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Abstract: The joining of porous Si3N4 to dense Si3N4 ceramics has been successfully performed using
mixed RE2O3 (RE = Y or Yb), Al2O3, SiO2, and α-Si3N4 powders. The results suggested that the
α-Si3N4 powders partly transformed into β-SiAlON and partly dissolved into oxide glass to form
oxynitride glass. Thus, composites of glass/β-SiAlON-ceramic formed in the seam of joints. Due to
the capillary action of the porous Si3N4 ceramic, the molten glass solder infiltrated into the porous
Si3N4 ceramic side during the joining process and formed the “infiltration zone” with a thickness of
about 400 µm, which contributed to the heterogeneous distribution of the RE–Si–Al–O–N glasses in
the porous Si3N4 substrate. In-situ formation of β-SiAlON in the seam resulted in a high bonding
strength. The maximum bending strength of 103 MPa and 88 MPa was reached for the porous
Si3N4/dense Si3N4 joints using Y–Si–Al–O–N and Yb–Si–Al–O–N glass solders, respectively.

Keywords: silicon nitride; glass solder; β-SiAlON; joining; infiltration

1. Introduction

Dense silicon nitride (D-Si3N4) ceramics are considered to be important structure materials
applicable for various industry parts [1] for its superior high temperature strength, thermal shock
resistance, low thermal expansion coefficient, good wear, and corrosion resistance [2–4]. The porous
Si3N4 (P-Si3N4) ceramics are emphasized for some engineering applications such as catalyst supports
and gas filters due to its high mechanical strength, low dielectric constant, low density, and porous
nature [5–8]. In the present work, the porous Si3N4 ceramics were tried to join to the dense Si3N4

to combine the performance advantages of both the materials. In order to widen their applications,
reliable joining techniques are essential, among which the brazing and diffusion bonding techniques
are especially popular for the ceramics [9,10]. However, large residual stress inevitably resided in the
joint after brazing or diffusion bonding due to the mismatch of the coefficient of thermal expansion
(CTE) between the metallic layers and the ceramic materials [11–13].

Currently, the bonding of ceramics with oxide or oxynitride glass adhesives has been
successful [14–17]. Since the sintering aids contribute to excellent bonding between Si3N4 grains
during the synthesis process, they should also be applicable for the joining of bulk materials. In the
dense Si3N4 ceramics, conventional sintering aids such as Y2O3, Al2O3, MgO, and CaO have been
widely used as the joint interlayers [18–20]. Walls et al. [21,22] used composite β-Sialon-glass adhesives
(a mixture of Y2O3, SiO2, Al2O3, and α-Si3N4) to join Sialon ceramics. Their results suggest that the
α-Si3N4 reacted to form β-Sialon, which had an acicular nature to reinforce the joint. However, these
studies have all focused on the joining of dense silicon nitride ceramics.
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In the present work, porous Si3N4 ceramic was firstly bonded to dense Si3N4 using RE (Y2O3 or
Yb2O3)-Al2O3-SiO2-Si3N4 mixtures, which in-situ formed a high proportion of β-SiAlON in the seam;
the influence of bonding parameters and solder composition on the interfacial morphology and joint
strengths were studied. In addition, the influence of oxynitride glasses on the microstructure of Si3N4

substrates was also investigated. Finally, the infiltration behavior of the glass filler in the porous Si3N4

substrate was revealed.

2. Materials and Methods

The porous Si3N4 ceramics (Shandong Industrial Ceramics Research & Design Institute Co., Ltd.,
Zibo, China) selected in this study with a porosity of approximately 47% were prepared via gas
pressure sintering (GPS). The dense Si3N4 ceramics (Shandong Industrial ceramics Research & Design
Institute Co., Ltd., Zibo, China) were pressurelessly sintered and contained a small percentage of
Al2O3 and Y2O3 as sintering aids. The four-point bending strengths of the porous Si3N4 and dense
Si3N4 were 142 MPa and 486 MPa, respectively. Figure 1a shows the morphology of the porous Si3N4

substrate with elongated grains, which were randomly connected in three dimensions.
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For each set of experimental data, five samples were used to average to joint strength. Scanning 
electron microscope (SEM) images were collected with a FEI Quanta 200FEG instrument (FEI 
Corporation, Hillsporo, OR, USA) at accelerating voltages of 20 kV with an energy dispersive 
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Figure 1. Characterization of the porous Si3N4 ceramic (a) and test jig geometry used for four-point
bend testing (b).

The raw ceramics ingots were cut into blocks with the dimensions of 4 mm × 4 mm × 4 mm to
be joined for microstructural analysis, and 3 mm × 4 mm × 18 mm to be joined for flexural strength
testing. The working surfaces were ground using waterproof abrasive 1000 grit paper, followed by a
mechanical polish to 1 µm.

The compositions of the glass solders (Y–Si–Al–O–N and Yb–Si–Al–O–N glasses) adopted in
the present work are listed in Table 1. The powders were manually ground in ethanol for 3 h using
an agate mortar to obtain a homogeneous slurry. Afterwards, the slurry was dried, the mixture was
cold-pressed under 6 MPa to obtain a slice of 600 µm in thickness using a tablet machine. The porous
Si3N4 and dense Si3N4 rectangular specimens together with a solder slice were assembled in a sandwich
structure. The assembly was placed under a modest uniaxial pressure of 0.6 MPa to ensure good contact
between the solder and silicon nitride ceramics during the joining process. The joining experiment
was conducted in a graphite furnace with a wide range of bonding temperatures (1550–1650 ◦C)
for 30 min. The pressure of N2 atmosphere was kept at 0.04 MPa throughout the joining process.
Four-point bending strengths were measured with an upper span of 15 mm and a lower span of 30 mm
using a universal testing machine (Instron 5569, Instron Corporation, Canton, MA, USA) at a speed
of 0.5 mm/min. The test jig geometry used for bend testing is shown in Figure 1b. For each set of
experimental data, five samples were used to average to joint strength. Scanning electron microscope
(SEM) images were collected with a FEI Quanta 200FEG instrument (FEI Corporation, Hillsporo,
OR, USA) at accelerating voltages of 20 kV with an energy dispersive spectroscope (EDS, OXFORD
Instruments, Oxford, UK) system. The phases in the joints were identified by X-ray diffraction (XRD,
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PANalytical B.V., Almelo, Netherlands) with Cu Kα radiation at a scanning step of 0.05◦ and a scanning
rate of 5◦/min.

Table 1. Chemical composition of glass solders (wt %).

Glass Solders Y2O3 Yb2O3 Al2O3 SiO2 α-Si3N4

Y-SiAlON 44.5 - 10.5 10.3 34.7
Yb-SiAlON - 58.3 7.9 7.7 26.1

3. Results and Discussion

3.1. Characterization of P-Si3N4/RE(Y or Yb)-SiAlON/D-Si3N4 Joints

Figure 2 shows the back-scattered SEM images of the joint bonded at 1650 ◦C for 30 min using a
Y-SiAlON glass solder. The joint was crack-free, compact, and uniform. The joint can be divided into
three regions: the infiltration zone (on the porous Si3N4 substrate side), the seam zone, and the diffusion
zone (on the dense Si3N4 substrate side). An infiltration zone with a width of about 450 µm can be
observed in the porous Si3N4 substrate in Figure 2a, as can white ribbon-like structures distributed in
the infiltration zone. In order to investigate the microstructure in detail, the microstructures of Zone I
were highly magnified, and they are shown in Figure 2b, which shows the three behaviors of the
molten glass. One is the diffusion into dense Si3N4 along the grain boundary to form a diffusion layer.
Another is the infiltration into the porous Si3N4, and the densification of the residual solder in the seam.
The ribbon-like structures were virtually composed of a black needle-like phase and a white glass
phase in Zone II. In addition, in order to be observed, the direction of the yellow dashed frame (Zone II)
is rotated and magnified in Figure 2c. The residual skeleton structure of the porous Si3N4 ceramics
can be seen between the two labeled lines. The EDS results of the spots marked in the figure are listed
in Table 2. It can be concluded that the white substrate Phase A was Y-SiAlON glass. In addition,
the needle-like phase β-SiAlON grains (Phase B) with a fine structure formed in the infiltration zone
(Figure 2d). Therefore, it was deduced that the molten Y-SiAlON glass solder infiltrated into the
pores of the porous Si3N4 during the joining process, contributed to the transformation of the original
α-Si3N4 to β-SiAlON in the infiltration zone. Simultaneously, the residual glass solder in the seam was
turned into composites of glass/β-SiAlON-ceramic. The α- to β-phase transformation is consistent
with the findings in other literature about the joining of dense Si3N4-based ceramics [22,23].
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Figure 2. Backscattered SEM images of (a) the joint between P-Si3N4 and D-Si3N4 using Y-SiAlON glass
solder at 1650 ◦C for 30 min. (b) The magnified morphology of Zone I, (c) the magnified morphology
of Zone II, and (d) the magnified morphology of Zone III, respectively.
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Table 2. EDS (energy dispersive spectroscope) chemical analysis (at %) of different positions in Figure 2.

Spots Y Al Si N O Possible Phases

A 8.41 2.67 27.70 41.18 20.03 Y–Si–Al–O–N phase
B 1.80 3.16 44.47 45.25 5.32 β-Sialon
C 4.77 0.97 48.26 46.00 - β-Si3N4

Figure 3a,b show the morphologies of the P-Si3N4/D-Si3N4 joints using Yb-SiAlON glass solder.
No cracks resulting from thermal expansion mismatch appeared at the interfaces between the seam
and ceramic substrates. It is also noted that the ribbon-like infiltration zone at about 500 µm was also
formed on the porous Si3N4 ceramic side. Figure 3c shows the magnified morphology of the interface
between the seam and the dense Si3N4, where an interlocked microstructure can be observed at the
interface, which was mainly attributed to the concentration gradient between the intergranular phase
in the matrix and the glass solder composition. It has been reported that the Yb–Si–Al–O liquid is able
to transform into Yb–Si–Al–O–N liquid system due to the dissolution of α-Si3N4 during the joining
process [24], and the undissolved α-Si3N4 may be converted to β-SiAlON above a temperature of
1500 ◦C via dissolution-precipitation or act as a heterogeneous core. Diffusion of the molten glass from
the joining interface into the dense Si3N4 substrates was obvious, indicating that reaction occurs at
the liquid/solid interface. Composites of glass/β-SiAlON-ceramic formed in the seam (Figure 3d).
Figure 3e shows that most of molten glass penetrated into the porous Si3N4 through its connected
pore. The porous nature of the porous Si3N4 was destroyed, while it contributed to the formation of a
dense joint interface.

Afterwards, the XRD patterns of the joints using two different glass solders are indicated in
Figure 4. It is proved that α-Si3N4 transfers to β-SiAlON during the bonding process. In addition,
the crystallization of Y2Si3O3N4 and Yb2Si3O3N4 phases were detected in these two different
joints, respectively.
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Figure 3. Joint of P-Si3N4/D-Si3N4 using Yb-SiAlON glass solder at 1600 ◦C for 30 min: (a,b) low
and high magnification, (c) the magnified micrograph of the interface between D-Si3N4 and the seam
(Zone I), (d) the magnified micrograph of the seam (Zone II), and (e) the magnified micrograph of the
interface between P-Si3N4 and the seam (Zone III), respectively.
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3.2. Bending Strength of the Joints

Figure 5 shows the bending strengths of the P-Si3N4/D-Si3N4 joints using RE–Si–Al–O–N (RE = Y
or Yb) glasses and the typical fracture morphology. When the Y-SiAlON glass was applied, the room
temperature bending strength of the joints were significantly improved with the increase of bonding
temperature, from 56 MPa at 1550 ◦C to 103 MPa at 1650 ◦C. The maximum bending strength of the
bonding joints accounts for 73% of the bending strength of the porous Si3N4 substrate. Two factors,
including the formation of the interlocking acicular β-SiAlON grain network and pore-free interface,
were thought to be responsible for the high strengths of the joints [21]. When the Yb-SiAlON glass was
used, a slight change in performance was found, and a maximum strength of 88 MPa was achieved
at 1600 ◦C, which was 62% of the bending strength of the porous Si3N4 substrate. Fracture analysis
suggested that all the joints broke on the porous Si3N4 substrate side. Therefore, a typical morphology
of the joint fracture was selected and is shown in Figure 5b. Figure 5c displays the local magnified
region of the fracture surface, and a mixed fracture path of glass solder and rodlike Si3N4 can be seen.
Thus, the fracture location was in the infiltration zone of the porous Si3N4 substrate. Though the
infiltration of the glass solder can lead to the bonding of the porous Si3N4 and the seam, it can also
break the skeletal structure of the porous Si3N4 substrate, as mentioned above. Thus, it is expected
that the joining can be improved by optimizing the infiltration of the glass solders in a future work.
A detailed morphology of the joints and corresponding illustration is provided in the following section.
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(a), the fracture surface of the joint bonded with Y-SiAlON at 1650 ◦C (b), and the magnified micrograph
of the fracture surface (c).
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3.3. Effect of Bonding Temperatures on Microstructure Evolution of the Joints

Figure 6 displays the images of the P-Si3N4/D-Si3N4 joints bonded by Y-SiAlON glass solder
at different temperatures for 30 min. Although the widths of the infiltration zones were 426 µm,
428 µm, and 436 µm, which changed slightly as the bonding temperature increased, many white
ribbon-like “flowing channels” formed in the infiltration zone when joined at 1600 ◦C and 1650 ◦C.
The heterogeneous solder glass diffused and solidified in the porous Si3N4 accounts for the formation
of the morphology. Therefore, it can be deduced that the infiltration zone contains a white Y-SiAlON
glass phase, which was embedded with fine-grain β-Sialon and β-Si3N4. Remnant pores in the
interface of the infiltration zone/interlayer (joining at 1550 ◦C and 1600 ◦C) can be observed in
Figure 6d,e. However, when the temperature was as high as 1650 ◦C (Figure 6f), the white Y-SiAlON
glass diffused into the porous Si3N4 substrate and filled the pores of the surface to form a continuous
interface. This improvement might be attributed to the low viscosity of the glass at 1650 ◦C. Therefore,
the bonding strength was effectively enhanced.
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A similar characterization of the joints using Yb-SiAlON glass solder at different temperatures
is displayed in Figure 7. In addition, measurement of the thicknesses of the infiltration zones was
performed under SEM, and the thicknesses were determined to be 433 µm, 512 µm, and 427 µm at
1550 ◦C, 1600 ◦C, and 1650 ◦C, respectively. The distribution of white oxynitride glass in the infiltration
zones was inhomogeneous. The morphologies of the interface between the infiltration zone and the
seam bonded at different temperatures are displayed from Figure 7d to Figure 7f. In the figures,
remnant pores can be observed at the interface. This may be attributed to the infiltration of liquid
glass into the porous Si3N4 substrate. As a result, during cooling, the glass solder was not provided
promptly for filling the interface between porous substrate and seam, which was similar to the use of
Y-SiAlON glass solder (Figure 6d,e). If a continuous interface was formed between the porous substrate
and seam (Figure 6f), the bonding strength would improve. Therefore, it is reasonable to assume the
lower bonding strengths of these joints. Figure 8 shows the magnified morphologies of the seam zones
at different temperatures. It is worth pointing out that the grain shapes of β-SiAlON (submicrometer
diameter) apparently grow with the increase in bonding temperature. The microstructure of the
seam zone similar to that of the dense Si3N4 ceramic suggests that the joining process followed the
mechanism of the ceramic sintering process: oxide melt formed, silicon nitride dissolved to form
oxynitride glasses, and the β-phase then nucleated. Nevertheless, most of the glass liquid would
infiltrate into the porous Si3N4 substrate, and the redundant glass formed the intergranular phase in
the joint, which is different from the process of sintering Si3N4 ceramics.
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Above all, the microstructural evolution of the P-Si3N4/D-Si3N4 joints using RE–Si–Al–O–N
(RE = Y or Yb) oxynitride glasses could be described as follows: the glass RE2O3-Al2O3-SiO2

system began to melt at a eutectic temperature, which is approximately 1350 ◦C in this system [21],
and densified the joint during the joining process. With the temperature rose, the glass liquid in
the seam began to flow and even infiltrate into the porous Si3N4 ceramic, resulting in the reduction
of the glass liquid in the seam. When the temperature further rose up to bonding temperature
and as the temperature was maintained, the α-Si3N4 powders dissolved into the liquid to form
RE–Si–Al–O–N glasses. The infiltration zone formed on the porous Si3N4 substrate side due to
its porous microstructure and the flowability of the oxynitride glass solders. At different joining
temperatures, the morphologies of the infiltration zone were different, which may be closely related to
the viscosity of the liquid glasses and the type of rare earth elements. This has yet to be further studied
in subsequent research work. Meanwhile, on the dense Si3N4 substrate side, it was observed that an
interlocked microstructure of the interface was produced due to the diffusion of liquid phase driven by
concentration gradient. The strength of the joint would improve because of the increased local density
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of the interface region, and glass solders could also be used to bond the porous Si3N4 ceramics after
sealing their surface pores.

4. Conclusions

In the present work, joining of Si3N4 ceramics has been successfully performed using
RE–Si–Al–O–N (RE = Y or Yb) glass solders, at joining temperatures of 1550 ◦C, 1600 ◦C, and 1650 ◦C,
each held for 30 min. The results lead to the following conclusions:

(1) RE–Si–Al–O–N (RE = Y or Yb) glass solders were successfully used to bond porous Si3N4 to dense
Si3N4 ceramics at high temperature. The maximum bending strengths of the joints bonded using
Y-SiAlON and Yb-SiAlON glass solders were measured to be 103 MPa and 88 MPa. The bending
strength of the joints accounts for 73% and 62% of the bending strength of the porous Si3N4

substrate, respectively.
(2) The microstructure of such joints consisted of a diffusion zone, an infiltration zone, and a seam

zone. During the bonding process, an interlocked interface formed on the dense Si3N4 substrate
side, and an infiltration zone arose on the porous Si3N4 substrate side. In the seam zone, α-Si3N4

partly transformed into β-SiAlON to form β-SiAlON-glass composite.

With the increase in bonding temperature, the microstructure evolution of the joint was dominated
by the following factors: (i) The flowability of liquid oxyniride glass allowed for the rapid bonding
of the ceramic substrates; (ii) The capillary action of the porous Si3N4 substrate contributed to the
infiltration of glass solders. A small amount of infiltration is good for sealing porous Si3N4, while
excessive infiltration may cause pores at the interface of the porous Si3N4 substrate side and weaken
the bonding strength.
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