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Abstract: Exploring the mechanism of the α-ferrite precipitation process on high-temperature prop-
erties plays an important guiding role in avoiding slab cracks and effectively regulating quality. In
this work, in situ observation of the α-ferrite sustained precipitation behavior for peritectic steel
during the austenitic phase transition process has been investigated using high-temperature confocal
scanning laser microscopy. Meanwhile, the high-temperature evolution of the phase fractions during
the phase transition process was quantitatively analyzed based on the high-temperature expansion
experiment using the peak separation method. Furthermore, the high-temperature properties varia-
tions of the casting slab during the α-ferrite sustained precipitation process were investigated with
the Gleeble thermomechanical simulator. The results show that the film-like ferrite precipitated along
the austenite grain boundaries at the initial stage of phase transition, then needle-like ferrite initiates
rapid precipitation on film-like ferrite when the average thickness reaches 15~20 µm. Hot ductility
reached a minimum at the ferrite phase fraction fα = 10~15%, while high-temperature properties
returned to a higher level after fα > 40~45%. The appearance of a considerable amount of needle-like
ferrite and grain refinement effectively improves the high-temperature properties with the α-ferrite
precipitation process advances.

Keywords: α-ferrite sustained precipitation; phase fraction; hot ductility; high-temperature strength;
effect mechanism

1. Introduction

Peritectic steel is widely used in mechanical equipment, automotive parts, building
structural materials, ship hulls, and other manufacturing processes due to the advantages of
excellent toughness, processability, weldability, and lower material and process costs [1–3].
However, cracks in the continuous casting process have always been an important factor
in troubling and limiting the development of peritectic steel [4,5]. Frequent cracks in the
corners and surfaces of slabs significantly deteriorate the quality of steel products and
directly lead to product obsolescence, which brings serious economic losses. Therefore,
eliminating cracks and further enhancing the toughness in continuous casting of peritectic
steel has become an important priority, along with the growing demand for high-quality
steel products.

The formation of cracks is closely related to the evolution of the microstructure stage
and mechanical properties of the slab during the high-temperature continuous casting
process [6–8]. Brimacombe et al. [9] and Suzuki et al. [10,11] indicated the presence of
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three typical brittle zones in the hot ductility evolution during the continuous casting
process. On this basis, many researchers have explored the causes and mechanisms of
hot ductility degradation of continuous casting slabs within the third brittle zone. Con-
siderable research [12–16] has shown that in the temperature range of continuous casting
production, microalloying elements, such as Nb, Ti, and V, easily form carbides, nitrides,
or carbonitrides and precipitate at austenite grain boundaries. Under applied external
force or deformation conditions, the stress level or strain concentration increased in the
vicinity of the precipitates, which led to a rapid deterioration of the as-cast slab hot duc-
tility [17]. Additionally, Thomas et al. [18] and Mintz et al. [19] pointed out that film-like
proeutectoid ferrite forms at austenite grain boundaries were another important reason
for the deterioration of properties. Evidently, since the strength of ferrite was only about
25% of that of austenite, the stress or strain concentration occurs on the ferrite film at the
austenite grain boundaries during deformation, which caused the crack initiation and
extension [20–22]. Yang et al. [23] investigated that the cast slab hot ductility decreases with
increasing thickness of film-like ferrite after exceeding 5 µm. Mintz et al. [24–27] proposed
that the deformation-induced ferrite appearing at austenite grain boundaries near the Ae3
temperature leads to a decrease in hot ductility, with the effect being particularly significant
when the thickness of the ferrite film reached 20 µm. Qian et al. [28] concluded that the
ferrite film thickness presented poor uniformity at the beginning of the austenite-ferrite
phase transformation as the growth rate of ferrite accelerates, which contributed to the
rapid decrease in the reduction of area (RA) value. Liu et al. [29] characterized the crack
generation and extension during the austenite phase transition of niobium microalloyed
steel and discussed the synergistic mechanism of ferrite precipitation relative to cracks.
Overall, these studies primarily focus on the effect of the formation and distribution of
film-like ferrite on hot ductility in the pre-austenite phase transition stage, with fewer quan-
titative descriptions of the properties evolution during the whole α-ferrite precipitation
advancement process. Actually, as the austenite phase transition process advances, the
microstructure of the as-cast slab undergoes complex changes such as the generation of
new phases, the depletion of the original phases, and the change in the crystal structure
of the matrix phases [30,31], which has a substantial impact on the properties [32,33]. Fur-
thermore, avoiding cracks is only a basic requirement for high-quality steel products, and
further improvements in strength and toughness should be considered as a new aim. In
other words, elucidating the evolution of strength indexes during the α-ferrite precipitation
process is equally important. Unfortunately, researchers seem to emphasize excessively on
the hot ductility while neglecting attention to the evolution of high-temperature strength.

In this work, a high-temperature confocal scanning laser microscopy (HTCSLM) has
been employed to observe the whole process of austenite phase transition during contin-
uous casting. Moreover, a high-temperature expansion meter has quantified the phase
fraction of each matrix phase as a function of temperature during the austenite phase
transition. Meanwhile, the high-temperature properties at different temperatures have
been simulated and obtained with the aid of a Gleeble thermomechanical simulator during
the α-ferrite precipitation process. This investigation aims to clarify the effect mechanism
of the α-ferrite sustained precipitation on the high-temperature properties, which pro-
vides theoretical instructions for the avoidance of as-cast slab cracks and high-quality
steel production.

2. Materials and Methods

The experimental material used in this study was a peritectic casting slab with
230 mm in thickness, which was collected from a commercial steel plant. The chemi-
cal compositions of the casting slab in mass fraction (wt%) were listed as follows: 0.15 C,
0.21 Si, 1.08 Mn, 0.017 P, 0.002 S, 0.03 Ni, 0.05 Cr, 0.053 Ti, 0.008 Nb, and 0.004 N. As
shown in Figure 1a, all specimens have been machined from the casting slab with the
axes parallel to the casting direction, and the sample locations were around 10 mm be-
low the surface and more than 100 mm away from the narrow face. The dimensions of
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the specimens for the high-temperature experiments are shown in Figure 1b. The speci-
mens for high-temperature in situ observation have been processed into thin cylinders of
φ 7.8 mm × 2 mm. The dimension of cylindrical high-temperature expansion specimens
was φ 4.0 mm × 25 mm. Subsequently, the specimens for high-temperature tensile tests
were machined into φ 10 mm × 120 mm round bars with M10 threads at both ends.
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Figure 1. Schematic diagram of the position and dimension for experimental specimens: (a) Position
of specimen processing; (b) specimen dimensions for the high-temperature experiment.

Before the experiments, the upper and lower surfaces of the cylindrical specimens of
in situ observation and high-temperature expansion were ground using a grinding and
polishing machine. Then, 0.5 µm diamond spray polishing compounds were employed for
mechanical polishing. All specimens for high-temperature experiments were ultrasonically
cleaned in anhydrous ethanol to remove impurities adhering to the surface. Finally, these
specimens have been dried and examined.

The whole process of austenite phase transition in the cooling process was simulated
experimentally using a HTCLSM (Yonekura, Osaka, Japan), which includes a confocal scan-
ning laser microscope and an infrared image furnace. A standard observation experiment
includes a heating and cooling cycle under a high-purity argon gas. The specimen was
heated and cooled using IR radiation and gas circulation. The temperature was continu-
ously recorded using the R-type thermocouple installed below the Pt-specimen holder—the
detailed experimental steps for HTCSLM observation are shown in Figure 2a. To simulate
the continuous casting process, the sample was heated to 1350 ◦C from room temperature
with 600 ◦C/min to dissolve precipitates such as carbon nitrides and AlN as much as
possible. Next, the heating specimen was held for 10 min at 1350 ◦C to obtain a coarse grain
size similar to the as-cast structure. The phase transition behavior mainly depended on the
cooling conditions of the slab in the secondary cooling zone of continuous casting, which
was related to the process parameters such as casting speed, steel type and size, as well as
cooling intensity. Combined with the practical production of continuous casting and the
current studies, a cooling rate consistent with conventional continuous casting slab (i.e.,
100 ◦C/min [34–36]) was employed to observe the whole process of α-ferrite precipitation.
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Moreover, the high-temperature expansion experiment was the most effective method
to quantitatively analyze the austenite phase transition behavior due to its simplicity and
high accuracy. The quantitative description of the phase fraction changes during the austen-
ite phase transition was accomplished with the aid of the DIL high-temperature dilatometer
(Netzsch, Waldkraiburg, Germany), and the thermal history of the specimen changes in
perfect agreement with the in-situ observed experiment. During the measurement process,
these cylindrical specimens were clamped between two quartz push rods. A linear variable
displacement transducer was used to record the length changes between the small cylin-
drical specimen and the push rods due to thermal expansion or contraction occurrence
in the specimen interior. The cylindrical specimen was heated through an induction coil.
In particular, the experimental process was protected by argon gas throughout to avoid
oxidation of the samples. Finally, the specimen at the end of the expansion experiment was
further characterized using optical microscopy with 4% nitric solution etching.

In addition, mechanical properties were tested at different temperatures using Gleeble
(DIS, Burbank, CA, USA), and the investigation protocol is shown in Figure 2b. The detailed
experimental steps for high-temperature thermal tensile experiments were as follows. The
specimens were heated to 1350 ◦C from room temperature with a rapid heating rate of
600 ◦C/min. And then, the heating specimen was held for 10 min to homogenize. Next, the
specimen was continuously cooled to test the temperature (Ttest) ranging between 600 ◦C
and 900 ◦C with a cooling rate of 100 ◦C/min. Before the deformation, the specimen was
kept for 1 min at test temperatures to have even temperature fields. Next, tensile tests were
carried out at a constant strain rate of 5 × 10−3 s−1 until complete failure. Particularly,
this smaller strain rate was similar to the one experienced by the slab surface during the
unbending operation in continuous casting [37,38]. Finally, the specimens were quickly
cooled to room temperature using nitrogen gas after fracture in order to preserve their
structure at high temperatures. It should be noted that the tensile experiment was repeated
three times for each test temperature to eliminate the effects of errors in the testing process
on the results. Meanwhile, the fracture morphology was observed using scanning electron
microscopy (JEOL, Tokyo, Japan), and the microstructure was investigated using optical
microscopy after 4% nitric acid-alcohol etching.
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3. Results and Discussion
3.1. In Situ Observation of Microstructure Evolution during the Whole α-Ferrite
Precipitation Process

Mastering the evolution of the microstructure process of austenite decomposition is
the foundation for quantitatively describing the behavior of phase transition. Figure 3
illustrates the microstructure variation during the sustained precipitation of α-ferrite in the
slab. Large-size austenite grains are prominently visible above 800 ◦C. As the temperature
decreases to around 796 ◦C, film-like ferrite is the first to be revealed at the austenite
grain boundaries, as shown by the arrows in Figure 3b. As the α-ferrite precipitation
process advances, needle-like ferrite grows rapidly on the film-like ferrite when the average
thickness reaches 15~20 µm, as highlighted by the red dashed circle in Figure 3c. In the
temperature range of 650~750 ◦C, the content of needle-like ferrites increases rapidly, and
“bridging” occurs between neighboring needle-like ferrites, as depicted in Figure 3c–e.
While the temperature is reduced to below 650 ◦C, austenite to ferrite transformation is
essentially complete, and significant changes in the microstructure of the slab specimen
become difficult to observe.
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3.2. Critical Temperatures and Phase Fractions for α-Ferrite Precipitation Processes

Generally, the austenite phase transition is accompanied by a significant volume expan-
sion associated with changes in the lattice structure [8,30,39]. This significant dimensional
change on the dilation curve can be observable. Based on the isotropic assumption of
volume expansion, the length change depends on the internal atomic volume variation.
Thus, this relationship can be described by Equation (1):

∆V
V0

=
VT − V0

V0
=

∆L
L0

=
LT − L0

L0
(1)

where V0 and ∆V are the initial atomic volume and volume increment, and VT is the atomic
volume at temperature T. L0 and ∆L are the initial specimen length and length increment,
and LT is the specimen length at temperature T.
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In our previous study, to achieve more accurate phase fractions at specific temperatures
during the austenite phase transition process, we converted the dilation curves into linear
thermal expansion coefficient (LTEC) curves. Subsequently, we employed the peak separa-
tion method to quantitatively characterize the changes in each phase fraction [30,40]. The
linear thermal expansion coefficient (β) can be quantitatively calculated from Equation (2)
based on the measured expansion curves:

β(T) =
1

LT
· dLT

dT
(2)

where dLT and dT are the length change of the sample and the corresponding temperature
interval, respectively

The dilation curve, linear thermal expansion curve, and the separation results ob-
tained from the high-temperature expansion measurement are shown in Figure 4. As the
austenite phase transition process progresses, the crystal structure of the matrix phase
gradually transforms from face-centered cubic austenite to body-centered cubic ferrite.
The microstructure undergoes four stages: single austenite phase γ, austenite γ → ferrite
α, austenite γ → pearlite p and α + p biphasic coexistence in sequence. The LTEC curve
presents two characteristic transition peaks, representing the ferrite transformation (austen-
ite γ → pearlite α) and pearlite transformation (austenite γ → pearlite p), respectively.
Figure 4b displays the separation results of the LTEC curve, where Ar3 and Aαf denote the
start and finish temperatures of the α-ferrite precipitation, and Ar1 and Apf represent the
start and finish temperatures of the pearlite transition. The four critical temperatures Ar3,
Aαf, Ar1 and Apf are 804 ◦C, 611 ◦C, 651 ◦C and 560 ◦C, respectively. This generally agrees
with the observation in Figure 4, indicating that the temperature interval for austenite
phase transition ranges from 560 to 804 ◦C.

Metals 2024, 14, 350 6 of 14 
 

 

where V0 and ΔV are the initial atomic volume and volume increment, and VT is the atomic 

volume at temperature T. L0 and ΔL are the initial specimen length and length increment, 

and LT is the specimen length at temperature T. 

In our previous study, to achieve more accurate phase fractions at specific tempera-

tures during the austenite phase transition process, we converted the dilation curves into 

linear thermal expansion coefficient (LTEC) curves. Subsequently, we employed the peak 

separation method to quantitatively characterize the changes in each phase fraction 

[30,40]. The linear thermal expansion coefficient (β) can be quantitatively calculated from 

Equation (2) based on the measured expansion curves: 

1
( ) T

T

dL
T

L dT
 = 

  
(2) 

where dLT and dT are the length change of the sample and the corresponding temperature 

interval, respectively 

The dilation curve, linear thermal expansion curve, and the separation results ob-

tained from the high-temperature expansion measurement are shown in Figure 4. As the 

austenite phase transition process progresses, the crystal structure of the matrix phase 

gradually transforms from face-centered cubic austenite to body-centered cubic ferrite. 

The microstructure undergoes four stages: single austenite phase γ, austenite γ → ferrite 

α, austenite γ → pearlite p and α + p biphasic coexistence in sequence. The LTEC curve 

presents two characteristic transition peaks, representing the ferrite transformation (aus-

tenite γ → pearlite α) and pearlite transformation (austenite γ → pearlite p), respectively. 

Figure 4b displays the separation results of the LTEC curve, where Ar3 and Aαf denote the 

start and finish temperatures of the α-ferrite precipitation, and Ar1 and Apf represent the 

start and finish temperatures of the pearlite transition. The four critical temperatures Ar3, 

Aαf, Ar1 and Apf are 804 °C, 611 °C, 651 °C and 560 °C, respectively. This generally agrees 

with the observation in Figure 4, indicating that the temperature interval for austenite 

phase transition ranges from 560 to 804 °C. 

  

 Figure 4. High-temperature expansion behavior of the casting slab during austenite phase transi-

tion: (a) Dilation curve and LTEC curve; (b) Separation results of LTEC curve. 

Based on the separation results of the overlapping peaks, the phase fractions of ferrite 

fα(T), pearlite fp(T), and austenite fγ(T) at temperature 𝑇 can be calculated from Equations 

(3)–(5) as follows, respectively. 

( )

( )
( ) , ( )α r3

pf

r3

T t

A

α αf r3A

tot
A

βdTS T
f T = = A T t A

S βdT
 




  

(3) 

400 500 600 700 800 900
3.0

4.5

6.0

7.5

9.0

10.5

12.0

Δ
L

/L
0
×

1
0

3

Temperature (℃)

-3.0

-1.5

0.0

1.5

3.0

4.5

6.0

β
×

1
0

5
/℃

-1

γα←γp←γα+p
(a)

400 500 600 700 800 900

0.0

1.5

3.0

4.5

Ar3Apf

 

 

 Original β 

β
×

1
0

5
 /o

C
-1

 

α←γp←γ

Temperature (℃)

(b)

Aαf Ar1

Figure 4. High-temperature expansion behavior of the casting slab during austenite phase transition:
(a) Dilation curve and LTEC curve; (b) Separation results of LTEC curve.

Based on the separation results of the overlapping peaks, the phase fractions of
ferrite fα(T), pearlite fp(T), and austenite fγ(T) at temperature T can be calculated from
Equations (3)–(5) as follows, respectively.

fα(T) =
Sα(T)

Stot
=

∫ T(t)
Ar3

βdT∫ Ap f
Ar3

βdT
, Aα f ≤ T(t) ≤ Ar3 (3)

fp(T) =
Sp(T)

Stot
=

∫ T(t)
Ar1

βdT∫ Ap f
Ar3

βdT
, Ap f ≤ T(t) ≤ Ar1 (4)

fγ(T) = 1 − fα(T)− fp(T), Ap f ≤ T(t) ≤ Ar3 (5)
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where Sα(T) and Sp(T) denote the peak area between the baseline and the ferrite and pearlite
peak at temperature T, respectively, and Stot denotes the peak area between the baseline
and the overlapping peak under the entire LTEC curve.

Figure 5 illustrates the variation of the phase fraction of each phase with temperature
during the austenite phase transition. Clearly, the ferrite phase fraction grows slowly
at the initial stage of α-ferrite precipitation, at which the ferrite phase fraction is only
12.95% at 750 ◦C. Accompanying the advancement of the phase transformation process,
the ferrite generation rate gradually accelerates, with fα reaching 58.25% at 700 ◦C. With
a further decrease in temperature, the ferrite transition is essentially complete at 611 ◦C,
where fα = 77.21%. In addition, the pearlitic transition is completed near 560 ◦C with a
final pearlitic phase fraction fp = 22.79%. The phase fractions of each phase under typical
temperatures are shown in Table 1.
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Figure 5. Variations of phase fractions with temperature during austenite phase transition.

Table 1. Phase fractions of each phase at typical temperatures with the austenite phase transition
process advances.

Temperature (◦C) Austenite Phase
Fraction fγ (%)

Ferrite Phase
Fraction fα (%)

Pearlite Phase
Fraction fp (%)

900 100 0 0
850 100 0 0
800 99.55 0.45 0
750 87.05 12.95 0
700 40.75 58.25 0
650 23.67 76.27 0.06
600 11.93 77.21 10.86
560 0 77.21 22.79

The microstructure essentially undergoes no further changes after the end of the
austenite phase transition, implying that the high-temperature expansion specimen at room
temperature can accurately reflect the microstructure state at 560 ◦C. Figure 6 represents
the microstructure of the high-temperature expansion specimen, where the white portion
is ferrite and black represents pearlite. The phase fractions of the phases are statistically
analyzed using image analysis software (Image-Pro Plus Version 6.0, IPP), and the extensive
checks reveal that the ferrite phase fraction is 77.73 ± 0.35%. This indicates that the
calculated phase fractions obtained for different temperatures are consistent with the actual
austenite phase transition process.
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Figure 6. Microstructure of the specimen at the completion of the high-temperature expansion test.

3.3. Evolution of Hot Ductility and High-Temperature Strength during α-Ferrite Precipitation

The stress-strain curve directly reflects the deformation and resistance to the external
forces of the material, providing an important reference value for the fracture and mechan-
ical behavior analysis. Figure 7 denotes the engineering and true stress-strain curves of
thermal tensile at various temperatures. All specimens exhibit three typical stages: elastic
deformation, uniform plastic deformation, and eventual destabilized fracture.
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Figure 7. Stress-strain curves at different temperatures during the α-ferrite precipitation process:
(a) Engineering stress-strain curves; (b) true stress-strain curves.

In this work, based on the engineering stress-strain curves, peak strain εu,e, total
elongation εf,e, reduction of area RA, and modified energy criterion Em are adopted to
comprehensively measure the hot ductility evolution of the casting slab. It must be noted
that the Em criterion was proposed by Barbier et al. [41] as an alternative to RA and
offers the advantage of circumventing the uncertainty associated with cross-sectional area
measurements by directly relying on the energy information in the stress-strain curve.
Figure 8 provides the hot ductility variations of the casting slab at different temperatures
and ferrite phase fractions, revealing similar trends among the four parameter indices
with temperature. The peak strain εu,t and total elongation εf,t under the true stress-strain
curve are also provided as supplementary information in the figure. A typical ductility
trough is observed between 700 ◦C and 850 ◦C, with the minimum occurring around
750 ◦C, where εu,e, εf,e, RA, and Em are 11.44%, 38.46%, 48.65%, and 43.92%, respectively.
As the α-ferrite precipitation process advances, the hot ductility drops and then picks up,
with the minimum occurring near fα = 10~15%. From the currently available resources,
RA > 35~40% [42,43], 60% [10,44–46], and 75% [47] are widely adopted as the critical values
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for evaluating the crack sensitivity. Adopting RA > 60% as the evaluation criterion, hot
ductility returns to a higher level once fα > 40~45%, as shown in Figure 8b.
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Figure 8. Variation of hot ductility parameters with α-ferrite precipitation process advances: (a) As
functions of temperature; (b) As functions of fα.

According to Figures 5 and 8 and Table 1, the temperatures 800 ◦C, 750 ◦C, and 700 ◦C
can be considered to represent the α-ferrite start precipitation temperature, the temperature
with the highest crack sensitivity, and the hot ductility recovery temperature, respectively.
Tensile fracture morphology at these three typical temperatures is provided as a supplement
in Figure 9. The fracture at 800 ◦C exhibits both dimple and polyhedral morphology, which
indicates that the fracture is both ductile and brittle. Conversely, the fracture at 750 ◦C
clearly shows the polyhedral morphology of every grain, which is typical of brittle fracture
characteristics. For the experiment at 700 ◦C, the specimens display dimple-like fracture
features with a substantial improvement in hot ductility, which is consistent with the results
shown in Figure 8.
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Figure 9. Fracture morphology at typical temperatures: (a) 700 ◦C; (b) 750 ◦C; (c) 800 ◦C.

In addition, the corresponding microstructures at the three temperatures are shown in
Figure 10. A small amount of film-like ferrite has appeared at the austenite grain boundary
near 800 ◦C. The average thickness of the film-like ferrite at 750 ◦C has reached a maximum
value of 15~20 µm as the α-ferrite precipitation process advances, which is consistent with
the in situ observation in Figure 3c. Nonetheless, at a reduced tensile temperature of
700 ◦C, substantial amounts of needle-like ferrite are observed inside the austenite, which
represents that the content has reached a considerable level.
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With the pursuit of high-quality steel, the re-improvement of mechanical properties
while avoiding cracks in the casting slab has become a further ambition. The development
of tensile and yield strengths during the austenite phase transition is given in Figure 11.
The tensile and yield strength obtained from the engineering stress-strain curve is denoted
as σb,e and σs,e, respectively. As a distinction, the tensile and yield strength under the true
stress-strain curve is noted as σb,t and σs,t. The tensile and yield strength, whichever way
they were obtained, show a fairly similar pattern of evolution. In the high-temperature
austenite phase region and the initial stage of α-ferrite precipitation (i.e., 750~900 ◦C), the
high-temperature strength is not sensitive to temperature fluctuation, primarily due to the
combined effect of the crystal structure and the transition of the magnetic state [33]. The
tensile strength and yield strength start to improve significantly below 750 ◦C. At the end
of the α-ferrite precipitation (600 ◦C), the tensile σb,e and yield strength σs,e are increased by
about 147% and 158%, respectively, compared with those at the initial stage (800 ◦C).
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3.4. Effect Mechanism of α-Ferrite Sustained Precipitation on High-Temperature Properties

The effect mechanism of the α-ferrite precipitation process on high-temperature prop-
erties is summarized in Figure 12. The evolution of microstructure and properties during
the cooling process is divided into three stages. (I) In the region above the temperature
Tα

10%−15%, the precipitate clusters at austenite grain boundaries provide nucleation sites for
the formation of α-ferrite in the high-temperature region [12–15,48,49]. As the temperature
decreases, film-like ferrite gradually grows at the austenite boundary. The continuity of
the matrix is disrupted due to the generation of precipitate and film-like ferrite near the
austenite grain boundaries. The hard precipitates and low-strength film-like ferrite induced
an increase in the local strain concentration near the grain boundaries during the tensile
process, which decreases rapidly in the hot ductility as the average thickness of the ferrite
film increases. The average thickness of the ferrite film reaches a maximum of 15~20 µm
when the ferrite content reaches 10~15% (as shown in Figures 3, 5 and 10), which renders
the casting slab highly susceptible to cracking (as shown in Figure 8). (II) With the further
advancement of the α-ferrite precipitation process, ferrite is rapidly generated perpendicu-
lar to the original austenite grain boundaries, leading to the emergence of a considerable
number of fine ferrite grains, and the size of the original austenite grains is also gradually
reduced during the phase transitions. The considerable amounts of needle-like ferrite
and fine grains cause a decrease in the local strain concentration and crack extension rate,
which triggers a quick increase in the hot ductility and strength at the same time and
returns to a high level when fα > 40~45%. (III) Pearlite starts to precipitate at the end of the
α-ferrite precipitation, and the final microstructure consists of ferrite and pearlite together.
At this time, the properties of the as-cast slab are closely related to the temperature, and the
strength difference between the matrix phases decreases, so the hot ductility change tends
to stabilize. It is worth noting that the high-temperature strength at this stage exhibits a
high correlation with temperature fluctuations, essentially due to the decrease in atomic
activity as a result of the lower temperature.
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4. Conclusions

In this study, the α-ferrite precipitation process during continuous casting of peritectic
steel has been quantified through in situ observation, high-temperature thermal expansion,
and thermal tensile testing, revealing the mechanism of the α-ferrite sustained precipitation
process on the high-temperature property. The conclusions of the study are as follows:

(1) The film-like ferrite precipitated along the austenite grain boundaries at the initial
stage of the α-ferrite precipitation. Then, the needle-like ferrite was perpendicular to
the austenite grain boundaries of rapid growth when the average thickness of the ferrite
film reached 15~20 µm, and finally, the “bridging” phenomenon between neighboring
needle-like ferrite marks the general completion of the ferrite transition.

(2) The temperature interval of the austenite phase is 560~804 ◦C, with a ferrite phase
fraction of 12.95% at 750 ◦C and 58.25% at 700 ◦C. The microstructure at the end of the
austenite phase transition consists of 77.21% ferrite + 22.79% pearlite.

(3) As the α-ferrite precipitation process advances, the hot ductility of the as-cast slab
first decreases and then recovers, with the minimum value occurring near fα = 10~15% and
recovering to higher levels after fα > 40~45%. Compared to the initial stage, the tensile
and yield strengths at the end of α-ferrite precipitation are elevated by about 147% and
158%, respectively.

(4) The low-strength film-like ferrite in the initial stages of the α-ferrite precipitation
disrupts the matrix continuity and causes serious localized strain concentrations. As the
α-ferrite precipitation advances, the appearance of a considerable amount of needle-like
ferrite and the grain size refinement induce reductions in the local strain concentration
and crack extension rate. This phenomenon is the primary reason for the improvement in
high-temperature properties.
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