via SEM (JSM-6360LV, JEOL, Tokyo, Japan) at
an accelerating voltage of 20 kV, respectively.

2.5. Quantum Chemical Calculation

Theoretical calculations were performed using DFT (density functional theory) at B3LYP/6-31G
(d, p) basis set level with Gaussian 03 program [20]. Complete geometrical optimizations of DAN and
DBN molecules structure, the highest occupied molecular orbital (HOMO), and the lowest unoccupied
molecular orbital (LUMO) were obtained by using Gauss View. Some main quantum chemical indexes
such as energy of HOMO (EHOMO), energy of the LUMO (ELUMO), and energy gap ∆Egap between
EHOMO and ELUMO were calculated and discussed.

3. Results

3.1. Weight Loss Study

3.1.1. Effect of Concentration

The inhibition efficiency (ηw) and corrosion rate (CR) of aluminum alloy acquired from the weight
loss method in a 1 M HCl solution contained different concentrations of inhibitors (0.01–1.00 mM) at
30 ◦C are presented in Table 1. The results clearly show that the inhibition efficiency increases and
the corrosion rate decrease by increasing the concentration of studied inhibitors. When concentration
of inhibitors varies from 0.01 mM to 1 mM, there is an increase in efficiency from 78.41% to 98.56%
for DAN, and an increase in efficiency from 43.79% to 99.21% for DBN (Table 1). This suggests that
the presence of DAN or DBN acts as inhibitor retarding the corrosion of aluminum in a hydrochloric
acid solution. When the concentration of inhibitor is low, more molecules are needed to adequately
cover the aluminum surface. We also found that further enhancement in concentration did not bring
any significant changes in the performance of inhibitors, indicating that the achievement of a limiting
value. The effect is attributed to the amassing of inhibitor molecules onto the positively charged metal
surface leading a decrease in direct contact with metal and corrosive environment. Similar results were
found in other studies about different inhibitors for aluminum alloy in hydrochloric acid [21].
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Table 1. Corrosion parameters for aluminum alloy in a 1 M HCl solution with inhibitors concentrations
range from 0.01 mM to 1.00 mM at 30 ◦C.

Conc. DAN DBN

(mM) CR (g·m−2·h−1) ηw (%) CR (g·m−2·h−1) ηw (%)

Blank 90.90 82.15
0.01 20.00 78.41 46.18 43.79
0.03 7.57 91.60 12.94 84.25
0.05 4.98 94.56 3.40 95.86
0.10 4.04 95.56 2.09 97.46
0.50 1.60 98.24 1.10 98.66
1.00 1.31 98.56 0.65 99.21

3.1.2. Effect of Temperature

Temperature has great influence on the corrosion rate of metals. The effect of solution temperature
(30–50 ◦C) on corrosion rate and inhibition efficiency is shown in Figure 2. Compared with blank
solution, the corrosion rate was significantly decreased in presence of inhibitors. It means that the
addition of DAN and DBN compounds greatly inhibits the corrosion of aluminum alloy in 1 M HCl.
The decrease in inhibition efficiency and increase in corrosion rate was observed with increase in
temperature from 30 to 50 ◦C in the presence of 1 mM inhibitor, which may be attributed to the fact
that the adsorption processes were spontaneous and irreversible with heat evolution, and the increase
in temperature was not beneficial to the adsorption. The influence may also come from the weakening
of electrostatic adsorption on the metal surface and the aggravation of desorption of the inhibitor
molecule from the metal surface when the temperature increases [20–22]. In addition, the metallic
corrosion in acidic environments is usually accompanied by the release of H2, and the adsorption
process of the inhibitor could be affected by the agitation caused by the acceleration of H2 evolution
rates at higher temperature and lead to the decrease of corresponding inhibition efficiency [23].
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3.2. Electrochemical Measurements

3.2.1. OCP Measurement

Prior to each polarization or EIS experiment, the working electrodes were immersed in a 1 M HCl
solution for 1 h to access the free corrosion potential or the quasi-stationary Eoc value. The plots of Eoc

vs. time of AA5052 in the absence and presence of inhibitors for 1 h are given in Figure 3. For all test
conditions, open circuit potential change (OCP) initially shifts fast towards a negative direction up
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to 200 s. However, it shows a very slow decline for the rest of the experiment time and finally attains a
steady value in approximately 1 h. The slight oscillations in OCP curves revealed that destruction and
formation of corrosion product layer occurred at the metal surface [24]. The gradient shows that the
surfaces of metals cannot achieve true steady states. In spite of this, the phenomenon indicates that
there is a negligible change of OCP during the measurement period.
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Figure 3. Open circuit potential change of AA5052 aluminum alloy in 1 M HCl without inhibitor
(Blank) and with different inhibitors added (DAN or DBN), respectively.

3.2.2. Potentiodynamic Polarization

Potentiodynamic polarization profiles for AA5052 with different concentrations of DAN and
DBN are presented in Figure 4. The corrosion kinetics parameters such as corrosion potential (Ecorr),
corrosion current density (Icorr), and cathodic and anodic Tafel slopes (βa, βc) were given in Table 2,
where the inhibition efficiency ηp (%) was calculated by the following equation:

ηp(%) =
I0
corr − Ii

corr

I0
corr

× 100 (3)

where I0
corr and Ii

corr represent the corrosion current densities of AA5052 in the absence and the presence
of inhibitor (DAN or DBN), respectively.Metals 2017, 7, 44 6 of 11 
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Compared with the blank solution, the cathodic currents were significantly decreased with the
presence of inhibitors and the addition of these compounds made Ecorr shifted towards negative
potentials (Figure 4), which suggested that DAN and DBN greatly reduced the hydrogen evolution
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reaction, but their inhibition effects on the anodic dissolution were unobvious. Besides, the addition
of DAN and DBN shift the cathodic and anodic curves to lower values, while the concentration of
inhibitors was increased.

Table 2. Tafel polarization parameters of the corrosion for aluminum alloy in 1 M HCl containing
different concentrations of DAN and DBN.

Inhibitor C (mM) Ecorr
(mV/SCE)

Icorr
(µA·cm−2)

βa
(mV·dec−1)

βc
(mV·dec−1) ηp (%)

Blank −735.90 2852.40 118.30 90.50
DAN 0.01 −742.10 835.30 128.30 88.70 70.72

0.05 −739.00 316.50 136.50 96.40 88.90
0.10 −740.40 251.90 140.10 90.80 90.17
0.50 −742.10 145.60 143.30 93.90 94.90
1.00 −742.90 63.60 147.40 107.50 97.77

DBN 0.01 −740.40 1198.40 121.20 101.20 57.99
0.05 −741.20 468.50 128.90 98.40 83.58
0.10 −741.40 166.80 136.30 96.30 95.91
0.50 −746.50 52.70 148.30 97.60 98.15
1.00 −746.80 33.50 143.00 104.20 98.83

From Table 2, it is clearly seen that, when more inhibitors were added into the corrosive
solution, the corrosion current density decreased and the inhibition efficiency increased. When the
concentration of DAN or DBN reached 1 mM, the lowest Icorr values of 63.6 µA·cm−2 and 33.5 µA·cm−2

were obtained, and the inhibition efficiency achieved 97.77% and 98.83%, respectively. Generally,
a compound is considered to anodic or cathodic type when the displacement in Ecorr is greater than
85 mV; otherwise, inhibitor is considered as a mixed type [25]. For DAN and DBN, the Ecorr values shift
towards more a negative direction compared with the blank solution, but the change is not significant
when the maximum displacement of Ecorr values is 10.9 mV, which indicated that DAN and DBN
belonged to mixed-type inhibitors, mainly inhibiting the cathodic processes.

3.2.3. Electrochemical Impedance Spectroscopy (EIS)

Nyquist plots for aluminum alloy in the absence and presence of various concentrations of DAN
and DBN are given in Figure 5. The impedance spectra are consisted of capacitive loops at higher
frequency and inductive loops at lower frequency. The presence of depressed semicircle in Nyquist
plot across the studied frequency range indicates that a charge transfer process mainly controls the
corrosion of aluminum. In other literature, similar plots have been reported for the corrosion of
aluminum alloys in HCl solutions [20]. The inductive loop is generally attributed to the relaxation
process in the oxide film covered on metal surface [26]. The reasons behind the deviations from
perfect semicircles are usually involved with the frequency dispersion of interfacial impedance, which
can be attributed to various kinds of physical phenomena such as active sites, surface roughness,
and non-homogeneity of the solids [27]. The diameter of the capacitive loop is enlarging gradually
with increasing concentrations of inhibitor, indicating that the charge transfer resistance is increased
and the adsorbed inhibitor forms a more compact monolayer on metal surface with an increasing
amount of inhibitor.
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(a) DAN and (b) DBN.

3.3. Surface Morphology

SEM technique was employed to further prove the corrosion resistance ability of DAN and DBN,
and the surface observation images of aluminum alloy after a 2 h exposure in a HCl solution without
and with inhibitors are shown in Figure 6. Before immersion, the bare aluminum plate looks very
smooth (Figure 6a). In contrast, in the absence of inhibitor, the AA5052 presented a very rough surface
covered with a huge amount of deep cracks and large holes, which suggests strong damage and a
severe dissolution of aluminum alloy in contact with aggressive solution (Figure 6b). Nevertheless,
in Figure 6c,d, the dissolution rate of aluminum alloy was substantially inhibited by DAN and DBN,
exhibiting a comparative smooth surface with a few small pits. Therefore, it is concluded that the
regular distribution of the DAN or DBN molecules adsorbed on AA5052 surface generates consistent
protective layers, which effectively prevent HCl molecules from penetrating into the aluminum surface.
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3.4. Adsorption Isotherm

The interactions between the inhibitor molecules and the aluminum alloy surface can be investigated
by adsorption isotherm [28]. To determine the adsorption mode, various isotherms including Langmuir,
Frumkin, Temkin, and Freundlich were considered, and finally the Langmuir mode was found to be
the most suitable adsorption isotherm. The linear relationships of C/θ versus C for DAN and DBN
inhibitors are shown in Figure 7.
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The linear regression coefficients (R2) are quite equal to 1, as shown in Figure 7, indicating that the
adsorption of studied triazine derivatives on aluminum alloy surface obeys the Langmuir adsorption
isotherm at 30 ◦C and 35 ◦C. The isotherm can be represented as follows:

c
θ
=

1
Kads

+ c (4)

Kads is the adsorptive equilibrium constant, c is the corrosion inhibitor concentration, and the fractional
surface coverage θ can be easily calculated from the weight loss results (Table 1).

The equilibrium constants Kads are related to the standard adsorption free energy (∆Gθ) as shown
in the following equation:

Kads =
1

55.5
exp(

−∆Gθ

RT
) (5)

where 55.5 (mol·L−1) is molar concentration of water in solution, T (K) is the absolute temperature,
and R (J·mol−1·K−1) is the molar gas constant. The Kads and ∆Gθ values are given in Table 3.
The negative values of ∆Gθ indicate that the inhibitor molecules are spontaneously adsorbed on
the AA5052 surface to form a stable layer. In addition, the high Kads value represents a strong
adsorption of the inhibitor on aluminum alloy surface [29]. The strong interaction of inhibitors with
aluminum alloy can be attributed to the presence of electronegative elements like nitrogen and sulfur,
plus the π electrons on the triazine heterocyclic ring [30].

Table 3. Values of Kads and ∆Gθ of DAN and DBN adsorbed on AA5052 at 30 ◦C and 35 ◦C.

Inhibitor T (◦C) Kads (L·mol−1) ∆Gθ (kJ·mol−1)

DAN 30 ◦C 370,370 −42.4
35 ◦C 136,990 −40.6

DBN 30 ◦C 169,490 −40.5
35 ◦C 22,830 −36.0

In general, the ∆Gθ values of −40 kJ·mol−1 is accepted as threshold value between chemisorption
and physisorption [30]. The ∆Gθ value more negative than −40 kJ·mol−1 may be indicative of the
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sharing or transfer of electrons from the inhibitor molecules to the metal surface, while the value less
negative than −20 kJ·mol−1 suggests a physisorption [31]. As mentioned above, it was concluded that
the chemical adsorption was most possible for DAN at 30 ◦C or 35 ◦C and DBN at 30 ◦C based on the
calculated ∆Gθ values of the present study displayed in Table 3. At 35 ◦C, the adsorption mechanism
of DBN involves both physical and chemical processes with the calculated ∆Gθ value of −36 kJ/mol.

3.5. Quantum Chemical Calculation

Quantum chemical calculations have proven to be a very powerful tool for studying the corrosion
inhibition mechanism. The optimized geometry of DAN and DBN are shown in Figure 8, and the main
quantum chemical parameters are displayed in Table 4. It is observed that the electron densities of
HOMO location in studied molecules are mostly distributed near the triazine heterocyclic rings, thiols,
and the double bond between two carbons. It is well established in the literature that the EHOMO often
associated with the electron donating ability of a molecule. The high value of the HOMO energy is
likely to indicate the tendency of a molecule to donate electrons to appropriate acceptor molecules
with low-energy, empty molecular orbitals. Similarly, the value of ELUMO reflects the ability of the
molecule to accept electrons [32]. A molecule with a lower energy gap means a better inhibition
ability, because the value of energy needed to remove an electron from the last occupied orbital
is lower [33]. From Table 4, a higher EHOMO value and lower energy gap were found in the DBN
molecule, which demonstrated that DBN had an anti-corrosion capability superior to DAN. However,
in the above experimental results, both DAN and DBN exhibited excellent corrosion performance,
and the difference in inhibitive efficiency between them is not obvious. This may be related to the
influence of their chemical structures. From Figure 8, we can find branched carbon chains in the DBN
molecule structure that are longer than those of DAN. A larger space steric hindrance may influence
the adsorption process of the inhibitor molecule [17], and the theoretical calculations that can only be a
reference for the realities are usually more complex.
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Figure 8. Frontier molecule orbital density distribution and optimized structures of DAN (a-structure;
b-HOMO; c-LUMO) and DBN (d-structure; e-HOMO; f-LUMO).

Table 4. Quantum parameters for DAN and DBN a.

Compound EHOMO (eV) ELUMO (eV) ∆Egap (eV)

DAN −3.456 −0.789 2.667
DBN −2.748 −0.844 1.904

a EHOMO is energy of HOMO, ELUMO is energy of LUMO, and ∆Egap = EHOMO − ELUMO.
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4. Conclusions

Two triazinedithiol compounds (DAN and DBN) as corrosion inhibitors for aluminum alloy
in a 1 M HCl solution were investigated. For DAN and DBN, their inhibition efficiency increased
with increases in inhibitor concentration and they belonged to mixed-type inhibitors predominantly
retarding the cathodic reaction. The inhibiting efficiencies determined by weight loss methods,
potentiodynamic polarization testing, and EIS measurements are all in good agreement. The adsorption
processes of DAN and DBN molecules followed the Langmuir adsorption isotherm. The calculated
∆Gθ values indicated that these inhibitors were spontaneously absorbed on the aluminum alloy
surface and were more inclined to a chemisorption mechanism at 30 ◦C. The surface morphologies
images were good proof for the reduction of dissolution of aluminum alloy ascribed to the formation
of protective DAN/DBN film on the metal surface. In addition, the results were further verified by
quantum chemical calculation, and these data support the good inhibition tendency of DAN and DBN.
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