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Abstract: Minimizing the sintering time while ensuring high performances is an important optimiza-
tion step for the preparation of magnetocaloric or thermomagnetic materials produced by powder met-
allurgy. Here, we study the influence of sintering time on the properties of a Mn0.95Fe1P0.56Si0.39B0.05

compound. In contrast to former reports investigating different annealing temperatures during
heat treatments of several hours or days, we pay special attention to the earliest stages of sintering.
After ball-milling and powder compaction, 2 min sintering at 1100 ◦C is found sufficient to form
the desired Fe2P-type phase. Increasing the sintering time leads to a sharper first-order magnetic
transition, a stronger latent heat, and usually to a larger isothermal entropy change, though not
in all cases. As demonstrated by DSC or magnetization measurements, these parameters present
dissimilar time evolutions, highlighting the existence of various underlying mechanisms. Chemical
inhomogeneities are likely responsible for broadened transitions for the shortest sinterings. The
development of strong latent heat requires longer sinterings than those for sharpening the magnetic
transition. The microstructure may play a role as the average grain size progressively increases
with the sintering time from 3.5 µm (2 min) to 30.1 µm (100 h). This systematic study has practical
consequences for optimizing the preparation of MnFe(P,Si,B) compounds, but also raises intriguing
questions on the influence of the microstructure and of the chemical homogeneity on magnetocaloric
or thermomagnetic performances.

Keywords: magnetocaloric effect; thermomagnetic materials; powder metallurgy; magnetic properties;
phase transitions

1. Introduction

Applying a magnetic field change on a magnetocaloric material induces an isothermal
magnetic entropy change (∆S) or and adiabatic temperature change (∆Tad) that can be
used for magnetic refrigeration or heat pumps [1–5]. Reciprocally, applying a temperature
change on a thermomagnetic material will trigger a change in magnetization or magnetic
induction in the presence of an external magnetic field, which may be used to recover waste
heat into work or electricity [6–10]. Both magnetocaloric and thermomagnetic applications
present some environmental advantages, making them highly desirable for magnetic
refrigeration, magnetic heat pumping or recovering waste heat into electricity or work. For
applications near room temperature, promising magnetocaloric/thermomagnetic materials
families include Gd5(Si,Ge)4 [11], La(Fe,Si)13 and its hydrides [12,13], Heusler alloys [14],
MnCoGe- or MnNiGe-based compounds [15,16]. Compounds deriving from Fe2P such as
MnFe(P,As) [17], MnFe(P,Si) [18] or MnFe(P,Si,B) [19] are also appealing as they combine
giant magnetocaloric/thermomagnetic effects at their first-order ferromagnetic transition
with a high tunability of the Curie temperature. Magnetocaloric applications can also be
considered over an extended range of temperature; so, magnetocaloric properties have been
systematically investigated in various other material systems, including oxides [20–22],
transition metals, and rare earth intermetallic systems [23–29].
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Magnetocaloric performances are generally controlled by intrinsic properties of the
material which are primarily given by its chemical composition, e.g., the saturation mag-
netization, the magnetic transition temperature, the heat capacity, or the Erhenfest order
of the transition (presence of a latent heat). In some cases, sample preparation may also
strongly influence the magnetocaloric effect. Setting aside the case of micro- or nano-
structured materials which involve specific mechanisms [30–32] and going beyond the
simple aspect of sample purity or secondary phase content, the sample synthesis technique
may exert an extrinsic control on the phase transition and therefore significantly affect the
magnetocaloric performances. One of the most typical examples is the great sensitivity of
martensitic transitions to microstructural details [33–38].

Magnetocaloric compounds deriving from Fe2P are based on a first-order ferromag-
netic transition without a change in crystal symmetry or a significant volume change.
Opposite discontinuities on a and c axes, however, result in an increase in the c/a ra-
tio of about +2% from the ferromagnetic to the paramagnetic state [19]. These local
mechanical strains are a coupling mechanism for the magnetic transition and can be
anticipated to interact with microstructural defects (secondary phase, porosity, micro-
cracks, etc.). As a result, different preparation techniques yielding various microstructures
lead to dissimilar magnetic properties for a given composition and affect the magne-
tocaloric performances. Various methods have been investigated to prepare Fe2P-type
MnFe(P,Si) and MnFe(P,Si,B) magnetocaloric materials including drop synthesis [39], cast-
ing [40], arc-melting [41], melt-spinning [42], and single crystal [43] methods. Yet, until
now, a solid-state synthesis after a ball-milling stage remains the most widely used and
that yielding among the highest magnetocaloric performances [44]. Systematic inves-
tigations on the effect of the sintering temperature and sintering duration have been
carried out to optimize the magnetocaloric effect (mostly the isothermal entropy change)
in Mn1.000Fe0.950P0.595Si0.330B0.075 [45], MnFe0.95P0.587Si0.34B0.073 [46] or the sample purity
in (Fe,Co)2(P,Si) [47] compounds. They indicated that sintering for about 24 h at 1100 ◦C
ending by quenching in room-temperature water is recommended to avoid the formation
secondary phases and to maximize the performances. Yet, such long sintering is not desired
for industrial production and would require careful optimization. In addition, these former
studies paid attention to relatively long sintering, of several hours or even days. To draw
a clearer picture of the phase formation of magnetocaloric/thermomagnetic MnFe(P,Si,B)
compounds, an investigation of the earliest stages of the solid-state reaction is needed. Here,
we select one MnFe (P,Si,B) composition presenting a first-order ferromagnetic transition
with a Curie temperature slightly above room temperature (thermomagnetic applications
are targeted), and investigate the structural, microstructural and magnetic properties as
a function of the sintering time. This extensive experimental study covering sintering
from 2 min to 100 h reveals dissimilar characteristic times for the phase formation, the
microstructural evolution and the development of high latent heat and a sharp magnetic
transition. Contrary to popular belief, it is observed that longer sintering does not always
result in a larger isothermal entropy change. A phenomenological model is proposed to
explain it and the possible underlying reasons are discussed.

2. Materials and Methods

A batch of Mn0.95FeP0.56Si0.39B0.05 was prepared by ball-milling elemental starting
materials, Mn (99.9%) chips, Fe (99.9%) powder, P (97.3%) powder, Si (99.999%) lumps, and
B (99.9%) pieces using a ball/sample mass ratio of 5:1 at 360 rpm for 10 h. The resulting
powder was then compacted into cylinders of about 2.5 g/piece using a uniaxial pressure
of 750 MPa. The samples were then sealed in quartz tubes backfilled with 200 mbar argon
gas. A vertical furnace, pre-heated at 1100 ◦C, was used for sintering the samples (hot
insertion) during 2 min, 5 min, 10 min, 30 min, 3 h, 24 h and 100 h prior to quenching the
samples in room temperature water. A sintering temperature of 1100 ◦C was selected as it
was found to be the optimal sintering temperature during former studies [45–47].
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Powder X-ray diffraction was carried out on an Empyrean PANalytical diffractometer
in the 2θ range of 20–90◦. The Rietveld method, as implemented in the FullProf software
(version: April 2019), was used for crystal structure refinement and evaluation of the
secondary phase content [48]. The surface morphology was investigated using Hitachi
SU8010 and TM3030Plus electron microscopes equipped with energy-dispersive X-ray
EDX spectroscopy (performed at 15 keV). The surface of the bulk samples was prepared
by polishing using sandpaper down to 2000 grit, and then using diamond pastes from
16 µm to 2 µm spread on a polishing cloth. The MIPAR software (version: 3.4.0.2) was
used for quantitative analysis of SEM images [49]. The magnetization was measured on
bulk pieces of about 20 mg using a vibrating sample magnetometer installed on a VersaLab
Quantum Design system. Isofield magnetization curves were recorded in sweep mode at
1 K min−1 (no thermal lag correction). Calorimetry measurements were performed on a TA
Instruments DSC 2500 at 5 K min−1 using a liquid nitrogen cooler, He, as the exchange gas
and standard aluminum pans.

3. Results

Figure 1 presents the powder XRD patterns for Mn0.95FeP0.56Si0.39B0.05 samples sin-
tered for different durations. It is found that a very short sintering of 2 min is sufficient
to form the desired product with an Fe2P-type structure (hexagonal space group P62m).
As found in studies based on much longer sintering times [45,46], an additional peak at
about 45.3◦ characteristically marks out the presence of a cubic secondary phase with a
3:1 metal/metalloid ratio and close to (Mn,Fe)3Si in composition ((220) Bragg position
of the cubic secondary phase). Increasing the sintering time does not significantly affect
the peak position of the main phase. The peak shape of the main phase is somewhat
broadened for the shortest sintering but quickly sharpens with increasing the sintering
time. Higher main phase content, better crystallinity and better chemical homogeneity
are likely involved in the increased intensity for the XRD peak of the main phase when
increasing the sintering time. The relative intensity of the secondary phase peak appears to
decrease with increasing the sintering time from about 11 wt% for 2 min down to about
7 wt% for 100 h of sintering.

Figure 2 illustrates the surface of polycrystalline samples sintered for different du-
rations. Only a selection is presented, but about 10 pictures per samples were analyzed
to obtain a quantitative estimate of the average grain size. As usually observed in this
material family, there is a significant porosity and a few inclusions of SiO2. The sec-
ondary phase content is mostly located at intergranular spacings. Local chemical analyses
by energy-dispersive spectroscopy in SEM confirm that the secondary phase presents
a metal/metalloid ratio of 3:1. Electron dispersive spectroscopy (EDX) in SEM yields
an effective elemental concentration for the main phase in sample sintered for 100 h
of Mn34.11±1.1Fe34.78±1.2P20.34±0.5Si10.77±0.3. In comparison to the nominal composition,
Mn32.76Fe34.48P19.31Si13.45, not accounting for boron which cannot be resolved in SEM/EDX,
the formation of a secondary phase whose composition is close to MnFe2Si leads to a Si de-
ficiency of the main phase and a slight increase in Mn and P contents. Similar observations
were made for the samples with shorter sintering. EDX measurements did not indicate a
significant compositional difference between the various grains of the main phase, even for
the shortest sintering. If chemical inhomogeneities are present between the grains of the
main phase, they are either weaker than the compositional accuracy of the EDX system,
typically a few mol%, or spread in a size smaller than the investigated micrometric scale.
Looking at the microstructure as a function of the sintering duration, a clear grain size
growth is observed, from an average grain size of about 3.5 µm for 2 min to 30.1 µm for
100 h of sintering.
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tions for the Fe2P-type phase (upper set of vertical lines) and for the MnFe2Si phase (lower set of 
vertical lines). For clarity, only the observed intensity is displayed for the other samples. 
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Figure 1. Powder XRD patterns measured at room temperature for Mn0.95FeP0.56Si0.39B0.05 samples
with different sintering durations. The top panel with the sample sintered for 100 h illustrates
the refinement process, observed intensity (thicker line), calculated intensity (thinner line), Bragg
positions for the Fe2P-type phase (upper set of vertical lines) and for the MnFe2Si phase (lower set of
vertical lines). For clarity, only the observed intensity is displayed for the other samples.

Differential scanning calorimetry (DSC) measurements for Mn0.95FeP0.56Si0.39B0.05
samples sintered for different durations are presented in Figure 3. All samples show a
thermal anomaly marking their magnetic transition in the temperature range from ~297
to ~306 K upon heating. Some samples show a decomposition of the latent heat (L) peak
into individual thermal events upon cooling. We believe this feature being observed in
the samples with the strongest transitions (longer sinterings) should not be interpretated
as a distribution of transition temperatures in the sample, but rather as the expression of
burst-like kinetic aspects of the transition. The samples with the shortest sintering (10 min
and less) show particularly broad and weak peaks, yet they still present a finite thermal
hysteresis. Increasing the sintering time leads to a progressive growth and sharpening of
the latent peaks. The strongest latent heat peak is observed for the sample sintered for
100 h. The thermal hysteresis appears to increase with the sintering duration and strength-
ening of the latent heat peak, from about 4 K for the sample sintered for 2 min up to about
8 K for the sample sintered for 100 h. One should, however, recall that dynamic techniques
such as DSC measurements tend to overestimate the thermal hysteresis due to thermal lags;
so, the thermal hysteresis may actually be smaller.
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Figure 2. SEM images of Mn0.95FeP0.56Si0.39B0.05 samples sintered at 1100 ◦C for different durations.
A color code highlighting the equivalent diameter of each grain is superposed on the images. Bottom
right: EDX spectrum of the main phase for the Mn0.95FeP0.56Si0.39B0.05 sample sintered at 1100 ◦C for
100 h.

Figure 4 presents isofield magnetization curves upon heating and cooling in an external
field of µ0H = 1 T. As expected for such a composition and in agreement with DSC data,
all samples show a ferromagnetic transition with a finite thermal hysteresis, from ~7 K for
2 min up to ~10 K for 100 h of sintering. The transition temperatures upon heating are
spread between 299 K and 308 K without direct correlation with the sintering duration.
The sharpness of the transition, however, presents a clear and systematic evolution. The
transition sharpens with the increase in sintering time. Most pronounced between 2 min to
10 min sintering, the transition continues to become sharper with increasing the sintering
time. From 24 h to 100 h of sintering, the sharpness no longer evolves; however, the
transition becomes noticeably more hysteretic.
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Figure 3. DSC measurements upon cooling (upper set of curves) and heating (lower set of curves) for
Mn0.95FeP0.56Si0.39B0.05 samples sintered for different durations.
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Figure 4. Isofield magnetization measurements of Mn0.95FeP0.56Si0.39B0.05 samples sintered for differ-
ent durations. Heating (higher transition temperatures) and cooling (lower transition temperatures)
curves are shown for each sample.

A set of isofield magnetization measurements were carried out while increasing the
applied magnetic field for the samples sintered from 5 min to 100 h, see Figure 5. The shift
of the transition temperature (Ttr) due to the field dTtr/µ0dH ranges from 3.0 to 3.6 K T−1

for the different samples. All samples present a progressive, yet limited, broadening of
the transition with the increase in the magnetic field. The broadening of the M(T) curves
induced by high magnetic fields does not appear more pronounced for the 5 min and
10 min samples than that for the samples with longer sintering. This is fairly surprising
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in view of the particularly small thermal anomaly observed in DSC measurements. This
suggests that the weak thermal anomaly on DSC for the shortest sinterings cannot be
interpreted as a second-order transition, since the latter would have resulted in a strong
broadening when increasing the magnetic field. For samples sintered for a short time, one is
still in the presence of a first-order magnetic transition, but with a distribution of transition
temperatures over an extended temperature range due to chemical disorder. The finite
thermal hysteresis and a shift dTtr/µ0dH of the overall distribution remains comparable to
that observed in samples with a sharper transition.
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Figure 5. Isofield magnetization curves recorded upon heating in increasing applied magnetic
fields from 0.25 T to 2 T in 0.25 T increment for Mn0.95FeP0.56Si0.39B0.05 samples sintered for
different durations.

The isothermal entropy change (∆S) calculated from heating isofield M(T) data is
presented in Figure 6 for different sintering durations. We note that calculating ∆S from a
set of M(T) curves allows us to avoid the “spike” artefact which usually occurs when ∆S is
indirectly determined from isothermal magnetization M(H) curves at first-order magnetic
transitions [50]. Generally, increasing the sintering time sharpens the ∆S peak and leads
to an increase in ∆S maximum. One, however, observes that the largest ∆S maximum in
µ0H = 1 T is reached for 24 h of sintering, while in 2 T, it is reached for 100 h of sintering.
This opposite tendency illustrates the not-so-trivial influence of the synthesis conditions on
caloric performances. Increasing the sintering time sharpens the transition and therefore
increases the ∆S, but the field range where the ∆S saturates, i.e., when the latent heat is
fully induced by the field, is reached for a lower magnetic field (case of 24 h of sintering in
2 T). On the other hand, longer sintering also results in stronger latent heat, offering the
possibility to reach larger ∆S but also requiring a larger magnetic field to fully induce the
first-order transition by applying a magnetic field (case of 100 h of sintering in 2 T).
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To illustrate the non-similar influence that transition broadening and latent heat have
on the magnetocaloric performances and on the ∆S maximum in particular, we simulate
the ∆S maximum by using a simplified latent heat model for the giant magnetocaloric
effect [51–53]. Within this framework allowing for parametric investigations, the high field
∆S is field independent and purely originates from the latent heat of the transition leading
to ∆S = L/Ttr. Below a critical saturation field, B* = LδTtr/(Ttr|∆M|), where δTtr is the
width of the transition and ∆M the discontinuity in magnetization, ∆S is field dependent
and amounts to ∆S = (µ0H|∆M|)/δTtr. Starting from parameters somewhat reflecting the
observed properties, ∆M = 70 A m2 kg−1, δTtr = 6 K (approximately twice the full width at
half maximum from M(T) curves), L = 6 J g−1, and Ttr = 310 K, we investigate the effect of
decreasing the transition width or increasing the latent heat, see Figure 7. Decreasing the
transition width would not affect the ∆S at high field but would allow us to reach a larger
∆S in the field-dependent regime. On the other hand, increasing the latent heat does not
affect the field-dependent range, but increases the achievable ∆S at high magnetic fields.
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4. Discussion

The dependence of a few selected properties on the sintering duration is summarized
in Figure 8. All parameters present a somewhat similar behavior with a fast evolution at
the beginning of sintering, typically during the first 30 min, followed by a slower evolution,
in some cases spread until 100 h. One can, however, note some specific differences.
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Figure 8. Sintering time dependence for Mn0.95FeP0.56Si0.39B0.05 compound of: (a) the secondary
phase content estimated from refinement of powder XRD; (b) average grain size (equivalent diam-
eter) from analysis of SEM pictures (5–10 pictures analyzed per sample); (c) latent heat from DSC
measurements upon heating (integration from 288 to 323 K using a linear background); (d) full width
at half maximum of the temperature derivative of M(T) curves (FWHM of the dM/dT (T) peak)
recorded upon heating in 1 T; (e) maximum of the isothermal entropy change upon heating in 1 T;
(f) idem as (e) but in a 2 T field.

The secondary phase content presents a rather limited reduction, from ~11 wt% to
~7 wt%, taking place over relatively large time windows. In contrast, the other parameters
present evolutions that are much larger in amplitude: a factor ~7 increase in the grain size,
a factor ~8 increase in latent heat, a factor ~20 decrease in the width of the ferromagnetic
transition, and a factor ~6 increase in the ∆S maximum. This forms a first indication that
the elimination of the secondary phase is only a minor contribution to the increase in ∆S
by increasing the sintering time. The limited evolution of the secondary phase content is
also in line with the rather limited spread of the Curie temperatures between the different
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samples. A Si-rich (Mn,Fe)3Si secondary phase usually leads to a Si depletion in the main
phase (see EDX measurements), which, in turn, results in decreased Curie temperatures
(typical-8 K/Si atom%). Here, the Curie temperatures remain within ~10 K for the differ-
ent samples, which is well in line with only minor deviations in the average secondary
phase content.

The overall time dependence of the grain size is akin to the common power law for
normal grain growth kinetic, where D-D0 = Kt1/n, with D is the average grain size, D0
the initial grain size, K a material constant and n the grain growth exponent [54]. A ln(D)
vs. ln(t) plot (not shown) presents a relatively linear dependence (linear regression factor
R2 ≈ 0.90) and yields an exponent n = 4.2 ± 0.6. This value differs from two, indicating that
multiple driving forces play a part in the grain growth of these multicomponent samples.
Interestingly, the grain growth remains important even from 24 h to 100 h of sintering. We
can also note that the latent heat presents a time evolution very similar to the grain size. This
suggests that large grains favor stronger first-order transitions. This observation is actually
in line with a former study on particle size reduction (top–down approach, opposite to the
present study), where the strongest transitions and largest thermal hysteresis were found
in the largest particles [55].

The width of the magnetic transition presents an intriguing shape evoking an expo-
nential decay Ae−t/τ , with t being the sintering time, τ a time constant and A a pre-factor.
A fit of the experimental data yields a time constant τ ~ 7 min. Among the various parame-
ters, the width of the transition is the one showing the fastest evolution, with most of its
change takes place during the first 30 min of sintering, and it does not show a significant
evolution from 24 h to 100 h of sintering (one actually observes a very limited broadening at
100 h). It is likely that the primary mechanism influencing the broadening of the magnetic
transition is the chemical homogeneity which is driven by solid-state diffusion. Long ball-
milling (10 h) yields relatively homogeneous powders, which, when followed by a solid-
state reaction at a relatively high temperature (1100 ◦C corresponding to approximately
90% of the melting temperature), can lead to a sharp transition within a rather limited
sintering time.

One observes that the ∆S maximum follows its own sintering duration dependence,
with a rather slow evolution compared to the other parameters. For 1 T, it increases for the
first 3 h, but still presents a significant evolution from 3 to 24 h, ending through a decrease
from 24 to 100 h. In 2 T, the ∆S maximum shows a continuous increase from 24 h to
100 h of sintering. Figure 7 illustrates the complex relationship that the ∆S maximum shares
with other parameters. Both the sharpening of the magnetic transition and the increase
in latent heat favor an increase in ∆S maximum, but their effects are dependent on the
considered applied magnetic field. A sharp magnetic transition will be most crucial to
observe large ∆S at intermediate field changes, whereas high latent heat sets a condition on
the largest achievable ∆S at high magnetic fields. As the sintering duration affects transition
broadening and latent heat in a non-similar manner, ∆S presents a unique evolution as a
function of the sintering duration for each considered magnetic field change. The decrease
in ∆S maximum at 1 T from 24 h to 100 h of sintering is likely ascribable to the slightly
broader transition for 100 h of sintering. In contrast, the increase in ∆S maximum at 2 T
from 24 h to 100 h of sintering originates from a stronger latent heat. For magnetic fields
larger than the 2 T presently investigated, it is likely that the influence of latent heat will
become even more pronounced.

In practice, when working with thermomagnetic applications primarily requiring
a sharp transition and large dM/dT at intermediate magnetic fields (typically in 1 T or
less), relatively short sintering of 30 min to 3 h would be sufficient. On the other hand,
magnetocaloric applications require larger ∆S in 1 T to 2 T, stronger latent heat, and
therefore longer sintering of typically 24 h.
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5. Conclusions

The influence of sintering duration on the properties of a Mn0.95FeP0.56Si0.39B0.05
compound is investigated. It is found that 2 min sintering at 1100 ◦C is sufficient to form
the desired Fe2P-type product. Longer sintering is, however, required to optimize the
magnetic and phase transition properties. A chemical homogenization of approximately
30 min is needed to obtain a sharp magnetic transition. Even longer sintering times are
desirable to develop a strong latent heat. This study of the secondary phase content, grain
size, latent heat, transition broadening and ∆S in different magnetic fields as a function of
the sintering duration reveals non-similar evolutions and the existence of different time
scales. In practice, the sintering of MnFe(P,Si,B) materials for thermomagnetic applications
could be shorter than that for magnetocaloric ones. Sintering duration influences the
transition broadening and latent heat, in turn affecting the maximal isothermal entropy
change in a complex manner, but the actual underlying mechanisms remain challenging
to address. Further investigations of the chemical homogeneity with an atomic resolution
would be needed to disentangle the role played by chemical disorder and that of the
microstructure in general.
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22. Pęczkowski, P.; Łuszczek, M.; Szostak, E.; Muniraju, N.K.C.; Krztoń-Maziop, A.; Gondek, Ł. Superconductivity and appearance
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