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Abstract: In this study, Cu/Ni and Cu/Al multilayers, with individual layer thickness varying from
25 nm to 200 nm, and co-sputtered Cu-Ni and Cu-Al single layer films were deposited at room
temperature via magnetron sputtering and further annealed from 100 ◦C to 300 ◦C. The mechanical
and microstructural properties of the as-deposited and annealed samples were characterized by
nanoindentation, x-ray diffraction, and scanning electron microscopy. Both multilayer systems
exhibit an increase in hardness with increasing annealing temperature. However, the Cu/Ni system
shows a gradual and moderate hardness increase (up to 30%) from room temperature to 300 ◦C,
while the Cu/Al system displays a sharp hardness surge (~150%) between 125 ◦C and 200 ◦C.
The co-sputtered Cu-Ni and Cu-Al samples consistently demonstrate higher hardness than their
multilayered counterparts, albeit with distinctly different temperature dependence—the hardness
of Cu-Ni increases with annealing temperature while Cu-Al maintains a constant high hardness
throughout the entire temperature range. The distinct thermal strengthening mechanisms observed
in the two metallic multilayer systems can be ascribed to the formation of solid solutions in Cu/Ni
and the precipitation of intermetallic phases in Cu/Al. This study highlights the unique advantage
of intermetallic strengthening in metallic multilayer systems.
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1. Introduction

Metallic multilayers refer to thin films and coatings composed of alternating lay-
ers of two of more different metals. In contrast to their bulk counterparts, metallic
multilayers offer some extraordinary properties, including but not limited to superior
mechanical strength (e.g., up to ½ of the theoretical strength), high corrosion and ra-
diation resistance, and enhanced thermal stability [1–4]. The remarkable mechanical
strength observed in metallic multilayers can be attributed to a combination of factors
such as layer thickness [5], interface structure [6], deposition temperature [7], and ther-
mal annealing conditions [8,9]. These unique attributes make metallic multilayers highly
promising for various applications, offering a spectrum of desirable characteristics not
easily achievable in their bulk counterparts.

The number of interfaces and the corresponding layer thickness can affect the metallic
multilayer strength by controlling the dislocation motions. For multilayers with an indi-
vidual layer thickness of 50 nm and greater, strengthening occurs by dislocation pile-up
at the layer interfaces which can be explained by the Hall–Petch relation [10–13]. When
the layer thickness is between 10 and 50 nm, due to strong repulsion among like-sign
coplanar dislocations, the multilayer strengthening can be explained by confined layer slip
(CLS) [14–17], involving the movement of a single dislocation loop parallel to the interface
within individual layers. The multilayer strength approaches the theoretical value when
the layer thickness is around 5 nm. At this thickness scale, the strength of multilayers is
affected by coherency stress, misfit dislocations, moduli differences, texture, and chemical
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intermixing along the interface [10,13]. The peak strength is determined by the stress
needed to transmit a single dislocation across the interface.

In addition to the layer thickness, the crystallography of layers also affects the mul-
tilayer strength. For two materials sharing the same crystal structure, such as Cu/Ni
multilayers, the strengthening mechanism can be ascribed to the coherency stress at the
interfaces [18,19]. For multilayer systems which are composed of different crystal structures,
such as Cu/Nb multilayers, the different crystal structures at two sides of the interface may
lead to discontinuity of the slip system and different slip vectors. The flow strength is de-
termined by the transmission of dislocation from one material to another [20,21]. However,
the original crystal structure of the individual material may be changed when the layer
thickness is sufficiently small. For example, in Ag/Fe multilayers, phase transformation in
Fe from BCC to FCC occurs when the layer thickness reaches 5 nm [22]. Also, a superlat-
tice structure has been observed in Cu/Ni multilayer thin films when the layer thickness
is smaller than 5 nm [23]. The high-density nanotwins and coherent layer interfaces in
highly textured multilayers led to a significant enhancement of the multilayer strengths
and delayed the onset of softening.

In addition to the aforementioned mechanisms, the mechanical properties of metallic
multilayers can be affected by deposition temperature and heat treatment conditions as
well. When a Ti/Ni multilayer with 25 nm individual layer thickness was deposited
from room temperature to 500 ◦C, the multilayer hardness was observed to increase with
deposition temperature. This rise in hardness can be attributed to various strengthening
mechanisms, including texture strengthening, low-temperature grain boundary relaxation,
and high-temperature alloying [7].

Annealed Ti/Ni multilayers show a coupled size and temperature strengthening
behavior. For multilayers with a small layer thickness (<25 nm), the multilayer hardness was
observed to continuously increase with annealing temperatures up to 500 ◦C. Conversely,
for a larger layer thickness, the multilayer hardness was observed to first increase with
annealing temperatures up to 300–400 ◦C, after which it exhibited a decrease [8,9]. At
low annealing temperatures, the increase in hardness was attributed to grain boundary
relaxation, while at high annealing temperatures, the competition between heat-induced
alloy strengthening and grain growth softening played a significant role.

In some special metallic multilayer systems, such as Cu/Al, high hardness was usually
observed in both as-deposited [24] and annealed samples [25] beyond that predicted by the
layer thickness effect. The strengthening was attributed to both the high-density nanotwins
and stacking fault as well as the negative enthalpy that led to the intermixing and alloying
at the interface region [24]. The strengthening in the annealed Cu/Al multilayers was
attributed to interface alloying, reduced layer thickness, and the effect of grain size [25].

Driven by the distinctive advantages of metallic multilayers, and the insights gained
from thermal–mechanical strengthening mechanisms, this study focuses on investigat-
ing two model multilayer systems: Cu/Ni and Cu/Al. The rationale behind selecting
these specific systems lies in the intriguing and markedly different phase diagrams in the
corresponding Cu-Ni and Cu-Al alloys, offering two unique avenues for exploration of
alloying-based strengthening mechanisms in metallic multilayers.

Cu-Ni, characterized as a simple isomorphous system, exhibits a suggested spinodal
decomposition of the FCC phase below 350 ◦C [26]. The up to 100% mutual solubility of
Cu and Ni provides a wide composition range for studying their intermixing effect on the
mechanical properties of the resulting alloys due to substitutional alloying. On the other
hand, the Cu-Al system presents a different scenario. Despite Al’s intrinsically soft and
ductile nature, its combination with Cu at different atomic ratios leads to the formation of
several Cu-Al intermetallic compound phases. Particularly within the low-temperature
range from 150 ◦C to 300 ◦C, various intermetallic compounds emerge, including the γ2
phase (Cu9Al4): 69.2 atm% Cu; the δ phase (Cu3Al2/Al2Cu3): 60.0 atm% Cu; the ζ2 phase
(Cu4Al3): 57.1 atm% Cu; the η2 phase (CuAl): 50.0 atm% Cu; and the θ phase (CuAl2):
33.3 atm% Cu [27]. The abundant intermetallic phases in Cu-Al add a layer of complexity,
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rendering thermally annealed Cu-Al a particularly interesting and potentially stronger alloy
compared to annealed Cu-Ni, thus highlighting the unique advantages of intermetallic
strengthening.

In the realm of metallic multilayers, previous investigations into Cu/Ni multilayers
have predominantly attributed the observed strengthening mechanisms to the interplay of
layer thickness and coherency stress at interfaces [7,16,23,28,29]. The layer thickness effect,
as elucidated by these studies, underscores the significance of the physical dimensions
of induvial layers in determining the mechanical properties of the multilayer structure.
Additionally, the coherency stress at the interface plays a pivotal role, contributing to the
enhanced mechanical strength in Cu/Ni multilayers.

In a distinct contrast, the mechanical behavior of Cu/Al multilayers reveals a more
intricate scenario. While the layer thickness effect remains an important factor, influencing
the overall strength of the multilayer [25,30], the additional dimension of intermetallic
phases introduces a new layer of complexity. Unlike the singular focus on layer thickness in
the Cu/Ni multilayers, Cu/Al multilayers undergo phase transformations of intermetallic
phases. This phenomenon provides an additional strenthening mechanism that goes
beyond the conventional layer thickness effect.

The unique exploration undertaken in this study aims to delve into a comparative
analysis of thermally annealed Cu/Ni and Cu/Al multilayers. This comparative approach
serves as a valuable endeavor to unravel the distinct thermal strengthening mechanisms
inherent in these two metallic multilayer systems upon annealing–substitutional solid
solution formation at the Cu/Ni interfaces versus the precipitation of intermetallic phases
at the Cu/Al interfaces. Through a systematic examination of these systems in a controlled
experimental setting, this research seeks to shed light on the differences between two
distinct alloy strengthening mechanisms and their respective contribution to the overall
mechanical strength of the multilayer systems.

2. Experimental Details

Cu/Ni and Cu/Al multilayers were prepared with an Orion 5 UHV magnetron
sputtering system (AJA International, Inc., Hingham, MA, USA), operating at a base
vacuum of ~1 × 10−8 mbar. Employing a single-crystal (100) Si wafer as the substrate for
all samples, the deposition process involved the use of Cu (99.995%), Ni (99.995%), and Al
(99.999%) for direct current (DC) sputtering. A deposition power of 100 W and background
Ar pressure of 2 mTorr were consistently applied across all multilayer depositions. To
enhance adhesion, a thin titanium layer (~10 nm) deposited from a Ti (99.995%) target
served as a bonding layer between the Cu/Ni multilayers and the Si substrate. This
precaution was essential to prevent spontaneous delamination of Cu/Ni multilayers from
the substrate, as established by prior research [31].

The Cu/Ni multilayers featured individual layer thicknesses from 25 to 200 nm, while
the Cu/Al had individual thicknesses ranging from 25 to 100 nm. The thickness ratio
between adjacent layers was consistently maintained at 1 to 1. The overall thickness of
each multilayer sample varied from 1 to 2 µm. For comparative analysis, Cu-Ni and Cu-Al
co-sputtered samples, each 500 nm thick, were also prepared. This involved adjusting the
deposition power of (Cu, Ni) and (Cu, Al) to achieve the nominal 1:1 atomic ratio between
the two metal elements. Post deposition, selected samples underwent vacuum annealing
for 2 h in a muffle furnace (Lindberg Blue M, Thermo Fisher Scientific, Greenville, NC,
USA) at temperatures ranging from 100 ◦C to 300 ◦C.

The crystallinity of both as-deposited and annealed samples was studied by x-ray
diffraction (XRD) using a Bruker D8 Discover (Bruker, Billerica, MA, USA) with Cu Kα
radiation. The sample cross-section morphologies were characterized by scanning elec-
tron microscopy (SEM) on a FEI Sirion XL30 (Thermo Fisher Scientific, Greenville, NC,
USA). Nanoindentation was conducted using a Hysitron Ubi1 nanoindenter (Bruker Nano
Surfaces, Minneapolis, MN, USA) with a Berkovich tip to characterize the hardness of
all samples. Indentation was performed in the direction perpendicular to the multilayer
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surface under load control. A trapezoid load function with 10 s loading, 5 s holding, and
10s unloading was used for all the testing. To avoid substrate effects, the indentation depth
was controlled below 15% of the overall film thickness. The hardness was calculated by
dividing the maximum load by the contact area following the standard Oliver and Pharr
method [32]. Each sample underwent at least 60 indentations at varying loads to ensure
repeatability and reliability of the results.

3. Results and Discussions
3.1. SEM Morphology of As-Deposited Samples

Cross-sectional SEM imaging showed well-defined layered structures in the as-
deposited Cu/Ni and Cu/Al mutilayers, and columnar structures in their corresponding
co-sputtered counterparts.

Figure 1 presents the cross-sectional morphologies of three as-deposited Cu/Ni multi-
layer samples with layer thicknesses of 200, 100, and 25 nm, respectively, along with one
co-sputtered Cu-Ni sample. The multilayer samples reveal highly textured layer-by-layer
structures. In Figure 1a,b, the 200 nm and 100 nm layer thickness samples display distinct
columnar structures within the Ni layers. The columnar structure is less evident in the
25 nm sample due to its reduced layer thickness. The Cu layers exhibit a less defined grain
structure attributed to their ductile deformation during the fracturing process. The entire
co-sputtered Cu-Ni film in Figure 1d shows a columnar structure extending through the
entire sample film’s thickness.
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Figure 2 shows cross-sectional morphologies for three as-deposited Cu/Al samples,
with layer thicknesses of 100, 50, and 25 nm, respectively, along with one co-sputtered
Cu-Al sample. The multilayer samples show well-defined layer-by-layer structures with
the darker layers corresponding to Al and the brighter layers to Cu. The distinct contrast
arises from the higher atomic number of Cu, causing it to scatter more electrons back
towards the detector compared to the lighter Al atoms. As a result, Cu appears brighter
in the SEM images. However, it is essential to note that the high ductility of both the Cu
and Al layers led to significant plastic deformation when the samples were fractured for
cross-sectional imaging. The plastic deformation obscured the microstructure, making it
challenging to discern fine details in the SEM images of the fractured samples. Meanwhile,
the cross-sectional view of the Cu-Al co-sputtered sample in Figure 2d reveals a well-
defined columnar structure, adding a layer of clarity to the microstructure comparison.
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The observed columnar structure arrangements in the co-sputtered samples in
Figures 1d and 2d, contrasting with the layered structure and plastic deformation in their
multilayered counterparts, underscore the impact of the deposition methods on the resul-
tant microstructure of the Cu/Ni and Cu/Al multilayers.

3.2. Hardness

The hardness of the Cu/Ni and Cu/Al multilayers, along with that of the co-sputtered
samples, was investigated by nanoindentation, and distinctively different strengthening
trends were observed. Figure 3 shows the hardness as a function of annealing temperature
and layer thickness for both systems. In the as-deposited samples, there is a noticeable
increase in hardness as the layer thickness decreases, consistent with the findings in the
existing literature attributed to layer interface strengthening [6]. Both the Cu/Ni and
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Cu/Al multilayers exhibit an increase in hardness with increasing annealing temperature,
yet with distinct trends and magnitudes. The co-sputtered samples consistently display
higher hardness compared to the multilayer samples across the entire temperature range
for both systems, although with different patterns.
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Figure 3. The hardness of (a) Cu/Ni multilayer and co-sputtered Cu-Ni, and (b) Cu/Al multilayer and
co-sputtered Cu-Al thin films with different annealing temperatures and different layer thicknesses.

As shown in Figure 3a, the Cu/Ni samples display a gradual and consistent increase
in hardness from the as-deposited state to the 300 ◦C annealed state. Even at the highest
annealing temperature of 300 ◦C, the hardness increase remains moderate (<30%) compared
to the as-deposited condition. The hardness increase is more pronounced in thinner layers
(e.g., 25 and 100 nm) and co-sputtered samples.

In Figure 3b, Cu/Al samples show a remarkable hardness surge (~150%) within a
narrow temperature range (125 ◦C to 175 ◦C for the 25 and 50 nm layers, and 125 ◦C to
200 ◦C for the 100 nm layers). Below 125 ◦C there is no visible hardness change with respect
to temperature. The multilayers’ hardness plateaus after 175 ◦C (25 and 50 nm layers) and
200 ◦C (100 nm layer). The co-sputtered Cu-Al sample maintains a consistently high hard-
ness (~11 GPa) throughout the entire temperature range, in stark contrast to the behavior
of co-sputtered Cu-Ni, whose hardness is only slightly higher than the multilayered Cu/Ni
at room temperature and continues to increase with annealing temperature.

3.3. XRD Spectra

XRD was performed to characterize the microstructure and phase transformation of
both systems upon annealing. Figure 4a presents the XRD spectra of the as-deposited
Cu/Ni multilayers and co-sputtered Cu-Ni samples. Both Cu and Ni exhibit an FCC
structure with prominent peaks for Cu (111), Ni (111), Cu (200), and Ni (200). Analysis
of different layer thicknesses revealed a slightly reduced distance between Cu (111) and
Ni (111) peaks in the 25 nm layer sample. The decreased peak distance is probably due
to distortion of the lattice at each layer interface. The larger number of interfaces in the
25 nm layer thickness sample are expected to result in a higher amount of distortion and
subsequent residual stress. Previous work showed that as the layer thickness reduced
from 100 nm to 25 nm, the residual stress in the Ni layers increased from 0.88 GPa to
1.45 GPa [31]. For the Cu-Ni co-sputtered sample, the Cu and Ni peaks—Cu (111) and Ni
(111), Cu (200) and Ni (200)—merge between their original positions in the thicker layers,
indicating a new FCC structure with a lattice constant in between those of Cu and Ni.
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Figure 4b demonstrates the XRD spectra of the 100 nm layer thickness Cu/Ni samples
at different annealing temperatures. Comparison of XRD patterns between the as-deposited
and annealed states shows no obvious peak position change upon annealing, except a
slight increase in peak height at higher annealing temperature, likely due to improved
crystallinity. Although not included, the XRD spectra of the 200 nm and 25 nm layer
thickness samples show similar behaviors—no clear temperature dependence.

Moving to Figure 5, the XRD spectra of the Cu/Al samples reveal distinct features. In
the as-deposited Cu/Al multilayer samples (Figure 5a), a clear separation exists between the
Cu (111) and Al (111) peaks. However, the co-sputtered Cu-Al sample forms intermetallic
Al2Cu3 phases, altering the XRD spectrum. The peak near 44 degrees is likely a combination
of Cu (111) and Al2Cu3 (102) peaks.

In Figure 5b,c, the XRD spectra of the 100 and 25 nm layer samples demonstrate
that below 150 ◦C, there is no discernible difference between the as-deposited and the
low-temperature-annealed states (100 ◦C and 125 ◦C), and the stability of the Cu (111)
and Al (111) peaks is maintained. This stability explains the consistent hardness observed
in Figure 3b. However, intermetallic Cu-Al phases begin to emerge at higher annealing
temperatures. For the 100 nm layer thickness sample, two distinct intermetallic peaks are
identified at 150 ◦C -CuAl2 (110) and Cu9Al4 (330). The Cu9Al4 (330) peak becomes more
pronounced at 175 ◦C, and dominates after 200 ◦C. At elevated annealing temperatures,
the Cu (111) and CuAl2 (110) peaks are no longer detectable.

The known greater diffusivity of Cu in Al compared to Al in Cu is likely responsible
for the initial formation of the CuAl2 phase when Cu saturates in Al [24,33]. At even
higher temperatures (~175 ◦C), the Cu + CuAl2 → Cu9Al4 reaction occurs at the interfaces.
A similar reaction happens in the Cu/Al 25 nm sample as well (Figure 5c). However,
intermetallic formation occurs at a lower annealing temperature (100 ◦C) in the 25 nm
samples than in the 100 nm samples, indicating faster diffusion of atoms in thinner layers
even at a lower annealing temperature. In the co-sputtered Cu-Al thin film (Figure 5d),
Cu9Al4 and ε-Al2Cu3 phases are present in both the as-deposited and annealed states. The
most significant disparity between the multilayer Cu/Al and co-sputtered Cu-Al samples
is the abundant intermetallic phases observed in the as-deposited and thermally annealed
co-sputtered sample.
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Figure 5. XRD spectra for Cu/Al thin films: as-deposited samples of different layer thickness
(including the co-sputtered) (a); as-deposited and annealed samples: (b) individual layer thickness of
100 nm, (c) individual layer thickness of 25 nm, and (d) co-sputtered Cu-Al.

XRD analysis further supports the principle of post-deposition annealing strength-
ening, as evidenced by the presence of harder intermetallic phases (CuAl2 and Cu9Al4)
compared to pure Cu and Al. The reduced layer thicknesses of the 50 nm and 25 nm Cu/Al
samples, when compared to the 100 nm Cu/Al sample, facilitates enhanced diffusion,
leading to a more rapid and saturated increase in hardness. Notably, the co-sputtered
Cu-Al samples exhibit a sufficient mixture of Cu and Al during the deposition process,
resulting in the formation of intermetallic phases even at room temperature. Importantly,
this intermetallic structure and the corresponding hardness are maintained after annealing,
indicating a superior thermal stability of the co-sputtered system.

3.4. SEM Morphology of Annealed Samples

Annealed samples show distinct cross-sectional morphologies compared to their
as-deposited counterparts. In Figure 6, cross-sectional SEM images of the 100 nm layer
thickness Cu/Ni as-deposited sample and those annealed at 100 ◦C, 200 ◦C, and 300 ◦C
reveal notable changes. The as-deposited sample displays a clear layer-by-layer structure.
However, in samples annealed at higher temperatures, the Cu layer appears significantly
thicker than in the as-deposited state. This effect is particularly pronounced in the 300 ◦C
annealed sample, indicating increased diffusion between Cu and Ni layers with higher
annealing temperatures.
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At low annealing temperatures (<100 ◦C), the cross-sectional SEM (Figure 6b) shows no
obvious diffusion, suggesting that the enhanced mechanical properties may be attributed to
grain boundary relaxation [8,34,35]. Annealing facilitates the transition of grain boundaries
to a more ordered equilibrium state, hindering the movement of dislocations and enhancing
hardness. However, at higher annealing temperatures (>100 ◦C), diffusion and solid
solution formation induce deformation and the development of stress fields in the samples,
potentially contributing to the hardness enhancement in the Cu/Ni multilayer thin film at
elevated annealing temperatures.

Figure 7 presents cross-sectional images of the Cu/Al 100 nm sample with different
annealing temperatures (125 ◦C to 300 ◦C). The first two images depict a clear layer-by-
layer structure, aligning with the XRD-based conclusion that little diffusion occurs at
annealing temperatures below 150 ◦C. The as-deposited and 125 ◦C annealed samples
show undulating structures, likely due to the ductile deformation of Cu and Al during
fracture. However, at annealing temperatures of 150 ◦C and 175 ◦C, the Cu layers become
thinner due to diffusion. A further increase in annealing temperatures (200 ◦C and 300 ◦C)
results in increasing intermixing of Cu and Al layers, explaining the different XRD peaks
between the 300 ◦C annealed samples and the as-deposited ones. Additionally, the fractal
cross-sections in Figure 7c–f become visibly smoother, providing additional evidence of the
brittle intermetallic phase formation with increasing temperature.
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3.5. Discussion

This study delved into thermal-annealing-induced strengthening mechanisms within
Cu/Ni and Cu/Al multilayer systems, encompassing individual layer thicknesses spanning
25 nm to 200 nm, and annealing temperatures from 100 ◦C to 300 ◦C. The correlation
between increased hardness and decreasing layer thickness in the as-deposited samples
affirmed the impact of layer thicknesses in metallic multilayers. With annealing, the Cu/Ni
samples exhibited a gradual and modest increase in hardness, up to 30%, from room
temperature to 300 ◦C, while the Cu/Al counterparts showcased a remarkable hardness
surge of approximately 150%, within a specific temperature range between 125 ◦C and
200 ◦C. Interestingly, the Cu/Al samples displayed little temperature dependence below
125 ◦C or beyond 200 ◦C, maintaining consistent hardness. The co-sputtered Cu-Ni and Cu-
Al samples consistently demonstrated higher hardness than their multilayered counterparts,
albeit with distinctly different temperature dependence—the hardness of Cu-Ni increased
with annealing temperature while Cu-Al maintained a constant high hardness throughout
the entire temperature range.

While neither the XRD spectra nor the cross-sectional SEM revealed significant struc-
tural difference between the low-temperature-annealed and the as-deposited samples in
Cu/Ni multilayers, observable diffusion became apparent at an annealing temperature of
200 ◦C. This diffusion of Cu and Ni layers at higher temperatures contributed to increased
hardness through the formation of solid solutions, with the strengthening observed in
low-temperature-annealed samples attributed to grain boundary relaxation.

Contrastingly, in Cu/Al multilayer samples, annealing induced a substantial hardness
increase between 125 ◦C and 200 ◦C. XRD and cross-sectional SEM results indicated that
annealing facilitated Cu diffusion into adjacent Al layers, forming various intermetallic
phases (CuAl2 and Cu9Al4) responsible for the significant increase in hardness. Notably,
the as-deposited Cu-Al co-sputtered samples already exhibited rich intermetallic phases,
reaching a hardness of ~11 GPa, which remained constant after annealing. As such, the
hardness of the co-sputtered Cu-Al samples may be considered an asymptotic value for
annealed Cu/Al multilayer systems.

Overall, the XRD spectra and SEM morphologies exhibit a strong correlation and
play a crucial role in elucidating the observed change in hardness with varying annealing
temperatures. The progressive rise in hardness within the Cu/Ni system can be attributed
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to a combination of grain boundary relaxation and thermal diffusion between the Cu and
Ni elements, facilitating the formation of a solid solution. On the other hand, the abrupt
increase in hardness observed in the Cu/Al system is associated with the formation of
district Cu-Al intermetallic phases.

4. Conclusions

This study illustrates distinct thermal strengthening mechanisms between the two
metallic multilayer systems as well as their corresponding co-sputtered counterparts: solid
solution strengthening in Cu/Ni and intermetallic strengthening in Cu/Al. The results
underscore the pivotal roles played by layer thickness and annealing conditions in influ-
encing the diffusion kinetics and subsequent formation of solid solution and intermetallic
phases, ultimately shaping the mechanical properties of the materials. Additionally, the
ability of co-sputtering Cu-Al samples to form and retain intermetallic phases even at low
temperatures suggests a unique advantage in achieving desired material characteristics,
contributing to the overall understanding of the relationship between microstructure, phase
evolution, and mechanical behavior in multilayered and co-sputtered systems. The insights
gained from this work will serve as valuable guidance for the future design and applica-
tion of engineered multilayer materials, underscoring their potential in tailoring specific
material properties for various applications.
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