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Abstract: This work aimed to compare the quality and properties of the welded joints of AMg6
aluminium alloy produced via conventional TIG welding with the properties of those produced
with flux backing tape. This study focussed on the relative length of oxide inclusions (∆oi) and the
amount of the excess root penetration (hroot) of the AMg6 alloy weld beads. The results show the
influence of the thickness of the flux layer of the backing tape on the formation and quality on the
AMg6 alloy welds, along with the effect of flux backing tape and edge preparation on the mechanical
properties of the 6 and 8 mm thick welded plates. In accordance with the results obtained, the joints
produced by means of TIG welding with flux back backing tape and without edge preparation have
higher mechanical properties. Moreover, the TIG welding of AMg6 alloy using flux backing tape
reduces the total welding time by 55%, reduces filler wire consumption by 35%, reduces shielding
gas consumption by 43% and electricity consumption by 60% per 1 linear meter of the weld line.

Keywords: TIG welding; aluminium alloy AMg6; flux backing tape; X-ray test

1. Introduction

Aluminium alloys are characterized by a combination of properties widely required in
the industry, such as being lightweight, very strong, and very malleable, as well as having
excellent wear resistance and good thermal and electrical conductivity and mechanical
properties at room temperature [1–3].

Owing to their high strength-to-weight ratios, corrosion resistance and high machin-
ability materials, aluminium alloys, especially 5xxx and 6xxx, are employed in marine
construction and shipbuilding [4]. Aluminium alloys are widely used in the fields of elec-
tronic technology and automotive body structures. The mass of vehicles has been steadily
reduced over the years to reduce fuel consumption and pollutant emissions. The mass of
an average diesel car sold in 2017 was 20 kg lower than in 2016 [5].

Aluminium alloys, especially 7xxx and the second and third generation of 2xxx, are
very effective structural materials for aerospace applications [6,7]. Welding is the most
widely used joining process in industrial applications. Tungsten inert gas (TIG), metal
inert gas (MIG), friction stir welding (FSW), laser beam welding and electron beam (EB)
welding techniques are mostly preferred for the joining of aluminium alloys [8–13]. The
TIG welding process suffers from a lack of penetration in a single pass, leading to poor
productivity [14–19]. Moreover, rapid oxide formation and susceptibility to issues such
as porosity and cracking present challenges for conventional fusion welding techniques,
particularly for light materials such as aluminium and magnesium alloys. These short-
comings constitute the main concerns regarding this process for the fabrication of light
material plates. To overcome these problems, the ATIG technique was introduced, which is
a variant of the conventional TIG welding. ATIG was first introduced in the mid-1960s by
E.O. Paton Electric Welding Institute, Ukraine. ATIG welding methodology was approved
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by the British Institute of Welding in the 1990s, which confirmed the applicability of this
process. In ATIG welding, the same equipment is used as in TIG welding, except that prior
to welding a thin layer is deposited on the top edges of plate, which are joined using a
brush [20,21]. The main constituents of the flux are oxides and halides in a fine powdered
form [22]. Also, the flux can be deposited on the workpiece by spraying with atomized
powder using cans or conveyed with a shield gas. Active flux is a chemical purifying,
flowing, or cleaning agent. Flux is primarily used to absorb impurities from slag and
remove oxide impurities from welds [23–27]. The main mechanisms occurring to enhance
the depth penetration are reverse Marangoni convection [28,29] and arc constriction [30–32].
The first mechanism involves the reversal of Marangoni convection. With the presence of
surfactant elements such as oxygen, sulphur, selenium and tellurium, the surface tension of
the liquid just under the arc weld will be greater than that at the edges. Consequently, the
molten metal will move from the edges to the centre of the weld pool, resulting in a deep
weld bead. The second mechanism is arc constriction, in which elements such as fluorine
contained in the flux migrate to the arc and react with outer arc weld electrons. The arc
is constricted, resulting in the density of the energy provided to the weld pool being en-
hanced. The exothermic flux effect increases the temperature of the welding arc [33,34]. The
predominance of the above cited mechanisms depends on many factors, such the chemical
composition, the thermophysical properties of the flux, the welding mode conditions and
the parameters [35].

Marine usages for Al–Mg alloys are mostly divided into the construction of ship
frames and arming. The aluminium materials used by each shipyard differ according to the
ship design and the task requirements. ASTM B928 standards [36] state that the 5086, 5083,
5383, 5456, and 5059 Al–Mg alloys and H116 and H321 Al–Mg tempers are recommended
for marine service [37]. The 5xxx series Al–Mg alloy is known to be lightweight, easy to
machine, and high in strength, along with other attributes. Since the 1950s, large amounts
of the alloy have been used in the structures of ships due to its excellent corrosion resistance
when immersed in seawater [38,39].

The AA 5xxx is a Mg-based alloy which has excellent characteristics with a high fatigue
strength and good corrosion resistance, facilitating its use in marine applications. However,
many studies have reported that aluminium alloys are subjected to premature failure
under the combined action of stress and a corrosive environment. Several investigations
have been dedicated to avoiding this shortcoming through surface modifications and
thermomechanical treatments [40]. In other hand, high susceptibility to intergranular
corrosion and stress corrosion cracking is a harmful feature of the 5xxx series Al alloys
with a high Mg content (>3 wt%), owing to the precipitation of the electrochemically active
Mg-rich β phase at grain boundaries [41]. Moreover, welding residual stress has also been
reported to be a causal factor in the fatigue cracking of steel bridges [42].

Unfortunately, plates with a thickness of no more than 3 mm can be welded in a single
pass with the available welding techniques used in shipbuilding [43–47]. Usually, for plates
with a thickness of more than 3 mm consisting of products made from aluminium alloys,
several passes are required (two or more) to achieve fully penetrated welds. Moreover,
edge preparation is necessary before welding, such as V-, Y-, and X-groove welds for butt
welding, depending on the thickness of the welded metal. In order to obtain a high-quality
weld, an increase in the filler metal in the weld bead is required. However, this contributes
to an increase in the number of defects in the weld in the form of pores and oxide inclusions.

In addition, during unsupported welding, which is typical for welded products and
structures for which it is impossible to use bulky forming supports, there is poor formation
of the root of weld, with a large penetration bead thickness and a sharp transition from the
melted metal to the main one. This leads to a degradation of operational characteristics,
especially under dynamic loads.

An effective way to overcome the above shortcomings occurring during conventional
TIG welding is the use of weld-shaping and scouring fluxes and flux backing tape. Flux
applied to the back side prevents the weld penetration from sagging when welding products
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up to 4 mm thick. However, when welding of the plates with a thickness of greater than
4 mm, the flux cannot keep the weld penetration from sagging. Therefore, for plates with
a thickness of more than 4 mm, flexible tape is used together with the flux. The tape
prevents the weld bead from sagging. Moreover, the flux cleans the weld metal of oxide
films and removes porosity, while also protecting the weld penetration from the external
environment [48,49]. Weld-shaping and scouring fluxes are used during the welding of
plates with a thickness of up to 5 mm, but for plates with a thickness beyond this limit, it is
recommended that flux backing tape is used. The flux backing tape is attached to the back
surface edges of the plates to be joined.

Backing plate support is a technique used when sagging can occur. The use of the
backing material aims to support the molten metal of the weld pool and prevent the collapse
of the weld pool. Temporary backing materials are usually used when the backing material
is different from the base material and it does not fuse with the base metal. Backing
materials can be metallic or non-metallic, such as ceramics, composites, asbestos, and
fiberglass. It has been reported that during welding, the backing medium changes the
weld temperature in the workpiece, and in turn influences the mechanical properties of the
welded plate [50]. Singh et al. [51] noted that cast-iron plates that were used as a backing
medium helped full penetration to be achieved in a 6 mm thick P91 plate when three
backing media were used, namely cast-iron, copper, and mild steel plates.

The novelty of this work is the use of flux backing tape. This new technique prevents
excess penetration (root excess penetration) and the collapse of weld pool. Secondly,
it contributes to a significant reduction in the number of defects in comparison to the
conventional TIG process. Finally, it protects the weld molten metal from the surrounding
environment and related contaminants. The purpose of this work was to study the effect
of using flux backing tape in TIG welding of the AMg6 Al-Mg alloy (5xxx series) on the
quality and mechanical properties of welded joints.

2. Materials and Methods

The aluminium–magnesium alloy AMg6 is widely used in shipbuilding and construc-
tion in Eastern Europe. The AMg6 alloy is equivalent and close to the brand AA5056. The
feed wire, according to the GOST 14838-78 standards [52], has a 1.2 mm diameter. The
chemical composition of AMg6 alloy and feed wire are shown in Tables 1 and 2, respectively.

Table 1. Chemical composition of the aluminium alloy AMg6 (in weight %).

Alloy Cu Mg Mn Zn Fe Si Ti Be

AMg6 0.1 5.8–6.8 0.5–0.8 0.2 0.4 0.4 0.02–0.1 0.0002–0.005

Table 2. Chemical composition of AMg6 feed wire (according to the GOST 14838-78 standards).

Elements Mg Mn Zr Ti Al

Weight % 5.50–6.20 0.80–0.90 0.08–0.12 0.02–0.2 balance

The preparation of welded plates for TIG welding according to conventional technol-
ogy was carried out with a Y-groove butt weld joint, as depicted in Figure 1a, and using
flux backing tape without edge preparation for butt welding, as shown in Figure 1b.

The flux backing tape was obtained by applying a 10 mm wide and 0.2–0.4 mm thick
layer of flux on the surface of a flexible and thin fiberglass backing tape, which was attached
to the welded plates on the root side via an adhesive tape. Flux belonging to the TFA-4
brand [48] was used in the form of paste applied to the backing tape.
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Figure 1. Schemes of edge preparation for butt welding: (a) for welding according to conventional
technology; (b) for welding using flux backing tape.

The thickness of the flux layer was measured using the micrometric method. This
method allows the measurement of the thickness of the flux layer using measuring instru-
ments with a measurement error limit of 5 microns. In this method, the thickness of the
flux layer was determined by taking at least three measurements of the thickness of the
backing tape without flux and with flux using an digital micro meter tool. The thickness of
the flux layer was determined by the difference in the readings.

The welding parameters of the automatic TIG welding of the aluminium alloy AMg6
using conventional technology in two passes and with the use of flux backing tape in one
pass are shown in Tables 3 and 4, respectively.

Table 3. Parameters of the automatic TIG welding without flux backing tape in two passes with a
Y-groove butt weld joint edge preparation.

Thickness
(mm)

Welding
Pass

Welding
Currents

(A)

Arc Voltage
(V)

Welding
Speed

(cm/min)

Feed Wire
Speed

(cm/min)

Shielding
Gas Rate
(L/min)

Heat Input
(kJ/cm)

6.0
First 140–150 11–12 25 - 8–10 3.960–4.032

Second 220–230 16–17 25 110–120 9–11 8.832–8.976

8.0
First 160–170 13–14 25 - 8–10 5.304–5.376

Second 260–270 18–19 25 110–120 9–11 11.664–11.856

Table 4. Parameters of the automatic TIG welding using flux backing tape in one pass for a butt weld
joint without edge preparation.

Thickness
(mm)

Welding
Currents

(A)

Arc Voltage
(V)

Welding Speed
(cm/min)

Feed Wire
Speed

(cm/min)

Shielding Gas
Rate (L/min)

Heat Input
(kJ/cm)

6.0 270–280 19–20 25 70–80 9–11 12.768–12.960

8.0 320–330 21–22 25 70–80 10–12 16.632–16.896

After welding, the samples were cut far enough away from the welding starting point
to be sure that the arc welding was stabilized, as shown in Figure 2.

The tensile tests were performed with a computerized universal testing machine at
a tensile rate of 2 mm/min. The samples were prepared in accordance with ASTM E8M-
04 [53], and the bending tests were carried out according to ASTM E190-14 standards [54],
as shown in Figures 3 and 4, respectively. The tests were carried out on 3 samples with
thicknesses of 6 mm and 8 mm, even for TIG and ATIG welds.

The morphology of the welds was revealed using an immersion method in a solution
composed of 190 mL of H2O, 5 mL of HNO3 (65%), 3 mL of HCl (32%) and 2 mL of HF
(40%). X-ray inspection was conducted to reveal the presence of inclusions and pores in the
welds. A portable X-ray machine was used for this purpose. We note that the X-ray test was
conducted throughout the plate joint according to the ASTM E155-20 specifications [55].
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The clogging of the weld beads with oxide inclusions was estimated according to the
magnitude of the relative extent of the oxide inclusions (∆o.i), which was determined by
the ratio of the sum of oxide inclusions in the weld bead (∑lo.i) to the total length of the
weld bead (lbead) (see Figure 5):

∆oi = ∑loi/lbead (1)
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Also, the influence of the use of flux backing tape on the amount of excess root
penetration (hroot) was assessed (see Figure 6).
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Figure 6. The scheme of the weld bead (W is the width of the weld bead, H is the thickness of the
welded metal, and hroot is the excess root penetration).

The excess root penetration is a benchmark to judge the soundness of weld beads,
i.e., a smooth transition from the melted metal to the base metal enhances the mechanical
characteristics of welded joints, especially under dynamic loads. The lower the value of
the excess root penetration, the smoother the transition from the melted metal to the base
metal, the better the quality of the welds. A smooth transition from the root of the weld
bead to the base metal is an industry requirement for welded products, especially those
operating under dynamic loads.

3. Results and Discussions

Figures 7 and 8 show the cross sections of welded joints for plates with thicknesses of
6 and 8 mm, respectively, according to conventional technology (see Figures 7a and 8a) and
using flux backing tape (see Figures 7b and 8b) with a butt joint design with and without
edge preparation.
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Figure 7. Cross sections of the AMg6 weld beads (thickness, 6 mm) produced using conventional
technology and edge preparation (a) and using flux backing tape without edge preparation (b).
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Figure 9 shows the beneficial effect of the flux backing tape on the external aspect of
the back side of the weld. The weld bead produced with flux backing tape is clean and
shiny. During this study, the influence of flux backing tape and the thickness of the paste
flux on the formation and quality of the AMg6 alloy weld was examined. Figure 10 shows
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the dependence of the relative length of oxide inclusions (∆oi) in the AMg6 welds on the
thickness of the flux (s) applied to the backing tape. According to the results obtained,
the weld beads on the AMg6 alloy are most effectively cleaned of oxide inclusions with a
thickness of the applied flux in the range of 0.3–0.4 mm. When the thickness of the flux is
less than 0.3 mm, the length of the oxide inclusions is reduced, but the amount of applied
flux is insufficient to completely remove these inclusions. In the case applying of this flux
with a thickness of more than 0,4 mm, the quality of the welded joints is reduced due to the
formation of a large amount of gaseous emissions resulting from the evaporation of the
flux components between the liquid metal of the welding bath and the backing tape.
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Figure 10. The dependence of the relative length of oxide inclusions (∆oi) in the weld beads on AMg6
alloy on the thickness of the flux (S) applied to the backing tape.

The influence of using flux backing tape and the thickness of the flux on the amount of
excess root penetration (hroot) is shown in Figure 11. The results obtained show a decrease
in the excess root penetration compared with welding without a support by almost ten
times. The thickness of the flux applied to the backing tape has almost no effect on the
amount of sagging.

Figure 12 shows the effect of four variants of the TIG welding method on the relative
length of oxide inclusions (∆oi) and the amount of weld root penetration (hroot). In accor-
dance with the results obtained, the use of conventional backing tape as a support during
welding effectively reduces excess root penetration by ten times, but contributes to an
increase in oxide inclusions in the weld bead metal. Using a flux paste applied to the back
side solely allows one to completely clean the weld metal from oxide inclusions; however,
it does not effectively reduce root penetration. The best result was achieved by using flux
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backing tape; oxide inclusions were successfully cleaned and completely removed and a
sharp reduction in root penetration was observed.
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Figure 12. Comparative results on the relative length of oxide inclusions (∆oi) and the amount of
bead penetration (hroot) on the AMg6 alloy obtained by means of various TIG welding methods.

We noticed that welds produced with a Y-groove edge preparation have numerous
defects compared to those obtained without edge preparation. The presence of a large
number of defects is associated with the migration of oxide inclusions and moisture from the
filler metal inside the liquid metal in the weld pool. Apparently, this effect is due to the high
contribution of filler metal in the case of plates with a Y-groove edge preparation. In fact, the
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plates with edge preparation require more filler metal to fill the volume between plates in
comparison to the space between plates without edge preparation. With edge preparation,
the increase in the number of oxide inclusions and pores in the weld metal degrades the
mechanical properties of the obtained joints. Therefore, using flux backing tape is more
efficient during welding without edge preparation of the welded plates. The obtained
results of the mechanical tests of AMg6 alloy welded joints using conventional backing
tape support and flux backing tape for edge preparation and without edge preparation
are depicted in Table 5. The weld beads produced using flux backing tape without edge
preparation have superior strength properties. This result is ascribed to the effective
removal of oxide inclusions and pores from the weld pool during TIG welding using flux
backing tape. On the other hand, a small amount of filler metal was introduced to this
variant of the TIG weld bead. The results displayed in Table 4 are the average values of
three tensile and bending tests. We noted that for a thickness of 6 mm, the tensile strength
on the AMg6 alloy was 297 MPa, while for a thickness of 8 mm, it was 315 MPa, according
the certificate specification received from supplier.

Table 5. Mechanical properties of 6 and 8 mm thick TIG and ATIG AMg6 welded joints produced
with and without edge preparation.

Thickness (mm) Welding Method Preparation of the
Welding Edges

Weld Tensile
Strength
σB, MPa

σB/σBm Ratio Bending Angle, ◦

6.0

With backing tape Without edge
preparation

179 0.6 50

With flux backing tape 271 0.91 82

With backing tape With Y-groove
edge preparation

225 0.75 101

With flux backing tape 236 0.79 97

8.0

With backing tape Without edge
preparation

178 0.56 89

With flux backing tape 265 0.84 83

With backing tape With Y-groove
edge preparation

233 0.74 -

With flux backing tape 236 0.75 -

In accordance with the bending results of welded joints (see Table 5), it can be seen that
the effects are ambiguous, i.e., it is difficult to unambiguously judge the positive effect of
using flux backing tape on the bending angle of a welded joint. This is due to the presence
of defects (pores and oxide inclusions) in the beads. Considering that when preparing
samples of welded joints for bending, the excess root penetration of the beads, in which
defects are mainly located, is removed, the bending angle can be high even without the use
of flux backing tape during welding.

We noticed that using flux backing tape during the TIG welding of aluminium AMg6
alloy with a thickness of 6 mm can reduce the total welding time by 55%, the consumption
of filler wire by 35%, the consumption of shielding gas by 43% and electricity consumption
by 60% per 1 m length of the weld bead, making this technique very interesting for
various industries.

4. Conclusions

The aim of this study is to propose a flux backing technique to join AMg6 alloy in a
butt join design. This work is a comparison study between conventional AMg6 alloy TIG
welds and welds produced using flux backing tape during TIG welding. The following
main conclusions can be drawn:

➢ Flux backing tape during TIG welding allows full-penetration welds with a thickness
of up to 8 mm to be achieved in a single pass without any edge preparation. The
quality and mechanical properties of the welded joints were significantly enhanced.
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The proposed technique increases productivity and reduces the complexity of welding
work, as well as economizing the use of welding materials and electricity.

➢ The quality of the welded joints produced using flux backing tape is higher in com-
parison with those obtained using the conventional TIG process. The obtained results
showed a decrease in root penetration compared with welding without flux backing
tape, by several times.

➢ It is established that the using flux backing tape during TIG welding on the AMg6 alloy
contributes to the removal of oxide inclusions. The flux backing tape’s effectiveness
is more obvious when the thickness of the flux on the backing tape is in the range of
0.3–0.4 mm.

➢ The proposed variant of the TIG welding method, in comparison with the conventional
TIG process, enable an increase in productivity. The flux backing tape technique
reduces the complexity of welded products by two times and decreases the cost of
welding materials by up to 43% and electricity consumption by up to 60%, meeting
the industry’s needs.

➢ The flux backing tape technique is more effective in joining aluminium alloy AMg6
plates with thicknesses of more than 4 mm in comparison with TIG welding performed
with a ceramic support. A flexible tape is used together with the flux. The tape
prevents the weld bead from sagging. Moreover, the flux cleans the weld metal of
oxide films and removes porosity, and also protects the weld penetration from the
external environment.
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